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Adaptive 3D finite elements with high aspect ratio for dendritic growth of a
binary alloy including fluid flow induced by shrinkage
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Abstract: An adaptive phase field model for the
solidification of binary alloys in three space di-
mensions is presented. The fluid flow in the lig-
uid due to different liquid/solid densities is taken
into account. The unknowns are the phase field,
the alloy concentration and the velocity/pressure
in the liquid. Continuous, piecewise linear fi-
nite elements are used for the space discretiza-
tion, a semi-implicit scheme is used for time dis-
cretization. An adaptive method allows the num-
ber of degrees of freedom to be reduced, the
mesh tetrahedrons having high aspect ratio when-
ever needed. Numerical results show that our
method is effective and allows to perform com-
plicated simulations with relatively few computer
resources needed. The simultaneous evolution of
several solutal dendrites can be efficiently simu-
lated on a single workstation.

Keyword: mesh adaptation, solidification,
phase-field, Navier-Stokes, finite elements

1 Introduction

In recent years, considerable progress has been
made in numerical simulation of solidifica-
tion processes at microscopic scale [Boettinger,
Coriell, Greer, Karma, Kurz, Rappaz, and Trivedi
(2000)].  Although sharp interface [Juric and
Tryggvason (1996); Jacot and Rappaz (2002)]
and level-set models [Fried (2004); Gibou, Fed-
kiw, Caflisch, and Osher (2003)] have proved
to be efficient, the phase field method emerged
as a method of choice in order to simulate den-
dritic growth in binary alloys [Collins and Levine
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(1985); Caginalp and Xie (1993); Kobayashi
(1993); Karma (1994); Warren and Boettinger
(1995); Chen (2002); Echebarria, Folch, Karma,
and Plapp (2004)]. In phase field models, the lo-
cation of the solid and liquid phases in the com-
putational domain is described by introducing an
order parameter, the phase field, which varies
smoothly from one in the solid to zero in the
liquid through a slightly diffused interface. The
main difficulty when solving numerically phase
field models is due to the very rapid change of the
phase field (and also of the concentration field in
alloys) across the diffuse interface, whose thick-
ness has to be taken very small (between 1 and 10
nm) to correctly capture the physics of the phase
transformation. A high spatial resolution is there-
fore needed to describe the smooth transition. In
order to reduce the computational time and the
number of grid points adaptive isotropic finite el-
ements [Schmidt (1996); Provatas, Goldenfeld,
and Dantzig (1999)] have been used. Further re-
duction of the number of nodes has been achieved
using adaptive finite elements with high aspect ra-
tio [Burman and Picasso (2003); Burman, Jacot,
and Picasso (2004)].

The influence of inter-dendritic liquid flow has al-
ready been taken into account in dendritic simu-
lations [Ni and Beckermann (1991); Beckermann,
Diepers, Steinbach, Karma, and Tong (1999);
Nestler, Wheeler, Ratke, and Stocker (2000);
Jeong, Goldenfeld, and Dantzig (2001); Boet-
tinger, Warren, Beckermann, and Karma (2002);
Tonhardt and Amberg (2000); Hong, Zhu, and
Lee (2006)]. Also, the inter-dendritic liquid flow
induced by shrinkage — that is to say the flow in-
duced by the fact that solid and liquid densities
are different — has been considered [Anderson,
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McFadden, and Wheeler (2000, 2001); Heinrich
and Poirier (2004); Griebel, Merz, and Neunho-
effer (1999); Sun and Beckermann (2004); Conti
(2001, 2004)].

The goal of this paper is to take into account the
inter-dendritic liquid flow due to shrinkage, us-
ing adaptive finite elements with high aspect ra-
tio as in [Narski and Picasso (2006)] but in three
space dimensions. It will be shown that the use
of 3D adaptive finite elements with high aspect
ratio allows complex dendritic simulations to be
performed on standard workstations.

The outline of the paper is following. In the fol-
lowing section, we present the model. The numer-
ical method is described in section 3. In section 4,
we study the influence of shrinkage on dendritic
growth.

2 The model

The solidification of an alloy at mesoscopic scale
depends on temperature and concentration. The
former is assumed to be a known parameter, the
latter is altered by convection in the melt. Thus
the model consists of a coupled set of equations
for the phase field, concentration, velocity and
pressure.

The equations are derived using a volume av-
eraging technique in the similar way as in [Ni
and Beckermann (1991); Beckermann, Diepers,
Steinbach, Karma, and Tong (1999)]. The key
idea is to develop two sets of equations (for solid
and liquid phases) and transform them into one set
using averaging over small volume and introduc-
ing average quantities.

In the following we present the averaged mass,
momentum and species conservation equation
for binary alloy undergoing a solid/liquid phase
transition. As in [Anderson, McFadden, and
Wheeler (2000, 2001); Heinrich and Poirier
(2004); Griebel, Merz, and Neunhoeffer (1999);
Sun and Beckermann (2004)], we take into ac-
count the fact that the solid and liquid densities
are different. Details of the derivation can be
found in [Narski and Picasso (2006)].
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2.1 Mass conservation

The solidification of a binary alloy in a bounded
domain Q of R3 between time 0 and 7,4 is con-
sidered. Let ¢ : Q x (0,7,,4) — R be the phase
field describing presence of solid (¢ = 1) or lig-
uid (¢ = 0). The phase field ¢ varies smoothly
but rapidly from zero to one in a thin region of
width &, the so-called solid/liquid diffused inter-
face. Let py and p; be the constant solid and liquid
densities (for most alloys p; < ps). Then the aver-
age density p : Q x (0,%.,4) — R is defined by

p=psd+pi(l1-9).

