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Numerical Study of Liquid Metal Flow in a Rectangular Duct under the
Influence of a Heterogeneous Magnetic Field

Evgeny V. Votyakov1 and Egbert A. Zienicke1

Abstract: We simulated numerically the lami-
nar flow in the geometry and the magnetic field
of the experimental channel used in [Andreev,
Kolesnikov, and Thess (2006)]. This provides de-
tailed information about the electric potential dis-
tribution for the laminar regime (numerical sim-
ulation) and in the turbulent regime as well (ex-
periment). As follows from comparison of simu-
lated and experimental results, the flow under the
magnet is determined by the interaction parameter
N = Ha2/Re representing the ratio between mag-
netic force, determined by the Hartmann num-
ber Ha, and inertial force, determined by the
Reynolds number Re. We compared two variants:
(i) (Re,N)=(2000,18.6) (experiment), (400,20.25)
(simulation), and (ii) (Re,N) =(4000,9.3) (exper-
iment), (400,9) (simulation) and found an excel-
lent agreement for the numerical and experimen-
tal distributions of the electric potential. This is
true despite of the fact that the experimental in-
flow is turbulent while that in the simulation is
laminar. As a special feature of the electric poten-
tial distribution local extrema under the magnets
are observed, as well experimentally as numeri-
cally. They are shown to vanish, if the interaction
parameter falls below a critical value. Another in-
teresting new detail found in our numerical cal-
culations is the appearance of helical paths of the
electric current. Using a simplified magnetic field
without span-wise dependence, we show that im-
portant physical features of the considered prob-
lem are sensitive to small variations in the spatial
structure of the magnetic field: the local extrema
of the electric potential and also the helical cur-
rent paths disappear when the simplified magnetic
field is used. The structure of the three dimen-
sional velocity field is also investigated, in partic-
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ular, a swirling flow is found in the corners of the
duct caused by Hartmann layer destruction behind
the magnets.

Keyword: 3D Numerical simulation, Laminar
liquid metal flow in a rectangular duct, Localized
heterogeneous magnetic field.

1 Introduction

The flow of an electrically conducting fluid un-
der a localized inhomogeneous magnetic field is
of interest for many industrial applications deal-
ing with the problem to influence hot metal melts
by the use of magnetic fields. This has the ad-
vantage that no direct contact with the chemically
aggressive melt is necessary [Davidson (1999)].
One prominent example is the electromagnetic
brake used in modern continuous steel casting,
see for instance [Takeuchi, Kubota, Miki, Okuda,
and Shiroyama (2003)]. If one neglects the liq-
uid steel jets entering the mould, the flow in a liq-
uid metal channel under a static localized mag-
netic field may reproduce qualitatively many fea-
tures of the electromagnetic brake: the braking
effect on stream-wise velocity, suppression of tur-
bulence under the magnet, and effects of strong
spatial dependence of the magnetic field. Another
example, where liquid metal flow in a channel is
important for possible industrial applications, is
the Lorentz Force Velocimetry based on expos-
ing the fluid to a magnetic field and measuring
the drag force acting upon the magnetic field lines
[Thess, Votyakov, and Kolesnikov (2006)].

In the recently appeared experimental work [An-
dreev, Kolesnikov, and Thess (2006)] the liquid
metal flow was systematically investigated for the
range of interaction parameters 4≤N ≤ 20. In the
experiments special attention was focused on the
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suppression of turbulence by the magnetic field
and on a systematic recording of data for the elec-
tric potential building up under and around the
magnets. As a result, the full map of the elec-
tric potential distribution was obtained in the mid-
dle horizontal plane of the rectangular duct and a
few values of N. If the transverse magnetic field
would be homogenous the electric potential data
might be used to determine the velocity compo-
nents perpendicular to the magnetic field [Som-
meria and Moreau (1982)]. In the present case of
strongly inhomogeneous magnetic field, the elec-
tric potential data can be solely compared with
the results of the corresponding numerical simu-
lations.

Fig. 1 presents schematically the geometry and
magnetic field configuration studied in [Andreev,
Kolesnikov, and Thess (2006)]: the liquid metal
moves in a rectangular duct, where the locally het-
erogeneous magnetic field is created by two per-
manent magnets on the top and bottom walls of
the duct. The originally convex velocity profile
uy(x) adopts, by passing the magnetic field Bz(x),
a characteristic M shape what is a manifestation
of the electromagnetic brake process.

The main goal behind our numerical investiga-
tion is first to reproduce features of the flow and
the electromagnetic quantities found in the exper-
iment. Moreover, since numerical calculations
have the advantage that all quantities are avail-
able in the whole computational domain, the sec-
ond goal is to visualize the additional data, i.e.
3D velocity field and electric current paths, which
are not accessible to measurements in the ex-
periment. Before we explain why one can suc-
cessfully compute the experimental flow under
and near the magnet using laminar calculations
let us shortly describe in the next paragraphs the
state of the art of numerical and theoretical ap-
proaches that could be appropriate to describe the
present problem involving turbulence and inho-
mogeneous magnetic field at the same time.

The most ideal approach from the point of view of
physical exactness would be to carry out a direct
numerical simulation (DNS) of the experimental
flow which models correctly the whole flow in-
cluding turbulent regions down to small scales.
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Figure 1: Coordinate system and sketch of the
problem: rectangular channel 2Lx×2Ly×2Lz and
two magnets on the bottom and top walls. Quali-
tatively, there are shown transverse magnetic field
Bz(x) varying along stream-wise direction, and
span-wise profile of stream-wise velocity ux(y).
The center of the coordinate system is in the cen-
ter of the magnetic gap.

However, to do this under a magnetic field steeply
varying with space coordinates is extremely hard
since it requires space and time resolution a few
orders of magnitude more than is available today.
Actually, to catch all spatial structures of the flow,
especially Hartmann layers and sidewall jets, the
simulation has to be fully three-dimensional and
needs high resolution near the boundaries. This
concerns also the turbulent flow which was gen-
erated in the experiment by a honeycomb at the
inflow in order to observe suppression of fluctua-
tions by the static magnetic field. The inflow dis-
tance takes almost half the length of the computa-
tional domain, therefore half of the computational
resources must be paid to simulate correctly the
flow without explicit action of the magnetic field,
just to monitor declining turbulent fluctuations.

