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Simulation of Sloshing with the Volume of Fluid Method

M.H. Djavareshkian1 and M. Khalili2

Abstract: This paper opens a new horizon on the sim-
ulation of sloshing phenomena. One of the most popular
Finite Volume methods called VOF (Volume Of Fluid)
method is used for tracking the flow in containers. The
algorithm is tested for different fluid elevations, physical
conditions in different road curves and liquid properties.
The method is then validated against an analytical and
another numerical solution. These comparisons show
that the VOF can effectively solve the sloshing problem
for different fluids and a variety of physical and geomet-
rical conditions.
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Nomenclature

A, D = finite difference coefficients
ã = cell face area
e, w, n, s = east, west, north and south cell faces
E,W,N,S = East, West, North and South center cells
F = mass flux
I = flux
q = scalar flux vector
Su = momentum source term
T = stress tensor
u, v = velocity components in the x and y

directions, respectively
Γ = diffusivity coefficient
δυ = cell volume
µ = dynamic viscosity
ρ = density
φ = scalar quantity
η, ζ = local coordinates

1 Introduction

Every year, there are many fatal accidents associated with
the role over of tanker trucks carrying fuel. The tendency
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to roll over is even higher when the tanker truck is par-
tially filled and the fuel inside the tanker is free to slosh.
Typically a half-empty tanker truck has ten times more
tendency to role over than a passenger car. Sloshing also
happens in the gas tank of automobiles, in the wing of
an aircraft and in water towers during an earthquake. In
these situations the liquid is exposed to external forces,
as a consequence the free surface of the liquid becomes
unstable and sloshing occurs. The sloshing amplifies the
maximum fluid force exerted on the structures and causes
instability. To understand the fluid–structure interaction
during sloshing, accurate knowledge of the free surface
behavior is necessary.

Until now, a lot of studies have considered sloshing
(some initial important experimental studies are due to
Martin and Moyce [1952] and Abramson [1966]). Ama-
bili [1996] and Warnitchai and Pinkaew [1998] solved
the sloshing problems by analytical methods and vali-
dated the results with some experiments.

Another possible way to study the problem is the Fi-
nite Element method. Aliabadi and Tezduyar [2000],
Aliabadi et al [2003] and Johnson and Aliabadi [2000]
used this technique in studying the free-surface move-
ments. Another very promising method is the VOF Finite
volume method introduced by Nichols and Hirt [1971,
1975], Maxwell [1977], Deville [1974], Hirt and Shan-
non [1968], Hirt et al [1975] and Liu Jun [1985].

In the above-mentioned works, the numerical simulation
of free-surface flow problems is based on the solution of
a complex set of partial differential equations governing
the conservation of mass and momentum. This method
is a kind of volume-tracking technique applied to a fixed
Eulerian mesh. It has been used by Liu Jun [1986] for
studying a variety of free surface problems. Similar tech-
niques (Level set, front tracking method) have been de-
veloped by other researchers (see, e.g., Esmaeeli, 2005;
Lappa, 2005: Jimenez et al., 2005; Hogea et al., 2005).

In this paper, the VOF method is employed for track-
ing the flow in containers. In this simulation, a non-
orthogonal mesh with a collocated pressure-base formu-
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lation is used. The pendulum model is also considered.
This model is a cost effective way for the simulation
of sloshing. The results of this simulation for a tanker
truck containing liquid fuel with different free surfaces,
viscosities and densities are finally compared with other
available results.

2 Governing Equations

The basic equations, which describe conservation of
mass and momentum, can be expressed in Cartesian ten-
sor form as

∂ρ
∂t

+
∂(ρu j)

∂x j
= 0 (1)

∂ (ρ ui)
∂t

+
∂(ρui u j −Ti j)

∂x j
= Su

i (2)

Where Su
i includes body forces. The stress tensor is usu-

ally expressed in terms of basic dependent variable. This
term for a Newtonian incompressible fluid is

Ti j = −pδi j +µ(
∂ui

∂x j
+

∂u j

∂xi
) (3)

3 Volume Of Fluid (VOF) Method

In this method, the actual location of the interface is de-
termined by some additional computations based on the
distribution of markers within each cell.