Let v;, v; be the solid and liquid velocities, re-
spectively. In this model, the solid velocity v; is a
known constant (in most cases v, = 0), whereas
v; is unknown. Then, the average velocity v :
Q x (0,t.pq) — R is defined by

PV = pPsPVs ‘|‘Pl(1 - ¢)Vl'

Averaging the mass conservation equation in the
solid and liquid regions yields
ap

5 +div (pv) =0. (1)

An equivalent formulation is:

. ps—pi (99

divv=— -V

ivy > (81 + (v )¢>,

thus the solidification shrinkage is a source of

mass in the liquid.

It should be noted that, in the sharp interface limit
(that is to say when the width of the solid-liquid
interface & tends to zero), then the phase field ¢ is
the characteristic function of the solid so that the
density p becomes a step function and (1) has to
be understood in the sense of distributions. Then,
the following relation holds on the solid/liquid in-
terface:

[plV +[pv-n] =0,

where [-] denotes the jump of the inside quantity
across the interface, V is the normal velocity of
the solid/liquid interface and the vector n denotes
the normal to the interface. For instance, when
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Liquid (¢ = 0)

Solid (¢ = 1)

)

Figure 1: Solidification of a solid seed with den-
sity ps larger than the liquid density p;: as the
solid/liquid interface moves with normal velocity
V toward the boundary of the calculation domain
Q, liquid flows with velocity v; toward the solid.

solid is not moving (v; = 0), this condition re-
duces to

Ps—pPi
pi

see Figure 1.

v,-n= V,

2.2 Momentum conservation

The momentum equation writes, in the whole
computational domain Q x (0,%.q):

@
”az

ivﬁ—‘ — v
aiv(prr 2 v-ve v

—2div<,ule(v)> +Vp+ %Q)z(v—vs) =0, (2

+p(v-V)v

where p is pressure, L; the liquid viscosity and
g(v) = 1/2(Vv + Vv!) the rate of deformation
tensor of the average velocity v. The penalty term

S0

with a penalty parameter € < 1 is added to the
momentum equation in order to force the average
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velocity field v to equal the solid velocity v, in the
solid region (¢ = 1). This term is consistent with
the method proposed in [Beckermann, Diepers,
Steinbach, Karma, and Tong (1999)], where the
interfacial stress term is modelled and the result-

2
ing additional term is proportional to %v.

It should be stressed that in the liquid far from
the solid/liquid interface (¢ = 0), the mass and
momentum equations (1) (2) reduce to the incom-
pressible Navier-Stokes equations whereas in the
solid region (¢ = 1), due to the penalty term, the
velocity equals the solid velocity v, as € becomes
small.

The validity of this equation is restricted to cases
were no closed liquid regions are present and the
solidification shrinkage can be compensated by a
liquid inflow through the boundary. When closed
liquid regions are created during the solidification
process the shrinkage causes formation of a mi-
cropores. This physical phenomenon requires a
new model of a phase field where three phases
can coexist together — solid, liquid and gas, this
being not included in our model. Therefore, the
numerical simulation should be stopped whenever
closed liquid regions are present in the solid. The
other criterion of the microporosity formation is
the pressure drop in the melt exceeding certain
critical value — our model is therefore capable of
indicating the regions where microporosity may
appear.

2.3 Species conservation

The averaged concentration conservation equa-
tion writes

dc .. c
E+dlv<kpb¢ +Pl(1 _¢) (pv+(k_ l)pb¢vs>>

—div (D(¢)Ve+D(c,¢)Ve) =0, (3)

where c is the average volumic concentration of
the alloy, the partition coefficient k is obtained
from he equilibrium phase diagram and

_ kp,oDy+pi(1-9)D;
DO) = oo v p(1=0)

is the averaged diffusion coefficient with Dy, D;
being the constant solid and liquid diffusion coef-
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ficients. Finally,

C(pl_kps) )
kps¢ +Pl(1 - ¢)

2.4 Phase-field

D(c,9) =D(¢)

We consider a standard phase-field equation for
the solid phase moving with constant velocity v;:

1 (3¢ B
i (roeve) =

- (aviaowe) - 2191120
c ¢(1-9)
+<Tm+mlkps¢+pz(l—¢)_T> 5

“)

Here i denotes the kinetic mobility, I is
the Gibbs-Thomson coefficient. The term
divA(V¢)V¢ is the functional derivative (that is
to say the Frechet derivative) of the surface en-

crgy
%/g"(w’(x))z\vd)(x)\zdx,

where a is the real-valued function defined by

3 4a éf""é;}—'_é?
a(é)—(1—0)<1+1—3a 1E11* >

with @ the anisotropy parameter and the vector
é - {éxvéyvéz} € R’ \ {O} The term ¢(1 -
®)(1 —2¢) in (4) is the derivative of the double
well which forces the phase field to values close
to zero or one. Finally, the last term in (4) is a
source term accounting for the energy due to the
solid-liquid phase transformation, 7;, is the melt-
ing temperature of the pure substance, my; is the
slope of the liquidus line in the equilibrium phase
diagram. The temperature T < T,, is a given quan-
tity in this model.

2.5 Summary of the model

The goal of the present model is to find the phase
field ¢ : Q x (0,2,,4) — R, the volumic concen-
tration ¢ : Q x (0,%,,4) — R, the velocity v : Q x
(0,2enq) — R and the pressure p : Q X (0, 2epq) —
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R, satisfying equations (4), (3), (2) and (1). Natu-
ral boundary conditions apply on the boundary of
the calculation domain Q for ¢, ¢ and v. More-
over, initial conditions at time ¢ = 0 must be pre-
scribed for ¢, ¢ and v.