Other numerical approaches to catch turbulent
features of the flow are large eddy simula-
tions (LES) and Reynolds averaged stress mod-
els (RANS). These are as well faced with se-
rious technical difficulties. The present state
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of the art for LES of conducting fluids under
magnetic fields is such that one may treat the
flow inside a homogenous magnetic field only
if one resolves the boundary layers as in a di-
rect numerical simulation (DNS), see [Knaepen
and Moin (2004); Vorobev, Zikanov, Davidson,
and Knaepen (2005)]. The definition of appro-
priate wall functions for the turbulent Hartmann
and sidewall layers is still an actual field of re-
search. LES in inhomogeneous magnetic field
meets serious difficulties as one has to find ap-
propriate methods of spatial averaging. For the
momentary available RANS models it is not yet
clear whether they are able to describe the un-
avoidable anisotropy of the turbulent scales in-
side strongly varying magnetic field, see [Wid-
lund, Zahrai, and Bark (1998); Kenjerec and Han-
jalic (2000, 2004)]. In any case, before to start
a LES or RANS study one first has to define and
verify parameters appearing in these phenomeno-
logical models by DNS runs.

The usual analytical means also fail to describe
the features of the experimental flow. This holds,
because the parameters of the applied magnetic
field lie outside the limits imposed by the as-
sumptions necessary for any analytical theoreti-
cal treatment. In particular, to neglect inertial ef-
fects, the existing analytical approaches assume
very strong and slowly varying magnetic field,
which is not fulfilled neither for the electromag-
netic brake nor for the channel flow considered
here. Typically, any regular theoretical method is
based on an asymptotic expansion of MHD equa-
tions around large N [see for example Lavren-
tiev, Molokov, Sidorenkov, and Shishko (1990)
and references therein]. However, in the system
under consideration, the local interaction number
N(x) = Bz(x)N goes up from zero to moderately
high values on a short distance under the inward
gradient of the magnetic field. Moreover, even
if such an approach is not entirely impossible for
some cases, it employs a series expansion what is
of the same cost approximately as a full 3D simu-
lation [Sellers and Walker (1999)]. Also, the the-
oretical methods do not take a span-wise depen-
dence of the magnetic field into account, however,
as we shall see later, this seemingly fine detail of

the magnetic field configuration can be responsi-
ble for significant qualitative features in the elec-
tric potential distribution inside the magnetic gap.

However, as follows from the experimental data
[Andreev, Kolesnikov, and Thess (2006)], the in-
tensity of turbulent fluctuations inside the mag-
netic gap is lower than one percent, and essen-
tially smaller than at the inlet distance at front of
the magnetic system. This provides evidence that
the magnetic field is strong enough to be the main
influence shaping the flow structure inside the
magnetic gap. This flow structure, qualitatively
characterized by a M-shaped profile, is weakly
dependent on the separate Re and Ha numbers
and strongly dependent on the interaction parame-
ter N, especially when N is high. Another conjec-
ture from these experimental data is that the orig-
inally mean turbulent inlet velocity profile is of
small importance as well.

The foregoing statements give us an opportunity
to reproduce the experimental results using a lam-
inar numerical 3D simulation. That means, we do
not carry out a computation with the same val-
ues of Re and Ha as in the experiment and do
not monitor turbulence. Instead, since the main
effects are due to the interaction number N, one
may select for the simulation Re and Ha lower
than in the experiment but belonging to the same
ratio N = Ha2/Re. As inlet flow one takes a lam-
inar duct flow. To clarify, whether the shape of
inflow velocity plays a role for the measured ex-
perimental data, one can test different laminar in-
flow profiles having the same mean flow rate but
different flatness.

It is easy to point out a reasonable range for the Re
numbers in the numerical simulation. Large Re
parameter provokes turbulence which could not
be properly resolved with current computational
resources while too low Re number results in a
viscous force in the core of the flow. On the other
hand, the highest limit of the Re number is gov-
erned also by the value of Ha number which is, in
its own turn, dictated by the available grid resolu-
tion for the Hartmann layer.

Thus, the main goals of the simulation were to de-
termine the qualitative global velocity field and to
find a good reproduction of the electric potential
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in the magnetic field region. Especially, we were
interested to find the two extrema of the electric
potential which were observed in the experiment.
As it turns out, all these aims were reachable. The
overall general features of the laminar flow are
well represented by our code. In section 4.1 we
present how the Hartmann layer and the sidewall
jets are forming under the magnet in a stationary
flow. For the electric potential under the magnet
the experimental results of [Andreev, Kolesnikov,
and Thess (2006)] show clearly (section 4.2) that
the flow under the magnet is near to being lam-
inar. In this region the magnetic and the iner-
tial forces are predominant, if one excludes the
regions very near to the walls where the viscous
forces are essential. Therefore we find a good rep-
resentation of the electric potential distribution of
the experiment for our runs using lower Hartmann
and Reynolds numbers but keeping the same in-
teraction parameter.

The structure of the present paper is the follow-
ing. In section 2 the equations and our numerical
method to solve them are presented. Here also
the inflow profiles and the used grid are speci-
fied. In section 3 some properties of the exper-
imental magnetic field are explained and a sec-
ond simplified magnetic field with no span-wise
dependence is introduced, which serves to show
that small changes on the inhomogeneous mag-
netic field can lead to remarkable differences in
the electric potential distribution. In section 4
we present the results of our numerical compu-
tations showing all characteristics of the velocity
field (section 4.1), the comparison of the numer-
ically determined electric potential with experi-
mental data (section 4.2), and the electric current
paths (section 4.3).

2 Equations and numerical method

The governing equations for electrically conduct-
ing and incompressible fluid are derived from the
Navier-Stokes equation coupled with the Maxwell
equations for moving medium, and also using the
Ohm’s law. We apply the quasi-static (induction-
less) approximation where it is assumed that an
induced magnetic field is infinitely small in com-
parison to the external magnetic field (see, e.g.

[Roberts (1967)]), so it is neglected when one cal-
culates the Lorentz force, but it is not neglected at
finding the electric current density j. The re-
sulting equations in dimensionless form are then
given as follows:

∂u
∂ t

+(u ·∇)u = −∇p+
1

Re
�u+N(j×B), (1)

∇ ·u = 0, (2)

j = −∇φ +u×B, (3)

�φ = ∇ · (u×B). (4)

Here u denotes velocity field, B is an external
magnetic field, j is electric current density, p
is pressure, φ is electric potential, Re = u0H/ν
is Reynolds number, N = Ha2/Re is the in-
teraction parameter (Stuart number), and Ha =
HB0(σ/μ)1/2 is the Hartmann number, all de-
fined with the half-height of the channel H, mean
velocity u0, typical magnetic field strength B0,
density ρ , electric conductivity σ , kinematic ν
and dynamic μ = ρν viscosities.