VOF is a proper method for modeling two or more im-
miscible fluids where the position of the interface be-
tween the fluids is of interest. In this method, a single
set of momentum equations is shared by the fluid phases,
and the volume fraction of each fluid phase in each com-
putational cell is tracked throughout the domain.

A function F is defined the value of which is unity at any
point occupied by one of the two fluid phases and zero
otherwise. The average value of F in a cell then repre-
sents the fractional volume of the cell occupied by the
considered fluid phase. The interface occurs in the cells
with fractional values. As the free surface moves, the vol-
ume fractions are updated during the calculation accord-
ing to an appropriate advection equation. This equation
governs time dependence of F and can be written as:

DF
Dt

=
∂F
∂t

+u
∂F
∂x

+v
∂F
∂y

+w
∂F
∂z

= 0 (4)

This equation shows that the material derivative of this
flow characteristic is zero, and states that F moves with
the fluid.

After the computation of the volume fractions in each
cell, we can define equivalent characteristics such as den-
sity and viscosity for the cell. For example, when F rep-
resents the volume fraction of the second fluid in each
computational cell, then the equivalent density and vis-
cosity of each cell can be calculated as:

ρ = ρ1 +F(ρ2 −ρ1) (5)

µ = µ1 +F(µ2−µ1) (6)

where the subscripts 1 and 2 are related to the first and
the second fluid respectively.

After finding the equivalent values of density and viscos-
ity, the momentum equation is solved to gain the new
velocity field. Eq.(4) is used to find the new volume frac-
tions in all cells at a new time.

4 Discretization

The discretization of the above differential equations is
carried out using a finite-volume approach. First, the
solution domain is divided into a finite number of dis-
crete volumes or cells, where all variables are stored at
their geometric centers (see e.g. Fig.1). The equations
are then integrated over all the control volumes by us-
ing the Gaussian theorem. The discrete expressions are
presented regarding only one face of the control volume,
namely, e for the sake of brevity.

For any variable φ (which may also stand for the ve-
locity components), the result of the integration yields
δυ
δt [(ρφ)n+1

p −(ρφ)n
p]+ Ie− Iw + In− Is = Sφ δυ where I(s)

are the combined cell-face convection Ic and diffusion ID

fluxes. The diffusion flux is approximated by central dif-
ferences and can be written for cell-face e of the control
volume in Fig. (1) as:

ID
e = De(φp −φE)−Sφ

e (7)

where Sφ
e stands for cross derivative arising from mesh

non-orthogonality. A representation of the convective
flux for cell-face e is:

Ic
e = (ρ.V.A)eφe = Feφe (8)

The value of φe is not known and should be estimated
by interpolation, from the values at neighboring grid
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points. The expression for φe is determined by the SBIC
(Djavareshkian (2001)) scheme, that is based on the
NVD technique, used for interpolation from the nodes
E, P and W. The expression φe for positive direction of
the velocity can be written as

φe = φW +(φE −φW ) · φ̃e (9)

The functional relationship used in the SBIC scheme for
φ̃e is given by:

φ̃e = φ̃P if φ̃C /∈ [0,1]

φ̃e = − η̃P − η̃e

K(η̃P−1)
φ̃2

P +
(

1+
η̃P − η̃e

K(η̃P−1)

)
φ̃P

if 0 ≤ φ̃P ≤ K (10)

φ̃e =
η̃P − η̃e

η̃P −1
+

η̃e −1
η̃P −1

φ̃P if K < φ̃P ≤ 1

Where

φ̃P =
φP −φW

φE −φW
φ̃e =

φe−φW

φE −φW

η̃e =
ηe −ηW

ηE −ηW
η̃P =

ηP −ηW

ηE −ηW
(11)