Existence and uniqueness of solutions for this
model in the absence of liquid flow and for suf-
ficiently small @ (small anisotropy) are proved in
[Burman and Rappaz (2003)]. A posteriori error
estimation and adaptive finite elements are pre-
sented in [Burman and Picasso (2003)]. Existence
and convergence of solutions in presence of lig-
uid flow is an open problem. Numerical results in
presence of liquid flow and in two space dimen-
sions has been presented in [Narski and Picasso
(2006)]. Our goal is to extend the model to 3D.

3 Numerical method

Equations (4) and (3) are discretized in time us-
ing an order one semi-implicit scheme. Equa-
tions (2) and (1) are solved using a splitting
scheme. Space discretization is based on con-
tinuous, piecewise linear finite elements on tetra-
hedral adapted meshes. In order to reduce the
number of degrees of freedom, the tetrahedrons
may have large aspect ratio whenever needed.
The refinement/coarsening criterion is based on
an anisotropic error indicator. This error indicator
is based on a posteriori error estimator derived
for simpler problems, namely elliptic problems
[Picasso (2003b)], parabolic problems [Picasso
(2003a)], Stokes problem [Picasso (2005a)], den-
dritic growth [Burman and Picasso (2003)]. See
also [Burman, Jacot, and Picasso (2004)] for nu-
merical simulations of coalescence in two space
dimensions.

3.1 Discretization of the phase and concentra-
tion equations

Let T be the time step, t" =nt, n=0,1,2,... At
each time step, given finite element approxima-
tions ¢" 1, ¢"~1, v*~1, p"~1 of the phase, concen-
tration, velocity and pressure at time "', we are
first seeking for the phase ¢” such that
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¢n ¢n 1 n
/Q< e v+ (vs- Vo )w)

_—r/1< (Vo HVe"-Vy

S/¢nl¢n ¢nl_|_S¢nl
)( 52) ( )V/)

cn—l
Q< " kpn T (1= 97T )

n—ll_ n—1
g0ey,

for all test function v in the finite element space,
where we have set S(¢) = ¢ (1 —¢)(1 —2¢). The
above weak formulation leads to an invertible ma-
trix whenever

71<C82, (5)

where C depends only on L, @ and I'. Then, we
are looking for ¢”* such that

" _Cnfl
[y [ p@ve-vy
Q T Q

o ’ 1 ’
B k00" 01 (1—on) " k—1 s ! s vV
/Qkps(l)’”rpl(l o" )(pv +k=1)pso v) 14
_ —LD(C1171,¢’1)V¢’Z'VW, (6)

for all test function y in the finite element space.

3.2 Discretization of the fluid flow equations

Finally, we apply the standard Chorin-Temam
non-incremental splitting scheme to find the ve-
locity v* and pressure p”, see for instance [Pi-
casso and Rappaz (2001)] for a description in
the framework of stabilized finite elements. This
method allows velocity and pressure computa-
tions to be decoupled thus reducing the memory
requirements. The algorithm consists of three
steps.

1. First, we are seeking the predicted velocity
v'~1/2 such that

n—1/2 _ ,,n—1
/ (P”v 14 +pn(vnfl. V)vﬂl/2> ‘W
Q T

/p Y l?lf i l—vs)®(v”*'/2—vs):£(w)
(1-¢ Pl

+/ e : g(w) =0,
Q
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is satisfied for all test functions w, where we

have set p” = p;¢" + p;(1 — ¢"). The pre-
dicted velocity obviously does not satisfy the
mass conservation equation (1).

2. In the second step, given v*~1/2 we find the
pressure p” such that

n__ ~n—1
[ g [ 2
Q

—I-Zmax{a— —}/p"Vp Vg =0,
tetr.K H P

for all test function g. The coefficient o >
0 is a dimensionless stabilisation parameter
(we have chosen o = 0.01 in our simula-
tions), hg denotes the characteristic size of
a tetrahedron K. When the tetrahedron is
highly stretched, /g should be the size in the
minimum stretching direction, A3 ¢ accord-
ing to the notations of the next subsection,
see [Micheletti, Perotto, and Picasso (2003)]
for a theoretical justification for the Stokes
problem.

3. Finally, we are seeking for the corrected ve-
locity v" such that

Y 1/2
o= ) 2
Q

v—vY W

—/p%szo
Q
for all test functions w.

3.3 Adaptive finite elements with large aspect
ratio

To simulate reliably the interface the mesh size
must be smaller than the interface width 6. With
the typical values of § of the order of 10~m and
the computational domain Q of size 10~ 3m this
would yield the number of mesh points to be big-
ger than 10° for a uniform grid. Thus the simula-
tions of 3D dendritic growth would be intractable.

The important characteristic of the solidification
problems is that all fields (phase, concentration,
velocity) vary rapidly in the vicinity of the inter-
face, while changing more slowly in the remain-
ing regions. This suggests that a high grid reso-
lution is necessary only in a small region of the



54 Copyright (©) 2007 Tech Science Press

computational domain and one can hope that the
use of anisotropic adaptive methods would drasti-
cally reduce the number of nodes. Indeed, in our
simulations the meshes obtained have less then
3 10° nodes thus making the simulations possi-
ble even on the simple workstations. The average
aspect ratio was as high as 100. For the same error
tolerance isotropic adaptive meshes would require
ate least 100 times more vertices.