As follows from eq. (1) the viscous force Δu is
scaled by Reynolds number Re, therefore at high
Re and far from the walls it plays a minor role.
As a result the flow is governed by the interaction
parameter N defining the ratio between magnetic
and inertial forces. This is the case we treat in
the present paperby comparing experimental and
simulated results with similar N and different (and
high) Re numbers.

In the experiments [Andreev, Kolesnikov,
and Thess (2006)], the eutectic alloy
Ga0.68In0.20Sn0.12 was used as a liquid metal. It
has density ρ = 6360 kg/m3, electric conduc-
tivity σ = 3.46 · 106 Ohm−1m−1 and kinematic
viscosity ν = 3.4 · 10−7 m2/s. Thus, the Hart-
mann number Ha = HB0(σ/ρν)1/2 defined with
half-height of the channel (H = 1 cm) and mag-
netic field intensity B0 = 0.504 T is Ha = 193.
The interaction parameter N = Ha2/Re was
varied in the experiments by means of the mean
velocity rate u0 entering the Reynolds number
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Re = Hu0/ν . We have implemented the experi-
mental range of interaction parameters by varying
mainly Ha (up to 120) and keeping Re = 400,
thus in the simulation 4 ≤ N ≤ 36.

Unknowns of the equations (1 – 4) are the
velocity vector field u(x,y, z), and two scalar
fields: pressure p(x,y, z) and electric potential
φ (x,y, z). The domain of the flow is given
by a rectangular channel (Fig. 1) (|x| ≤ Lx,
|y| ≤ Ly, and |z| ≤ Lz with Lx = 25, Ly = 5,
and Lz = H = 1) having the same aspect ratios
(Length:Width:Height=25:5:1) as the experimen-
tal channel of [Andreev, Kolesnikov, and Thess
(2006)]. (In this experimental paper, H = 2 is
defined as a whole height of the channel, and in
the present paper we take H = 1 as a half-height.
Thus, the Re and Ha numbers given in [Andreev,
Kolesnikov, and Thess (2006)] were divided by
factor two here. For the external magnetic field
we used the magnetic field which was measured in
the experiment and a second configuration, which
is used for comparison (see section 3). The Hart-
mann number is based on the B0 value in the cen-
ter of the magnetic gap x = 0, y = 0, z = 0. Note,
this B0 value is not the maximal one: to fulfill
curl- and divergence free requirements, the field
is slightly increasing by approaching top and bot-
tom walls at fixed x = 0 and y = 0.

To solve the partial differential equations (1 – 4)
initial and boundary conditions have to be pro-
vided. Since we are interested in a stationary solu-
tion the initial conditions play no role (except for
the speed of convergence), and for the boundary
conditions we suppose a duct with electrically in-
sulating and "no-slip" walls on the sides, top and
bottom. Insulating and "no-slip" conditions re-
quire at the boundary Γ to impose that u|Γ = 0,
∂φ/∂n|Γ = 0, where n is normal vector to Γ. The
outlet was treated as a force free (straight-out)
border for the velocity. The electric potential at
inlet and outlet borders was taken equal zero be-
cause the inlet and outlet are sufficiently far from
the region of magnetic field.

For the inlet profile we made use of two possibil-
ities. A self-consistent choice for laminar flow is
the stationary laminar profile of an infinite rect-
angular duct known analytically in the form of

−25 −20 −15 −10 −5 0 5 10 15 20 25
−5

0

5
XY view

x

y

−5 0 5
−1

−0.5

0

0.5

1
YZ view

y

z

Figure 2: XY and Y Z projections of the grid for
the partition Nx ×Ny ×Nz = 32×32×32 and R =
1.25, S = 0.75, T = 0.75.

a series expansion. In the experimental channel,
however, the inflow is generated by a honeycomb
shaping a more flat inflow profile in span-wise
and vertical direction and generating vortex struc-
tures which give rise to decaying turbulence on
the way of the liquid metal to the magnet. To
study the influence of a more flat turbulent like
profile on the electric potential under the mag-
net, we have generated a second inlet profile in
the following well defined way: periodic bound-
ary conditions (outflow=inflow) were imposed in
stream-wise direction and then turbulent runs for
the Reynolds number of the experimental sys-
tem were performed. Then, by a space averag-
ing procedure we computed the turbulent mean
inflow profile. In spite of this careful check of the
influence of inlet boundary conditions, we have
found no difference in the final results between
the laminar and the more flat turbulent inflows,
except for the transitional region before the mag-
net. This shows that the magnetic field is suf-
ficiently strong to completely govern the hydro-
dynamics of the flow when the magnetic region
is reached. It agrees also with the experimental
observation about measured turbulent fluctuations
essentially suppressed inside the magnetic gap.

As a base for our solver we used NaSt3DGP -
the simulation code developed in [Griebel, Dorn-
seifer, and Neunhoeffer (1995))]. Originally, this
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finite difference solver was designed for pure hy-
drodynamical problems. Therefore we had to ex-
tend it by the following features to be able to solve
MHD problems: (1) using the Poisson solver also
for the determination of the electric potential, and
(2) including the Lorentz force contribution on the
right hand side computing the preliminary veloc-
ity field. Moreover, we reorganized the input and
output parts of NaSt3DGP in order to work with
the arrays keeping magnetic field, electric poten-
tial, and electric current.

Briefly, the numerical algorithm is the following.
To decouple Eq. (1) - (4), the Chorin-type projec-
tion method is applied [Peyret and Taylor (1983);
Hirsch (1988)]. This is a general procedure based
on a predictor-corrector approach. First, the Pois-
son equation for the electric potential (4) is solved
and the electric current is found according to (3).
Next, a preliminary velocity field is computed
from the momentum equation without regarding
the influence of the pressure term. The second
part of the time step from the preliminary veloc-
ity field, which is not divergence-free, to the new
divergence-free velocity field allows to derive a
Poisson equation for the new pressure. Thus, the
whole algorithm is written down as follows (in-
dex n denotes time integration step, the spatial
discretization is omitted):

1. Solve Poisson equation for the electric po-
tential:

�φ n = ∇ · (un ×B).