The limits on the K value can be determined in the fol-
lowing way. Obviously the lower limit is K = 0 which
would represent switching between upwind and central
differencing. This is not favorable because it is essential
to avoid abrupt switching between the schemes in order
to obtain solution convergence. The value of K should be
kept as low as possible in order to achieve maximum res-
olution. The final form of the discretized equation from
each approximation reads:

AP.φP = ∑
m=E,W,N,S

Am.φm +S′φ (12)

where A (s) are the convection-diffusion coefficients. The
term S′φ in Eq. (12) contains quantities arising from non-
orthogonality, numerical dissipation terms and external
sources, and (ρδυ/δt)φP of the old time-step/iteration
level (for a time dependent equation).

5 Solution algorithm

The set of (12) is solved for the primitive variables (ve-
locity components and energy) together with the continu-
ity equation by means of pressure-based implicit sequen-
tial solution methods. The technique used is the SIMPLE
scheme presented below. In this technique, however, the
methodology has to be adapted in order to handle the way
in which the fluxes are computed in Eq. (8).

The adapted SIMPLE scheme consists of a predictor and
corrector sequence of steps at each iteration. The pre-
dictor step solves the implicit momentum equation using
the old pressure field. Thus, for example, for the u com-
ponent of velocity, the momentum predictor stage can be
written as

u∗ = H(u∗)−D∇po +S′u (13)

Where

H(u∗) = (AEu∗E +AW u∗W +ANu∗N +ASu∗S)/AP (14)

and

−D∇po = −(
∂ po

∂x
)P.δv/AP ≡ (−aη.(po

e − po
w)

+aζ.(po
n − po

s ))/AP (15)

Superscripts * and o denote intermediate and previous
iteration values, respectively. Note that the pressure-
gradient term is now written explicitly; it is extruded
from the total momentum flux by simple subtraction and
addition. The corrector-step equation can be written as

u∗∗ = H(u∗)−D∇p∗ +S′u (16)

Equations (13) and (16) can be written for the e cell-face
velocities as:

u∗e = H̃(u∗)− D̃∇̃po + S̃′u (17)

u∗∗e = H̃(u∗)− D̃∇̃p∗ + S̃′u (18)

Hence, from (17) and (18)

u∗∗e −u∗e = −D̃∇̃(p∗ − po) or δu = −D̃∇̃δp (19)

Now the continuity equation demands that

∇(ρu∗∗) = 0 (20)
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Density is constant for incompressible flows, therefore

ρu∗∗ ≈ ρu∗ +ρδu (21)

where equation (19) is invoked to eliminate δu. Substi-
tution of (21) into (20) yields a pressure-correction equa-
tion in the form

AP.δp∗P = AE .δp∗E +AW .δp∗W +AN .δp∗N +AS.δp∗S +SP

(22)

where SP is the finite difference expression of ∇(ρu∗),
which vanishes when the solution is converged. The A
coefficients in (22) take the form (the expression for AE

is given as an example)

AE = ρ(ãD̃)e (23)

Figure 1 : Typical grid – point cluster and control vol-
ume

6 Pendulum Method

To solve the problem with an analytical method, the
geometries and flow characteristics must be simplified.
In the case of sloshing, the aforementioned pendulum
model is a proper analytical method. In this case, it is as-
sumed the sloshing shape can be modeled as a solid point
mass oscillating around a hinge. Fig. 2 shows a circular
cylinder with radius R, containing some water with depth
of R−d. Sloshing of the water inside the cylinder can be
simulated with a simple pendulum connected to the cen-
ter of the cylinder with an imaginary arm with a length
Xc. This length can be calculated by:

∫ R

d
x.y.dx =

∫ R

d
x.

√
1−x2.dx = Xc.A

= Xc.
∫ R

d
y.dx = Xc.