We now describe our adaptive finite element al-
gorithm, the time step T being kept constant and
such that (5) holds. Let N be the number of time
steps. The goal of the adaptive algorithm is to
build successive tetrahedral meshes with large as-
pect ratio such that the relative estimated error of
the concentration c in the L2(0, 7,,4; H'(Q)) norm
is close to a preset tolerance 7TOL. For this pur-
pose, we introduce an error indicator which re-
quires some further notations. This error indica-
tor measures the error of the concentration ¢ in
the directions of maximum and minimum stretch-
ing of the tetrahedron. The goal of the adaptive
algorithm is then to equidistribute the error indi-
cator in the directions of maximum and minimum
stretching, and to align the directions of maxi-
mum and minimum stretching with the directions
of maximum and minimum error. We refer to [Pi-
casso (2003b,a); Burman and Picasso (2003)] for
theoretical justifications for the two dimensional
case.

The reason why the mesh adaptation algorithm
is based on only on the error indicator for the
concentration field is following. During numer-
ical simulations of solidification ¢, ¢ and v varies
strongly in the small region corresponding to
solid-liquid interface. We have chosen the con-
centration field to monitor mesh adaptation since
it varies also in other regions.

We now describe in more details our error indi-
cator. Its derivation is based on the anisotropic
interpolation estimates derived in [Formaggia and
Perotto (2001, 2003)]. Similar results have also
been independently in [Kunert (2000)]. We
refer to [Randrianarivony (2004); Creusé and
Nicaise (2006); Formaggia, Micheletti, and Per-
otto (2004); Picasso (2005b)] for anisotropic a
posteriori error estimates in the framework of
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Stokes problem.

For any tetrahedron K of the mesh, let Tg : K — K
be the affine transformation which maps the ref-
erence tetrahedron K into K. Let My be the Jaco-
bian of Tk that is

X = T (R) = Mgk +tg.

Since Mk is invertible, it admits a singular value
decomposition Mg = RL Ag Py, where Ry and Py
are orthogonal and where Ak is diagonal with
positive entries. In the following we set

Mk 0 0 g
AK = 0 )LQ,K 0 and RK = I’g’K R
0 0 7L3_K I‘3T’K

with the choice A ¢ > Ao x > A3 . A simple
example of such a transformation is x| = hxj,
Xy = hpXp, x3 = h3X3, with hy > hy > hj, thus

hy 0 O
Mg=10 hy O
0 0 bn3

Mx=h, x=h, MAxg=hs,

1 0 0
rix=|(0], mxk=|(1|, mg=10],
0 0 1

see Figure 2. In other words rq g, r> k¢ and r3 g
are the directions of the stretching (rj ¢ being the
direction of maximal stretching and r3 g the direc-
tion of minimal stretching), while 4, g, A2 ¢ and
A3 x measure the amplitude of stretching. We now
introduce c; the continuous, piecewise linear ap-
proximation in time defined by

_ 4n—1 n_y¢

c"(x)+

Ml<r<r, xeq,

Cn—l(x)

cr(x,t) =

where ¢"~!, ¢ are computed using (6). Our sim-

plified error indicator is then defined on each time
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T3 r3,K

AN / TiK

I I : ra K ,_,_. -
L 1 2 — hl T

Z2

Figure 2: A simple example of transformation
from the reference tetrahedron K to the generic
tetrahedron K.

interval [t"~!,#"] and each tetrahedron K by

(Mmlen)) =

[ ]
m 1 20/ M kA kA3 k
X <)LIZ,K (rlT,KGK(CT)rl,K>

+ 2'22-,1( (I’g’KGK(CT)I’Q,K

[8c1

1/2
+ A5k <r3T,KGK(CT)r3,K>> )
Here Gg(c;) is the 3 x 3 matrix defined by
(Gk(cr)) / n (c1) 77] c7)dx,

with n#%(c), i = 1,2,3, being the components of
the so-called Zienkiewicz-Zhu error estimator

(I-T0) der
77 x|
ni“(cz) 9
n3t(ee) | = | U- (=) |, ®)
77 x>
n5“(cc) I dce
(1-1) 8—x3
where Hg;T H% nd H% are an approxi-
1 2

mate L2(Q) projection onto a finite element space.
From constant values of dc;/dx;, i = 1,2,3, on
triangles, values at vertices P are build using the
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formula
dcr
(2
IT % (P) tegk X1/ 1k
axl PeK ac
dcr 1 K| <_T>
11 a—xz (P) - Z ‘K‘ te%(l( ax2 ‘K
dcr tetr. K } p)
I{=—)(P) peK K (ﬁ)
oxs tetg‘K‘ | dx3 K

The matrix Gg(c;) is an estimation of the gra-
dient error in tetrahedron K, therefore the term
rlT_ Gk (c7)r) k in (7) contributes to measuring the
error in the direction of the tetrahedron’s maxi-
mum stretching and the term

[(%T]
on 12(9K)

1/2
X 7L] K (I’]T,KGK(CT)I'],K>

is nothing but the estimated error in the direction
of the tetrahedron’s maximum stretching.

" 1

The gradient error estimation can be justified
theoretically whenever superconvergence occurs,
that is when Ve —ITVc¢; is better than O(h). For
an analysis of the behaviour and the convergence
of the Zienkiewicz-Zhu error estimate in 3D see
[Picasso (2006); Brandts and Kiizek (2003)].