2. Compute electric current:

jn = −∇φ n +un ×B.

3. With the known un and jn, find the prelimi-
nary velocity field ũ:

ũ−un

δ t
=

1
Re

�un +N(jn ×B)− (un ·∇)un.

4. To compute the velocity field un+1 of the
next integration step one has to solve the
Poisson equation for pressure

�pn+1 =
1
δ t

∇ · ũ,
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Figure 3: Span-wise profile of the stream-wise ve-
locity computed at different grid parameters: Nx×
Ny×Nz = 32×32×32 (squares) and 64×64×64
(crosses and dots), (R,S,T) = (1.25,0.75,0.75)
(squares and crosses) and (1.25,0.85,0.85)
(dots). Other parameters are common: Re = 100,
N = 16, x = 0, z = 0.

and, as a result one finds

un+1 = ũ−δ t∇pn+1.

The above algorithm is explicit and for simplicity
it is presented as a scheme of first order precision.
It describes the principal sequence, which in the
code is realized with the Adams-Bashforth time
step having second order precision. For pressure
stabilization we apply a staggered grid, and the
VONOS (variable-order non-oscillatory scheme)
scheme is used to discretize the convective and
diffusive terms.

The solver is implemented to support parallel
computation: the channel in the program code is
subdivided into domains, and each domain is run
as a separate process. Communication between
the processes takes place at every integration step
to synchronize the borders between the domains.

To make sure that all the layers are properly re-
solved in the simulation, we use an inhomoge-
neous 3D grid constructed in the following way.
First, we map −Lx ≤ x ≤ Lx, −Ly ≤ y ≤ Ly,
−Lz ≤ z≤ Lz, onto three auxiliary variables −1 ≤
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Figure 4: Cuts of the experimental magnetic field: transverse (plot a at z = 0 and plot b at y = 0), stream-
wise (plot c at y = 0) and span-wise (plot d at y =−5) components. For plot a: y = 0 (solid), y = 3 (dashed),
and y = 5 (dot-dashed); for plots b−d: z = −1 (solid), -0.66 (dashed), and 0 (dot-dashed). Plots b and c
correspond also to the simplified spanwise-homogeneous magnetic field discussed in the text. Bold dashed
lines are the borders of the physical magnet.

r ≤ 1,−1 ≤ s ≤ 1, −1 ≤ t ≤ 1 as follows:

r =
th(R x

Lx
)

th(R)
, s =

tg(S πy
2Ly

)

tg(Sπ/2)
, t =

tg(T πz
2Lz

)

tg(Tπ/2)
,

and then variables r, s, t are uniformly partitioned
into Nx, Ny, Nz parts. There are three stretching
parameters R,S,T providing a denser (R) grid at
x = 0 and close to the walls (S,T ). Typical values
used in the simulation are R = 1.25, and 0.75 ≤
S ≤ 0.95, 0.75 ≤ T ≤ 0.95. Fig. 2 gives an ex-
ample of the grid for the partition Nx ×Ny ×Nz =
32×32×32 and R = 1.25, S = 0.75 T = 0.75. For
each value of the Hartmann and Reynolds num-
ber in calculations, parameters R,S,T as well as
the number of grid points were varied in order to
obtain grid-independent results, see Fig. 3. The
typical values used for the simulation were grid
64×64×64 and R = 1.25, S = 0.85 T = 0.85.

3 Magnetic Field

The magnetic field used in the present paper was
measured at equidistant points in the experiments
[Andreev, Kolesnikov, and Thess (2006)], includ-
ing all three components, and then interpolated on
the grid points and stored into a three-dimensional
array which is supplied as an input to the solver.
This is the most general approach which enables
us to work with any magnetic field configuration
supplied externally. The details about the field
are given in the experimental paper [Andreev,
Kolesnikov, and Thess (2006)], here we just re-
mind that it is created by means of two perma-
nent magnets fixed outside on the top and bot-
tom walls of the channel as is shown in Fig. 1.
In the gap between the magnetic poles the field
is aligned mainly along the vertical direction par-
allel to the z-axis. Outside of the gap, before
and behind the poles, there are regions character-
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ized by an inward and an outward gradient of the
transverse magnetic field, see Fig. 4(a, b), where
also the stream-wise component, Bx, plays a role
(Fig. 4(c)). Since the physical magnets are fi-
nite in the span-wise direction (y-coordinate), the
magnetic field is also dependent on the y coordi-
nate, in particular, on the side walls a By compo-
nent different from zero appears, Fig. 4(d). More-
over, the vertical component Bz is rather lower
near the side walls (y = ±Ly) in relation to Bz

in the center (y = 0) (Fig. 4(a)). A few distin-
guished cross-sections of transverse, stream-wise,
and span-wise magnetic field components along
the x-axis are shown in Fig. 4. Other detailed plots
of the magnetic field can be found in the exper-
imental paper [Andreev, Kolesnikov, and Thess
(2006)].

In addition to the experimental magnetic field
configuration, which changes slightly along the
y-axis, a few variants were simulated for a sim-
plified magnetic field (in the following always re-
ferred to as ’simplified magnetic field’ in con-
trast to the ’experimental magnetic field’) being
independent of the y coordinate. The span-wise
homogeneous field in this case originates from
external magnets which are infinitely long in y-
direction. It is characterized only by stream-wise
Bx(x, z) and transverse Bz(x, z) components which
coincide with Bx(x,y, z)|y=0 and Bz(x,y, z)|y=0 in
the vertical slice (y = 0) shown in Fig. 4(b,c). It
turns out that the span-wise decline of Bz near the
side walls as well as that of the other B compo-
nents is of decisive influence on both the electric
potential distribution and electric currents under
the magnetic poles (see discussion in sections 4.2
and 4.3). This illustrates the importance of fine
details of the localized heterogeneous magnetic
field, which are usually neglected in theoretical
computations.