∫ R

d

√
1−x2.dx (24)

The general equation for pendulum oscillations reads:

I.θ̈+C.R.θ̇+m.g.Xc.θ = 0 (25)

Where I is the second moment of area relative to center of
the cylinder and C is a damping factor. These parameters
read:

I = Iyy + Ixx = 2ρ.t.[
∫ R

d x2.
√

1−x2.dx+∫ √
R2−d2

0 y2.(x−d).dy]
(26)

Where t is the thickness of the circle (length of cylinder)
and µ is the viscosity of the fluid. The initial conditions
for the above mentioned oscillation equation are:

θ|t=0 = θ0 (27)

θ̇
∣∣
t=0 = 0 (28)

Where θ0 is the initial free surface angle and it depends
on the centrifugal and gravity accelerations. The equa-
tion (25)

Figure 2 : Sloshing in a half-empty cylinder

is solved with the Runge-Kutta method and θ is calcu-
lated at each time step. By finding the free surface angle
at each time step, it is clear that the horizontal force ex-
erted on the wall by the liquid, is the x-component of the
total force calculated by multiplying the hydrostatic pres-
sure by the wetted area, therefore the horizontal force due
to sloshing can be obtained at each time step.

7 Result

The results of the numerical simulations based on the
finite volume method with the VOF technique, and the
pendulum models are compared for a tanker truck hav-
ing a circular cross-section with one unit in diameter. A
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tanker-truck with a horizontal circular cylinder and 4m
of length in the axial direction moving in a road with a
velocity of 10m/s is considered. The road has a circular
shape with 250m radius. Two different accelerations are
applied to the system, gravity and centrifugal accelera-
tions. Before the tanker enters the curved road, vertical
gravity is the only component of acceleration and then at
time t=0 a horizontal acceleration is added to the system
and thus sloshing occurs.

The series of frames in Fig. 3 shows the results obtained
using both the VOF method (solid line) and the analyti-
cal method (dotted line) for water elevation of 0.35, 0.25,
0.15 and 0.05 m measured from the center of the tanker.
The results of these two methods have also been com-
pared with those of the Finite-Element method from the
numerical work of Aliabadi et al. (2003). In Fig. 3, the
circles show the cross-section of the tanker and the ele-
vation of the water.

As expected, both methods have relatively good agree-
ments when the water inside the tanker is low (d=0.35).
The frequency of the sloshing is almost the same for all
methods at low and moderate amount of the water inside
the tanker (d=0.35 and d=0.25m). The differences be-
tween amplitude and frequency of sloshing provide by
different methods become large when there is a signifi-
cant amount of water inside the tanker (d=0.05).

In this paper, the effect of the geometry of the tanker
on the results is also investigated. For this purpose,
the above mentioned tanker truck with a circular cross-
section with 1m diameter is compared with another
tanker with the cross section of an ellipse with minor
and major diameters of 1m and 1.33m respectively. This
comparison shows differences in results due to the shape
of the tanker. To show the effect of tanker size, another
elliptic tanker with 1.5 times larger dimensions (1.5m for
minor dia. and 2m major dia.) has been compared with
these two tankers. All these tanker-trucks with 4m length
are moving in a road with a velocity of 10m/s. The road
has a circular shape with a radius of 250m. Fig. 4 shows
the results obtained for these different tankers for water
elevation of 0.35, 0.25, 0.15 and 0.05 m measured from
the center of the tanker.

It is clear that the amplitude of the force is increased
with increasing the cross section area of the tanker and
its contained liquid. But the frequency of the sloshing is
decreased for the larger tankers and liquid amount. Also
comparison of the results in Fig. 4 shows that the fre-

a) d=0.35 

b) d=0.25 

c) d=0.15 

d) d=0.05 

Figure 3 : Horizontal force applied to the tanker for dif-
ferent methods
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a) d=0.35 

b) d=0.25 

c) d=0.15 

d) d=0.05 

Figure 4 : Horizontal force applied to the tanker for dif-
ferent geometries

a) d=0.35 

b) d=0.25 

c) d=0.15 

d) d=0.05 

Figure 5 : Horizontal force applied to the tanker for dif-
ferent radii of the road
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Figure 6 : Grid independence test

Figure 7 : Horizontal force applied to the tanker for flu-
ids with different densities

Figure 8 : Horizontal force applied to the tanker for flu-
ids with different viscosities

quency of sloshing for all tanker geometries is increased
by decreasing the water depth in the tanker.