Our adaptive algorithm aims at building tetrahe-
dral meshes with large aspect ratio such that the
relative estimated error is close to a preset toler-
ance TOL, that is:

i )y (nn,K(C‘r)>2> N

n=l1tetr. K

([ frved)”

<125TOL. (9)

0.75TOL < <

A sufficient condition to satisfy (9) is to build, for
each time interval (f,_1,,), n = 1,...,N, a tetra-
hedral mesh with large aspect ratio such that

0752T0L2 2
[ [ Veel < (mxen)

1.252ToL* [
< LTOL [T [y,
m=1JQ

NV
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for all tetrahedron K, where NV" is the number of
vertexes of the mesh at time #,. We then proceed
as in [Picasso (2003b,a)] to build a mesh having
elements with high aspect ratio, using the Me-
shAdapt software [Distene (2003)] based on the
mesh generator of the GAMMA research team of
INRIA [Alauzet, George, Mohammadi, Frey, and
Borouchaki (2003)]. A new metric is constructed
as follows. For each tetrahedron, for each stretch-
ing direction i = 1,2, 3, the mesh size in the i-th
direction of stretching, A; g, is updated in order to
equidistribute the error indicator in the i-th direc-

tion of stretching
m1 28/ kAo x Ak || | 9n 2(3K)
1/2
X<)Li?K<rZKGK(CT)ri,K>) .

Then, the i-th direction of stretching r;g is
aligned with the i-th eigenvector of the matrix
Gk(c¢). Then, the mesh adaptation software Me-
shAdapt is called to generate a new mesh.

4 Numerical results

Numerical results for simulations of dendritic
growth of a single and several dendrites are pre-
sented in this section. All experiments were per-
formed on a 1.6GHz AMD Opteron 64 bit work-
station with 8Gb of RAM.

If not stated differently, the values of the param-
eters involved in (4), (3), (2) and (1) are reported
in Table 1 and correspond to an Al-Cu alloy, see
[Jacot and Rappaz (2002)], Table 1 column B.
The temperature is 7 = 993.8 K, the time step is
7 =1x10"*s, the interface width § = 107 m
and the penalty parameter £ = 10719,

Table 1: Values of the physical parameters.

T 1000 K k 0.63

Dy | 5107'%m2/s | D; | 5107° m?/s
r| 5107Km |a 0.04

W | 0.0015m/(Ks) | my —260 K
ps | 1000 kg/m* | p; | 950 kg/m?
w | 0.014 kg/(ms)
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4.1 Numerical validation

The first step is to validate the adaptive algorithm
for the solidification problem in the simple test
case. For this purpose we set the computational
domain to Q = [—0.00025,0.00025]3. The densi-
ties in solid in liquid are equal so the fluid flow is
absent. We add source terms in (3) end (4) so that
¢ and c are given by

b(rt) = c(rt) = 1 —tanh((r;ro —vt)/9d) (10)

where ryp = 0.00015 m is the initial size of a solid
grain, v = 0.001 m/s and § = 107> m. The fi-
nal time is t,,; = 0.025 s and the time step 7 =
2.5x 107 5. Thus, ¢ and ¢ varies smoothly
across the diffused interface defined by a growing
sphere. The mesh obtained after 100 time steps is
shown in Figure 3.

Figure 3: The numerical test case problem with
known solution. The concentration field and
anisotropic adapted mesh when TOL = 0.25.

The error

("] W(c—cw)m

is reported in Table 2. Also, the effectivity in-
dices (that is the ratio between the true and the
estimated error) ei’? and ei* corresponding to
Zienkiewicz-Zhu error estimator (8) and to our
simplified error indicator (7), respectively, are
shown. Numerical results confirm that the effec-
tivity indices are mesh size and aspect ratio inde-
pendent, as predicted in [Picasso (2006)] in the
framework of the Laplace problem.
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Table 2: Effectivity indices and numerical error
when using the 3D adaptive algorithm with sev-
eral values of TOL.
TOL | Vertices e ei’? | eit
1 248 0.014 | 1.01 | 2.87
0.5 2397 0.0072 | 0.99 | 2.67
0.25 12161 | 0.0038 | 0.94 | 2.44
0.125 | 175482 | 0.0021 | 0.96 | 2.03
0.0625 | 1225084 | 0.0012 | 0.98 | 1.91

4.2 Single dendrite

We now present the solidification of a single den-
drite. The initial solid grain is a circle of a di-
ameter 5 107 m of initial concentration the equi-
librium liquid concentration of the phase diagram
k(T — T,,)/m;. The initial concentration in the
liquid phase equals 0.02 and is between the liq-
uidus concentration at equilibrium (7' —T,,) /m; =
0.0238 and the solidus concentration at equilib-
rium k(T — T,,)/m; = 0.015. The domain is a
cube of side 0.0005 m. The results obtained for
TOL = 0.225 are presented in Figures 4 and 7,
the maximum observed velocity being 1 107> m/s
and the pressure drop 3 1076 Pa.

Figure 4: Single dendrite. Shape at times ¢ =
0,0.25,0.375 and 0.5s. The number of vertices
is 10848, 31727, 46819 and 85476 respectively.
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Figure 5: Single dendrite. Histogram of the mesh
aspect ratio. The aspect ratio is on the horizontal
axis and the number of tetrahedrons on the verti-
cal axis.

Figure 6: Single dendrite. Zoom of the phase field
and adapted mesh along of a dendritic arm (top)
and at a dendritic tip (bottom).
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The CPU time was approximately two days.
About 5000 time steps were used and the max-
imal number of vertices was 138487. The total
number of remeshings was 210. The average as-
pect ratio A; x /A3 ¢ was 78 for the final mesh, see
Figure 5 for a histogram and Figure 6 for adapted
meshes. The total amount of memory required
by the simulation never exceeded 2Gb (the up-
per limit of memory that can be addressed on 32
bit computers), thus the simulations may be effi-
ciently performed on the standard workstations.