4 Results of the simulation

This section is divided in three subsections fo-
cusing on different physical quantities — the ve-
locity field, the electric potential, and the vector
field of the current density — giving together an
overview of the general and specific features of
the experimental system. The known general fea-
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Figure 5: 3D M-shaped velocity profile, x = 0,
Re = 400, N = 36

tures are the formation of a Hartmann profile in
the transverse direction and the formation of an
M-shaped profile in span-wise direction as well
in the region of increasing and in the region of de-
creasing magnetic field (counted in stream-wise
direction). In the first subsection we demonstrate
that these two processes lead to a complex three-
dimensional flow structure, which in the given
magnetic field and channel proportions only can
be determined numerically. For the electric poten-
tial distribution a direct comparison with experi-
mental data is presented in the second subsection.
A special feature showing up is a pair of extrema
of the electric potential under the magnet. These
extrema disappear when either the interaction pa-
rameter N is too small or the simplified span-wise
uniform magnetic field (at any value of N) is used.
The same sensible dependence of phenomena on
the magnetic field structure is found in the last
subsection for complicated helical current paths,
which are present for the experimental magnetic
field and are absent for the simplified magnetic
field.

4.1 3D velocity field

We start from the well known phenomenon for
duct flow under a locally heterogeneous magnetic
field: the M-shaped velocity profile. It is shown
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in Fig. 5 for Re = 400 N = 36 at x = 0. Such
a profile is a consequence of the braking effect
of the magnetic field applied to the electrically
conducting and moving fluid. Shortly, the effect
can be understood in the following way: under
the action of the externally applied magnetic field,
electric currents are induced in span-wise direc-
tion. The larger the intensity of the magnetic field
B, the higher the density of the electric current j.
The channel walls are insulating and the magnetic
field is locally heterogeneous, therefore, to make
a closure the electric currents will leave the area
of the high magnetic field (see also the figures in
section 4.3). Then, as j and B are both present,
the Lorentz force FL = j × B, hampers stream-
wise fluid movement in the bulk of the channel.
The flow tries to circumvent the area of high mag-
netic field as much as possible, and, as a result, the
stream-wise velocity profile will adopt M-shape
in span-wise direction, and a stagnant region with
stream-wise velocity about zero (see solid lines in
Fig. 6) forms inside the magnetic gap. Various
M-shaped surfaces are given in [Sterl (1990)], in-
cluding their discussion and corresponding refer-
ences. It is worth to note that the external mag-
netic field selected in [Sterl (1990)] for the simu-
lation was either divergence- or curl-free, but not
simultaneously divergence- and curl-free, never-
theless this did not disturb the formation of a M-
shaped profile.

Fig. 6 shows the influence of the interaction pa-
rameter N on the M-shaped velocity profile. The
effect is clear: the higher the value of N the
stronger the Lorentz force braking the flow, the
lower the velocity in the center, and thus the more
pronounced the stagnant region. The solid curves
1 and 2 in Fig. 6 are related to the same parameter
values Re = 400, N = 36, but to different mag-
netic fields: the experimental field (curve 1) and
the simplified field (curve 2). This comparison
shows that the character of the flow in this two
cases is rather different. In particular, for the case
of simplified field, the width of the stagnant re-
gion is larger but its level is higher than in the case
of the experimental field. This can be explained
by the decrease of Bz in span-wise direction for
the experimental magnetic field. As the transverse
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Figure 6: Stream-wise velocity profiles in span-
wise direction in the center of the magnetic gap
(x = 0 and z = 0), Re = 400 and N = 4 (dot-
dashed), N = 9 (dashed), N = 20.25 (dotted), N =
36, experimental field (solid line 1) and N = 36,
simplified field (solid line 2).

magnetic field near the side walls consequently
for the experimental field is lower than in the cen-
ter, the liquid can more easily flow around the
"magnetic obstacle" (see below), therefore the re-
distribution of the flow for the experimental mag-
netic field is more pronounced than for the sim-
plified field.

Another insight for the M-shaped profile forma-
tion might be taken from the XY vector velocity
plot shown in Fig. 7. It was noticed several times
a kind of similarity between the flow of an elec-
trically conducting liquid passing through an area
of high local heterogeneous magnetic field (mag-
netic obstacle) and the well known flow around a
bluff body (see e.g. [Cuevas, Smolentsev, and Ab-
dou (2006)]). One can see that the velocity vec-
tors envelop the central part of the channel nearly
in the same way as it would be for a solid cylin-
drical obstacle in a two-dimensional flow. The
only difference is that a real body creates a re-
gion with no fluid, say velocity zero, while in the
region with magnetic field there still is fluid, but
with very small velocity.

To analyze span-wise and vertical velocity com-
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Figure 7: Vector plot of the velocity field in the
central horizontal plane, z = 0. The upper part
shows the intensity of the magnetic field on the
straight line z = 0, y = 0, Re = 400, N = 36.

ponents we have plotted a series of vector plots
in vertical sections of the channel at several fixed
values of x. They are shown in Fig. 8 to high-
light the intrinsic three-dimensional nature of the
velocity field. In the region of increasing mag-
netic field before the magnet gap (see Fig. 8a),
the velocity vector in the vertical section is nearly
aligned towards the corners of the channel. This
can be explained by the simultaneous action of
two effects: (i) the beginning tendency to form a
M-shaped profile, and (ii) the formation of Hart-
mann layers which is accompanied by a flatten-
ing of the velocity profile in vertical direction (see
also Fig. 9 below). The second reorganization
process of the flow is accomplished faster, i.e.
finished already at smaller x-coordinate, than the
first one. This can be concluded from the second
section, Fig. 8b, because the plotted vectors indi-
cate only a movement in the span-wise direction.

The formation of M-shaped profile continues fur-
ther when the flow passes the maximum of the
magnetic field, see Fig. 8c. However, as the flow
reaches the region of decreasing magnetic field,
there is an inversion of the span-wise movement
(Fig. 8d): now it is opposite to the one observed
before the magnet. These two processes — flow
towards the side walls at the front of the magnetic
gap and towards the center (i.e., away from the

side walls) after the gap — demonstrate again that
the flow passing a heterogeneous magnetic field
has an analogy with the flow around an obsta-
cle. Increasing further the x-value of the vertical
section and thus leaving the region with notice-
able magnetic field, the Hartmann profile begins
to transform back into a parabolic profile. Conse-
quently, there must be a vertical movement from
the bottom and top walls towards the center, see
Fig. 8e (note: we are only speaking about the ver-
tical velocity component; the span-wise velocity
component in section e is directed away from the
center, compare with Fig. 7). This phenomenon is
opposite to that observed in Fig. 8a: now there is
no more braking force keeping the velocity profile
flattened in the vertical direction. As a result, the
flow develops a swirling component in the chan-
nel corners. The swirling behavior extends far be-
hind the magnet, see Fig. 8 f . To our knowledge,
this effect of swirling flow in the corners inside
the rectangular channel after passing the region of
heterogeneous magnetic field has not been men-
tioned before elsewhere.