The effect of different physical conditions due to differ-
ent road curves on the results is also investigated. For
this purpose, a horizontal tanker is considered with the

cross section of an ellipse with minor and major diame-
ters of 1m and 1.33m respectively. This tanker is entering
roads with 150m, 250m and 350m radius. This compari-
son shows differences in results due to the radius of road.
The tanker-truck with 4m of length is moving in each
road with a velocity of 10m/s. Fig. 5 shows the results
obtained for these different roads with water elevation of
0.35, 0.25, 0.15 and 0.05 m measured from the center of
the tanker.

It is clear that the amplitude of the force is increased
with increasing the water depth in the tanker. But the
frequency of the sloshing is constant for each set of di-
agrams and does not change for different road curves.
Also comparison of the results in Fig. 5 shows that the
frequency of sloshing for all road radii increases when
the water depth in the tanker decreases.

A grid independence test for the simulation of a tanker
truck having an ellipse cross-section with minor and ma-
jor diameters of 1m and 1.33m respectively is shown in
Fig. 6. A tanker-truck with a 4m of length in the axial di-
rection moving in a road with a velocity of 10m/s is con-
sidered. The road has a circular shape with 250m radius.
The results for different meshes change slowly. This in-
dicates that an acceptable solution can be obtained on the
grid 36400 cells.

The last part of this study is about the effects of differ-
ent liquid properties on the sloshing phenomena in the
tanker. For this purpose, another tanker is assumed with
the cross section of an ellipse with minor and major di-
ameters of 1.5m and 2m respectively. This tanker is en-
tering a road with 250m radius and the distance between
free surface and center of ellipse in all cases is d=0.25D
where D is the minor diameter(1.5m).

In a first case, three fluids with densities 1200, 1000 and
800 kg/m3 are assumed respectively. The comparison of
the results in Fig. 7 shows differences due to the differ-
ent densities. It is obvious that the amplitude of the force
increases, when the liquid density in the tanker increases,
since the force depends on the liquid weight and its den-
sity.

In a second case, three fluids which have the same density
of water (1000 kg/m3) with viscosities of 0.001 kg/m.s
(viscosity of water), 0.1 and 10 kg/m.s are assumed re-
spectively. The comparison is done in Fig. 8 and shows
differences in results due to different viscosities. This
figure shows that the amplitude of the force does not de-
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pend on the viscosity of the liquid and viscosity only af-
fects the damping and the end time of sloshing in the
tanker.

8 Conclusion

In this paper, a finite volume, VOF method has been
used to simulate typical sloshing phenomena in contain-
ers. The results of these simulations have been com-
pared with a simple pendulum model and FEM results.
The main findings can be summarized as follows: 1-
For sloshing applications in tanker trucks during turning,
the results obtained from these methods are qualitatively
comparable for low and moderate amount of the fuel or
water inside the tanker. On the other hand, in the pres-
ence of a significant amount of liquid inside the tanker,
the models lead to different solutions. 2- The amplitude
of the force is increased with increasing the cross section
area of the tanker and its contained liquid, but the fre-
quency of the sloshing is decreased for the larger tankers
and liquid amount. 3- The frequency of sloshing for all
road radii is increased with decreasing the water depth
in the tanker. 4- The amplitude of the force is increased
with increasing the liquid density in the tanker. 5- The
amplitude of the force does not depend on the viscosity
of liquid, and viscosity only affects the damping and the
sloshing end time.
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