It should be noted that the mesh adaptation soft-
ware [Distene (2003)] was not always capable of
generating the mesh respecting the metric calcu-
lated from our error indicator. In some cases the
mesh was a lot finer than demanded, see for in-
stance the last row of Figure 7.

4.3 Eight dendrites growing simultaneously

The liquid flow due to shrinkage is now computed
around 8 dendrites. We place 2 x 2 x 2 = 8 den-
dritic seeds in the computational domain Q and
let the system evolve observing the liquid flow
and the pressure drop during the process. The dis-
tance between the seeds is 0.0002 m, the size of
the computational domain is 0.0006 m. The re-
sults for TOL = 0.225 are presented in Figures 8
and 9.

The solidification shrinkage causes the liquid to
flow toward the center of the cube. When the den-
drites are sufficiently big, one can observe nega-
tive pressure appearing in the almost closed cen-
tral region of the computational domain €. The
maximum observed velocity being 1 107> /s, as
in the single dendrite case. The pressure drop is
6.5 107 Pa.

During the 2500 time steps 210 meshes were con-
structed. The average aspect ratio, was always
close to 10 taking the value of 11.51 for the final
mesh (see Figure 10 for a histogram). The sim-
ulation required at most 256263 mesh points and
took approximately one week.

FDMP, vol.3, no.1, pp.49-64, 2007

4.4 Comparison with the two dimensional sim-
ulations

Comparing numerical results for a single den-
dritic growth with the two dimensional simula-
tions for the same physical parameters leads to
the same observation as in [Jeong, Goldenfeld,
and Dantzig (2001)] : the growth rate in three
space dimensions is approximately two times big-
ger than in two space dimensions.

Comparison of multidendritic cases, eight den-

drites in three dimensions with four dendrites in
two dimensions is shown in the Table 3.

Table 3: Maximum velocity and pressure drop in
2D and 3D.

No. of dendrites | Max. velocity | pressure drop
2D -4 3.810°m/s | 8.7107%Pa
3D-8 1010°%m/s | 6.5107°Pa

Numerical results obtained for three dimensional
simulations and those obtained in two dimen-
sional differ significantly. In two dimensions a
relatively large pressure drop in the region be-
tween the growing dendrites and a fast liquid flow
between dendritic tips is observed. In three di-
mension while pressure drop and flow between
dendritic tips is still observed it is much smaller
than in 2D and the maximal values do not differ
much from those obtained in the single dendrite
simulations. This points out the fundamental dif-
ferences between two and three dimensions.

Large pressure drop in the multidendritic simula-
tions can be obtained much easier in two dimen-
sional simulations — the liquid feeding the re-
gion between solidifying dendrites can flow only
between dendritic tips. The small distance be-
tween the neighbouring dendritic tips means that
the fluid velocity in that region should be rela-
tively large in order to compensate the solidifica-
tion shrinkage in the central part of the domain.
The flow is generated by a large pressure drop. In
three dimensions however even in the case of co-
alescence when the neighbouring dendrites con-
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Figure 7: Single dendrite. Concentration field and adapted meshes (left column), pressure drop (middle

column) and velocity field (right column) at times ¢ = 0,0.25 and 0.5s.
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Figure 8: Eight dendrites. The pressure field and the adapted mesh at the crossection containing the centers

of four dendrites are shown.

nect with each other the fluid can still flow be-
tween the dendritic arms — contrary to 2D case,
where the closed liquid region is created. A large
pressure drop sufficient enough to trigger a mi-
croporosity formation in three dimensions is ex-
pected to appear in more complicated simulations.

From the numerical point of view, 3D simulations
are much more demanding than 2D simulations.
Firstly, with the mesh generator we have used,
it is currently impossible to obtain meshes with
an aspect ratio as large as in 2D (up to 10000
in 2D, only 100 in 3D). In 3D (resp. 2D), since
the number of vertices is proportional to TOL™3
(resp. TOL™?), increasing the accuracy of the so-
lution by a factor two yields 23 = 8 (resp. 22 = 4)
times more unknowns. In this paper we have per-
formed the simulation of 8 dendrites growing si-
multaneously untill contact between the dendrites

tips, thus obtaining 256263 vertices. In [Narski
and Picasso (2006)], the 2D simulation of 16 den-
drites has been performed with two times less ver-
tices.

However, the gain between isotropic and
anisotropic meshes more favorable in 3D than
in 2D. Indeed, in 3D, using a mesh with aspect
ratio 5-5-1 (that is to say elements with mesh size
5 times larger in two directions than in the third
one), requires 5% = 25 times less vertices than
an isotropic mesh with aspect ratio 1-1-1. On
the other side, in 2D, using a mesh with aspect
ratio 5-1, requires 5 times less vertices than an
isotropic mesh with aspect ratio 1-1.
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Figure 9: Eight dendrites. Concentration field and adapted meshes (left column), pressure drop (middle
column) and velocity field (right column) at times ¢ = 0,0.25 and 0.5s. The results represent the fields on

the crossection passing through four dendritic centers.
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Figure 10: Eight dendrites. Histogram of the
mesh aspect ratio.

5 Conclusions

We presented an efficient adaptive algorithm for
simulating the dendritic growth with convection.
The anisotropic finite elements allows to construct
meshes with less than 300000 vertices even for
simulations involving several dendrites growing
simultaneously.