To get more insight how the vertical velocity re-
distribution takes place, Fig. 9 presents a vertical
section along the midplane in stream-wise direc-
tion of the channel. The velocity vectors shown
are the projection (ux,uz) of the total velocity.
One clearly sees how the vertical velocity profile
flattens before the magnet and becomes more con-
vex after the magnet. Interestingly, the flattening
starts in the center of the profile because of the
action of the Lorentz force while the decay of the
Hartmann layers begins at the top and the bottom
wall because of the wall friction and viscosity in
the fluid. The isolines of the normalized vertical
profile p(z;x) in Fig. 9 give an additional infor-
mation to judge how flat the profile is at a given
stream-wise coordinate x. We define the normal-
ized vertical profile as p(z;x) = ux(x,0, z)/u0(x),
where u0(x) = 1

2

∫ 1
−1 ux(x,0, z)dz is the mean ve-

locity in the vertical middle plane at given x and
y = 0. Horizontal isolines in Fig. 9 correspond to a
profile, where the velocity changes in the vertical
direction as for the parabolic profile in the inflow
region, while the almost vertical isolines under the
magnet represent regions with a flat profile, i.e.
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Figure 8: Vector plots of the vertical and span-wise velocity components at the following vertical sections
of the channel: (a) x = −4, (b) x = −2, (c) x = 0, (d) x = 2, (e) x = 6, ( f ) x = 10 at Re = 400, N = 36. An
interesting feature is the swirling flow that arises in the corners behind the magnet (plot e, f ).

the Hartmann profile. Before (behind) the mag-
net the isolines converge (diverge) which demon-
strates again the flattening (de-flattening) of the
vertical velocity profile. The flattening process
turns out to take place much faster (in four length
units) than the de-flattening which is far from be-
ing finished in the six shown length units after the
magnetic gap.

4.2 Electric potential

One main focus of this work is the demonstration
that the flow under the magnet is determined by
the value of the interaction parameter N, indepen-
dently of the individual values of the Hartmann

and Reynolds numbers as long as the Reynolds
number is high enough. For this aim we first start
with a comparison of two numerical computations
for the same interaction number N but with dif-
ferent Reynolds numbers. Fig. 10 shows such a
comparison at N = 16 for Re = 900 (solid lines)
and Re = 225 (dashed lines). One can actually
see that the two contour line sets are not promi-
nently distinct despite the fact that for both cases
the Re numbers differ by a factor of 4, and the
Ha numbers differ by a factor of 2. Before the
magnetic gap the dashed and solid lines closely
coincide with each other, and after the magnets
there is a slight discrepancy since the inertial force
for Re = 900 is higher than for Re = 225. More
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Figure 9: Vector plot of the velocity components
ux and uz in the central vertical plane at y = 0,
Re = 400, N = 36. The isolines are plotted at
constant level of the normalized vertical profile
p(z;x) and give additional information about the
flatness of the velocity profile.

discrepancies one can find in the thicknesses of
viscous boundary layers, however they are essen-
tially of no importance since we are interested in
the processes taking place in the central part of the
magnetic gap.

Now let us explain qualitatively the electric field
distribution in the system under consideration. In
the quasi-static approximation the current accord-
ing to Ohm’s law eq. (3) is the sum of two terms:
the electric field induced by the motion of the con-
ducting fluid volume inside the magnetic field,
u × B, and the electric field E = −∇φ derived
from an electric potential φ generated inside the
fluid volume because of the solenoidality of the
electric current (due to Ampère’s law ∇×B = μj)
and the isolating boundary conditions at the walls
forcing currents to close inside the fluid volume.
Taking the divergence of (3) one gets the Pois-
son equation (4) for which the right hand side
∇ · (u × B) = B ·w (where w denotes vorticity)
plays the role of the inhomogeneity1. Compar-
ing with the Poisson equation for usual electro-

1 The second term u ·(∇×B) vanishes because the fluid vol-
ume is outside of the external magnet and induced mag-
netic fields are neglected in the quasi-static approxima-
tion.
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Figure 10: Electric potential distribution, φ (x,y)
in the central horizontal plane (z = 0) for N =
16, simulation: Re = 900 (solid) and R = 225
(dashed).

dynamics, �φ (r) = −ρ(r)/(ε0ε), one sees that
the expression ρ∗ = −ε0ε B ·w can be considered
formally as an electric charge density induced by
the movement of the electrically conducting fluid
in the magnetic field. In the duct flow, the largest
contributions to B ·w are generated with the pre-
dominant vertical component Bz of the magnetic
field together with the span-wise velocity gradi-
ent ∂ux/∂y of the stream-wise velocity compo-
nent, i.e. ρ∗ ≈ ε0εBz(∂ux/∂y). Therefore, look-
ing in stream-wise direction, one finds a negative
charge density near the left wall and a positive
charge density near the right wall of the channel
which correspond to the outer flanks of the M-
shaped profile under the magnet. The electric field
created by this charge density inside of the chan-
nel points in span-wise direction parallel to the
y axis2. (The y axis points from the right to the
left wall of the channel). The braking action of
the Lorentz force leads to a strongly diminished
flow in the central region under the magnet and in
this way the M-shaped profile is created. The in-
ner flanks of the M-shaped profile provide oppo-
site velocity gradients and opposite charge den-
sities causing an electric field antiparallel to the
y-axis in the central region. It depends now on the

2 Two remarks: (1) The electric field direction coincides,
of course, with the direction of u×B. (2) Directly at the
walls the charge density is high, but the induced electric
field has to be zero because of the isolating boundary con-
dition.
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Figure 11: Simulated span-wise electric potential
profiles in the center of the magnetic gap (x = 0
and z = 0), Re = 400 and N = 4 (dot-dashed), N =
9 (dashed), N = 20.25 (dotted), N = 36, experi-
mental magnetic field (solid line 1) and N = 36,
simplified field (solid line 2).

strength of the magnetic field and the correspond-
ing braking effect, whether there exists a region
in the middle of the channel under the magnet,
where the total electric field — the sum of both
described charge densities from the outer and in-
ner flank of the M-shaped profile — is antiparal-
lel. In this case the electric field has to change its
sign two times along the span-wise direction, cor-
responding to three sign changes for the electric
potential. In the contour plot of the electric po-
tential, the stagnant region is manifested by closed
contour lines as we shall see below in Fig. 13, 14.

To illustrate the previous deduction about electric
potential behavior we plotted in Fig. 11 span-wise
profiles of φ for different interaction parameter N.
One can see that for the low interaction parameter
N = 4 (dot-dashed) φ (y) shows clearly monotonic
behavior, while for the high interaction parameter
N = 36 (solid line 1) the sign of the electric poten-
tial changes three times. Corresponding curves in
Fig. 6 and 11 are plotted with the same line types.
One clearly observes the tendency: the develop-
ment of the inflection of the φ (y) curves (Fig. 11)
is accompanied by a lower minimum of the veloc-
ity profile (Fig. 6) around y = 0.

The next two figures show how the electric po-
tential changes by passing the magnetic field re-
gion. They are given in comparison with the ex-
perimental results. Fig. 12(a) shows the profiles
for N ≈ 20 and Fig. 12(b) shows the profiles for
N ≈ 9. As it should be, kinks of the electric po-
tential in Fig.12(a) are more expressive than in
Fig.12(b) due to the larger interaction parameter.
Also, the figures demonstrate that this effect is
most expressive in the center of the magnetic gap
(x = 0) where the magnetic field and, therefore,
the braking Lorentz force is maximal. In the re-
gion of the inward (x = −2) and outward (x = 2)
magnetic field gradient, electric potential behav-
ior is monotonic. The comparison between the
simulated and experimental results reveals almost
perfect accordance.

To complete the comparison with the experimen-
tal [Andreev, Kolesnikov, and Thess (2006)] data
we present also the contour plots. Fig. 13 shows
the experimental and numerical results of the
electric potential distribution at N ≈ 20 . Two
contour plots give the level lines of the electric po-
tential, the first, as it was directly and systemati-
cally measured in the experiment, and the second,
as computed numerically. Qualitatively, the elec-
tric potential distribution has the following main
features: (i) it is an antisymmetric contour map
with respect to the axis y = 0 (ii) there are two
global extrema directly at the side walls exactly
under the peak of the magnetic field (x = 0) and
(iii) there are two local sign alternating extrema
slightly shifted in stream-wise direction at one
third distance from the side wall (measured by the
total span-wise width of the channel), Fig. 13. As
one can see, all the features of the experimental
electric potential measured at Re = 2000 are ex-
cellently reflected in the simulation at Re = 400
since both have the similar interaction parameter,
N ≈ 20. Another comparison for N ≈ 9 is given
in Fig. 14. Now, the closed lines of the electric
potential are weaker because of the lower inter-
action parameter. The good accordance between
experimental and simulated results is observed in
Fig. 14 as well.

Summing up, we find a very good agreement be-
tween the experimental and the numerical results
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Figure 12: Experimental (symbols) and simulated (lines) span-wise electric potential profiles at z = 0 and
x = −2 (crosses and solid lines), 0 (dots and dashed lines), 2 (circles and dot-dashed lines). Plot a is for
N ≈ 20: (Re,N) = (2000,18.6) (experiment) and (Re,N) = (400,20.25) (simulation). Plot b is for N ≈ 9:
(Re,N) = (4000,9.3) (experiment) and (Re,N) = (400,9) (simulation).

comparing data for the same interaction parame-
ter N. This holds even in complementary regimes
with respect to the Reynolds number: turbulent
inflow in the experiment, and laminar calculations
in the simulation. This shows that the interaction
parameter indeed is the governing parameter for
the flow under and near to the magnets, and that
the flow in this region is determined by the mag-
netic and inertia forces. If the Reynolds number is
not high enough, the viscous force begins to play
a role as a third force in the system as can be ob-
served to a small extent in our first comparison,
see Fig. 10, of this subsection.

As the electric potential does not show a visi-
ble reaction on turbulence or no turbulence in the
inflow, one could conclude that it is a quantity
which is rather insensitive to different influences.
We will show now that this is not the case, and
consider for this aim the action of the span-wise
decrease of the experimental magnetic field on the
electric potential distribution. This dependence is
especially interesting, since many people believe
that in most cases only the transverse component
of the magnetic field, changing along stream-wise
coordinate, is of importance. For instance, most
of the numerical simulations were performed only

with Bz(x) dependence, see, e.g. [Sterl (1990);
Alboussiere (2004)]. To clarify the role of the
magnetic field and demonstrate the sensitivity of
the φ (x,y) map, we fixed (Re,N) = (400,36) and
compare two variants with the real experimen-
tal (showing y-dependence) and simplified (span-
wise uniform) magnetic field. As it is supposed
typically, the simplified magnetic field has only
stream-wise dependence in its intensity, and is
constant at every fixed x in span-wise direction.
The simulated results for the simplified field are
presented in Fig. 15. One discovers that now the
picture changes even qualitatively: there are no
more closed lines of the electric potential, that is,
the potential drops monotonically from one side
wall to another (compare also the solid curves 1
and 2 in Fig. 11). This is a strong indication that
the factors, which are decisive for the compari-
son of experimental and simulated results, are the
maximal interaction parameter in the magnetic
gap and the proper configuration of the magnetic
field.

4.3 Electric currents paths

Fig. 16 shows the closure of the electric currents
in the central horizontal plane (z = 0) which were
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Figure 13: Electric potential distribution, φ (x,y),
in the central horizontal plane (z = 0) for N ≈ 20:
experiment, Re = 2000, N = 18.6 (left) and sim-
ulation Re = 400, N = 20.25 (right). Bold dashed
lines are physical borders of the magnetic gap.

calculated as lines tangent at every point to the
vector of electric current j. For sake of sim-
plicity only few paths are shown, one in the re-
gion of increasing magnetic field, and others after
the magnet in the region of decreasing field. In
the case of constant magnetic field the loops of
the electric current are located entirely in vertical
planes and most of the current is concentrated in
the Hartmann layers. By contrast, in the case of
the heterogeneous magnetic field, since an elec-
tric current intends to close itself in the region
where magnetic field is minimal (in order to close
along paths with smallest resistance), one sees the
current loops close themselves in the horizontal
planes. The characteristic length of the loops is
rather large as can be seen in Fig. 16: the turn-
ing point of j, starting under the peak of the mag-
netic field (x ≈ 0), is at |x| ≈ 10...15, while a re-
markable magnetic field intensity is felt only up to
x ≈ 5. This fact must be taken into consideration
when one selects where to put inlet and outlet of
the numerical simulation box, otherwise it is pos-
sible to get artificial findings.