The splitting scheme applied to the fluid flow
equations drastically reduces the memory require-
ments and allows complicated 3D simulations to
be performed on a standard workstation.  We
have studied the effects of the liquid flow induced
by the solidification shrinkage. The pressure drop
due to solutal contraction appearing between so-
lidifying dendrites can be obtained. However, this
pressure drop is not sufficient in order to explain
the formation of gas bubbles observed during mi-
Croporosity.

Acknowledgement: The authors wish to thank
Michel Rappaz and Alain Jacot from the Insti-
tute of Materials, EPFL, for many helpful dis-
cussion concerning the physics of solidification.
Virabouth Prachittham is acknowledged for im-
plementation.

References

Alauzet, F.; George, P. L.; Mohammadi, B.;
Frey, P.; Borouchaki, H. (2003): Transient fixed

FDMP, vol.3, no.1, pp.49-64, 2007

point-based unstructured mesh adaptation. Inter-
nat. J. Numer. Methods Fluids, vol. 43, no. 6-7,
pp- 729-745. ECCOMAS Computational Fluid
Dynamics Conference, Part II (Swansea, 2001).

Anderson, D. M.; McFadden, G. B.; Wheeler,
A. A. (2000): A phase-field model of solidifica-
tion with convection. Phys. D, vol. 135, no. 1-2,
pp- 175-194.

Anderson, D. M.; McFadden, G. B.; Wheeler,
A. A. (2001): A phase-field model with convec-
tion: sharp-interface asymptotics. Phys. D, vol.
151, no. 2-4, pp. 305-331.

Beckermann, C.; Diepers, H.; Steinbach, L;
Karma, A.; Tong, X. (1999): Modeling melt
convection in phase-field simulations of solidifi-
cation. J. Comput. Phys., vol. 154, no. 2, pp.
468-496.

Boettinger, W.; Coriell, S.; Greer, A.; Karma,
A.; Kurz, W.; Rappaz, M.; Trivedi, R. (2000):
Solidification microstructures: Recent develop-
ments, future directions. Acta Materialia, vol.
48, no. 1, pp. 43-70.

Boettinger, W.; Warren, J.; Beckermann, C.;
Karma, A. (2002):  Phase-field simulation of
solidification. Annu. Rev. Mater. Res., vol. 32,
pp- 163-194.

Brandts, J.; Krizek, M. (2003): Gradient su-
perconvergence on uniform simplicial partitions
of polytopes. IMA J. Numer. Anal., vol. 23, no. 3,
pp- 489-505.

Burman, E.; Jacot, A.; Picasso, M. (2004):
Adaptive finite elements with high aspect ratio
for the computation of coalescence using a phase-
field model. J. Comput. Phys., vol. 195, no. 1, pp.
153-174.

Burman, E.; Picasso, M. (2003): Anisotropic,
adaptive finite elements for the computation of a
solutal dendrite. [Interfaces Free Bound., vol. 5,
no. 2, pp. 103-127.

Burman, E.; Rappaz, J. (2003): Existence
of solutions to an anisotropic phase-field model.
Math. Methods Appl. Sci., vol. 26, no. 13, pp.
1137-1160.



Adaptive 3D elements for solidification

Caginalp, G.; Xie, W. (1993): Phase-field and
sharp-interface alloy models. Phys. Rev. E (3),
vol. 48, no. 3, pp. 1897-1909.

Chen, L. (2002):  Phase-field models for mi-
crostructure evolutions. Annual Rev. Mater. Res.,
vol. 32, pp. 163-194.

Collins, J.; Levine, H. (1985): Diffuse interface
model of diffusion-limited crystal growth. Phys.
Rev. B, vol. 31, no. 9, pp. 6119-6122.

Conti, M. (2001):  Density change effects on
crystal growth from the melt. Phys. Rev. E, vol.
64, no. 5, pp. 051601.

Conti, M. (2004): Advection flow effects in
the growth of a free dendrite. Physical Review E
(Statistical, Nonlinear, and Soft Matter Physics),
vol. 69, no. 2, pp. 022601.

Creusé, E.; Nicaise, S. (2006): Anisotropic
a posteriori error estimation for the mixed dis-
continuous Galerkin approximation of the Stokes
problem.  Numer. Methods Partial Differential
Equations, vol. 22, no. 2, pp. 449-483.

Distene (2003): MeshAdapt : A mesh adap-
tation tool, User’s manual Version 3.0. Dis-
tene S.A.S., Pole Teratec - BARD-1, Domaine
du Grand Rué, 91680 Bruyeres-le-Chatel, France,
2003.

Echebarria, B.; Folch, R.; Karma, A.; Plapp,
M. (2004):  Quantitative phase-field model of
alloy solidification. Phys. Rev. E, vol. 70, no. 6,
pp- 061604.

Formaggia, L.; Micheletti, S.; Perotto, S.
(2004): Anisotropic mesh adaption in com-
putational fluid dynamics: application to the
advection-diffusion-reaction and the Stokes prob-
lems. Appl. Numer. Math., vol. 51, no. 4, pp.
511-533.

Formaggia, L.; Perotto, S. (2001): New
anisotropic a priori error estimates.  Numer.
Math., vol. 89, no. 4, pp. 641-667.

Formaggia, L.; Perotto, S. (2003): Anisotropic
error estimates for elliptic problems.  Numer.
Math., vol. 94, pp. 67-92.

63

Fried, M. (2004): A level set based finite el-
ement algorithm for the simulation of dendritic
growth. Comput. Vis. Sci., vol. 7, no. 2, pp. 97—
110.

Gibou, F.; Fedkiw, R.; Caflisch, R.; Osher, S.
(2003): A level set approach for the numerical
simulation of dendritic growth. J. Sci. Comput.,
vol. 19, no. 1-3, pp. 183-199.

Griebel, M.; Merz, W.; Neunhoeffer, T. (1999):
Mathematical modeling and numerical simulation
of freezing processes of a supercooled melt under
consideration of density changes. Comp. Vis. Sci.,
vol. 1, no. 4, pp. 201-219.

Heinrich, J. C.; Poirier, D. R. (2004): Convec-
tion modeling in directional solidification. C. R.
Mecanique, vol. 332, pp. 429-445.

Hong, C. P.; Zhu, M. F.; Lee, S. Y. (2006):
Modeling of dendritic growth in alloy solidifica-
tion with melt convection. FDMP: Fluid Dynam-

ics & Materials Processing,vol. 2, no. 4, pp. 247—
260.

Jacot, A.; Rappaz, M. (2002): A pseudo-front
tracking technique for the modelling of solidifi-
cation microstructures in multi-component alloys.
Acta Mater., vol. 50, no. 8, pp. 1909-1926.

Jeong, J.; Goldenfeld, N.; Dantzig, J. (2001):
Phase field model for three-dimensional dendritic
growth with fluid flow. Phys. Rev. E, vol. 64, no.
4, pp. 041602.

Juric, D.; Tryggvason, G. (1996): A front-
tracking method for dendritic solidification. J.
Comput. Phys., vol. 123, no. 1, pp. 127-148.

Karma, A. (1994): Phase-field model of eutectic
growth. Phys. Rev. E, vol. 49, pp. 2245-2250.

Kobayashi, R. (1993): Modeling and numerical
simulations of dendritic crystal growth. Physica
D, vol. 63, pp. 410-423.

Kunert, G. (2000): An a posteriori residual
error estimator for the finite element method on

anisotropic tetrahedral meshes. Numer. Math.,
vol. 86, no. 3, pp. 471-490.



64 Copyright (©) 2007 Tech Science Press

Micheletti, S.; Perotto, S.; Picasso, M. (2003):
Stabilized finite elements on anisotropic meshes:
a priori error estimates for the advection-diffusion
and the Stokes problems. SIAM J. Numer. Anal.,
vol. 41, no. 3, pp. 1131-1162 (electronic).

Narski, J.; Picasso, M. (2006):  Adaptive fi-
nite elements with high aspect ratio for dendritic
growth of a binary alloy including fluid flow in-
duced by shrinkage.  submitted to Computer
Methods in Applied Mechanics and Engineering.

Nestler, B.; Wheeler, A. A.; Ratke, L.; Stocker,
C. (2000): Phase-field model for solidification
of a monotectic alloy with convection. Phys. D,
vol. 141, no. 1-2, pp. 133-154.

Ni, J.; Beckermann, C. (1991): A volume-
averaged 2-phase model for transport phenomena
during solidification. Metall. Trans. B, vol. 22,
no. 3, pp. 349-361.

Picasso, M. (2003):  An anisotropic error in-
dicator based on Zienkiewicz-Zhu error estima-
tor: application to elliptic and parabolic problems.
SIAM J. Sci. Comput., vol. 24, no. 4, pp. 1328—
1355 (electronic).

Picasso, M. (2003): Numerical study of the
effectivity index for an anisotropic error indi-
cator based on Zienkiewicz-Zhu error estimator.

Comm. Numer. Methods Engrg., vol. 19, no. 1, pp.
13-23.

Picasso, M. (2005): An adaptive algorithm for
the stokes problem using continuous, piecewise
linear stabilized finite elements and meshes with
high aspect ratio. Appl. Numer. Math., vol. 54,
no. 3-4, pp. 470-490.

Picasso, M. (2005): An adaptive algorithm for
the Stokes problem using continuous, piecewise
linear stabilized finite elements and meshes with
high aspect ratio. Appl. Numer. Math., vol. 54,
no. 3-4, pp. 470-490.

Picasso, M. (2006):  Adaptive finite elements
with large aspect ratio based on an anisotropic
error estimator involving first order derivatives.
Comput. Methods Appl. Mech. Engrg., vol. 196,
no. 1-3, pp. 14-23.

FDMP, vol.3, no.1, pp.49-64, 2007

Picasso, M.; Rappaz, J. (2001): Stability
of time-splitting schemes for the Stokes problem
with stabilized finite elements. Numer. Methods
Partial Differential Equations, vol. 17, no. 6, pp.
632-656.

Provatas, N.; Goldenfeld, N.; Dantzig, J.
(1999): Adaptive mesh refinement computation
of solidification microstructures using dynamic

data structures. J. Comput. Phys., vol. 148, no.
1, pp. 265-290.

Randrianarivony, M. (2004):  Anisotropic fi-
nite elements for the Stokes problem: a posteriori
error estimator and adaptive mesh. J. Comput.
Appl. Math., vol. 169, no. 2, pp. 255-275.

Schmidt, A. (1996): Computation of three di-
mensional dendrites with finite elements. J. Com-
put. Phys., vol. 125, no. 2, pp. 293-312.

Sun, Y.; Beckermann, C. (2004): Diffuse inter-
face modeling of two-phase flows based on aver-
aging: mass and momentum equations. Phys. D,
vol. 198, no. 3-4, pp. 281-308.

Tonhardt, R.; Amberg, G. (2000):  Simula-
tion of natural convection effects on succinonitrile
crystals. Phys. Rev. E, vol. 62, pp. 828.

Warren, J.; Boettinger, W. (1995): Predic-
tion of dendritic growth and microsegregation pat-
terns in a binary alloy using the phase-field model.
Acta Metall. Mater., vol. 43, no. 2, pp. 689-703.