Fig. 16 reveals small closed loops for the electric
current at x ≈ 2.2 and y ≈ ±4.1. These loops are
interesting because the closure of the electric cur-
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Figure 14: Electric potential distribution, φ (x,y)
in central horizontal plane (z = 0) for N ≈ 9: ex-
periment, Re = 4000,N = 9.3 (left) and simula-
tion Re = 400, N = 9 (right). Bold dashed lines
are physical borders of the magnetic gap.

rent is typically a big horizontal loop which en-
velops the space of the magnetic field gradient.
The geometric explanation for these small exotic
loops is that they are projections to the XY plane
from complicated electric paths developing essen-
tially in 3D space. Fig. 17 clearly shows these 3D
paths: they are helices connecting the Hartmann
layer and the middle horizontal plane.

As well in our calculation presented in this paper,
see Fig. 17, as also in other calculations which
are not shown here, helical current paths are only
present when the level lines of the electric po-
tential relief in the horizontal midplane contains
closed lines, see Fig. 13. Our results strongly sug-
gest that the presence of closed lines of the elec-
tric potential is a necessary condition for the ap-
pearance of helical current paths. As the span-
wise uniform magnetic field does not lead to a
triple change of the span-wise electric potential
profile (i.e. no closed lines in Fig. 15), the 3D
paths of the electric currents for this case conse-
quently are simple closures in the horizontal plane
as is shown in Fig. 18.

There are also correlations between the span-wise
inhomogeneity of the magnetic field, 3D helical
currents, and features of the stagnant region in M-



112 Copyright c© 2007 Tech Science Press FDMP, vol.3, no.2, pp.97-114, 2007

−10 −5 0 5 10
−5

0

5

x

y

−0.2

−0.4

−0.6

−0.8

−1.2
−2

0.2

0.4

0.6

0.
8

1.2 2

−0.1
0

0.1

Figure 15: Electric potential distribution, φ (x,y)
in central horizontal plane z = 0 for Re = 400,
N = 36, and magnetic field without span-wise de-
pendence.

shaped velocity profiles. One sees a broad con-
stant plateau in ux(y) for the simplified field while
for the experimental field there is a degraded min-
imum approaching zero (compare solid curves 1
and 2 in Fig. 6). Since the level of the stagnant
plateau for the span-wise uniform magnetic field
is sufficiently high to keep electromotive contri-
bution u×B in the electric current j, there is no
triple sign change of the electric potential φ (y)
(compare solid curves 1 and 2 in Fig. 11). The
stagnant plateau is not so broad but considerably
lower for the experimental magnetic field, be-
cause of the lower magnetic field strength near the
side walls. The latter induces the braking Lorentz
force near the side walls to be smaller than in the
center. As a result, the case of the real field looks
somehow as a flow around the magnetic obstacle,
while the simplified field is more similar to an uni-
form semi-penetrable barrier.

The 3D helices of the electric current in the case
of the real field (Fig. 17) arise near the turning
points where the electric field E changes its sign,
hence E ∼ 0. These helices are maintained mainly
by the electromotive component (u×B) in Ohm’s
law, eq. 3. On the other hand, these helices are
located in the region of space where stream-wise
component Bx(x) reaches the largest value, see
Fig. 4, in the center of the outward magnetic field
region. Referring to the vector product u×B, we
see that the term uyBx is of importance for the size
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Figure 16: Electric current paths in the central
horizontal plane (z = 0) under the experimental
magnetic field, Re = 400, N = 36. The lines are
not equidistant since they were obtained by in-
tegration from a few starting points at (x,y) =
(−0.5,0), (0.5,0), (2.1,4.1), (2.1,−4.1).

of the jz component, which is responsible for the
uprise of the helix. Thus, in order to catch the
helices one has to keep in the simulation all the
components of the magnetic field.

5 Conclusions

We have carried out numerical simulations for
liquid metal channel flow under inhomogeneous
magnetic field. For the computations the same
channel geometry and the magnetic field con-
figuration as in the experiment of [Andreev,
Kolesnikov, and Thess (2006)] were used.

Computations of the velocity field showed that all
known general features — like for example the
formation of Hartmann layers at the walls per-
pendicular to the main component of the magnetic
field, or the formation of an M-shaped profile in
span-wise direction — are represented correctly
by our numerical code. All features of the flow
together lead to a complex three-dimensional flow
structure, which for the investigated regime of in-
teraction parameters, 4 ≤ N ≤ 36, can only be de-
termined numerically. As a new feature of the ve-
locity field a swirling flow in the corners of the
duct is observed. It begins shortly after the mag-
netic gap and extends far into the outflow region.
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Figure 17: 3D electric current path for the experi-
mental magnetic field.
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Figure 18: 3D electric current path for the sim-
plified magnetic field without span-wise depen-
dence.

The main goal of this work was to compare the
electric potential distribution measured in the ex-
periment with that of our numerical simulation.
We were able to find a very good agreement of
the electric potential distribution for two sets of
parameters which were used in the experiment
((i) N = 18.6, Re = 2000, and (ii) N = 9.3 Re =
4000) and the corresponding sets ((i) N = 20.25,
Re = 400, and (ii) N = 9, Re = 400) in our nu-
merical calculations. This comparison shows that
the electric potential distribution in the magnetic
field region is solely determined by the value of
the interaction parameter. This makes sense as in

the magnetic field region the Lorentz force and
the inertial force are strongest, while the viscous
force is only important in the Hartmann layers and
near to the side walls. The turbulence, which is
present in the inflow of the experimental channel
is in the magnetic field region already negligible
and has no influence on the electric potential dis-
tribution. A numerical test with a different inflow
profile, which is more flat like a turbulent profile,
also showed no difference.

In addition, we could demonstrate that local ex-
trema of the electric potential appear for interac-
tion parameter higher than a critical value, which
lies between 9 and 18. Simulations with a sim-
plified magnetic field (only dependent on vertical
and stream-wise coordinate, no span-wise field
component) showed that local extrema of the elec-
tric potential map totally vanish in this case. This
means that already a slight variation of the inho-
mogeneous magnetic field can have a strong in-
fluence of the electric potential distribution. The
same sensitivity on the magnetic field structure is
found for the electric current density: In the case
of the experimental magnetic field our computa-
tions revealed the appearance of complicated he-
lical current lines which are not present for the
simplified magnetic field.
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