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Coupling between Stationary Marangoni and Cowley-Rosensweig
Instabilities in a Deformable Ferrofluid Layer

M. Hennenberg1 , B. Weyssow2, S. Slavtchev3, and B. Scheid4

Abstract: A horizontal thin layer of ferrofluid
is bordered by a solid and open to an inert gas on
the other side. It is submitted to a heat gradient
and a weak magnetic field, both being normal to
the free deformable surface, leading to a coupling
between the Marangoni phenomenon, induced by
the variation of surface tension along the free
deformable surface and the isothermal Cowley-
Rosensweig problem, consequence of the mag-
netic field. The study of the steady compatibility
condition shows a new pattern of stationary insta-
bility. The critical wavenumber is of O(

√
Bo), the

Bond number Bo being smaller than 1, at a min-
ima of the Marangoni number, that could be much
less thus than its classical undeformable counter-
part. For large wavelengthes, the Marangoni num-
ber depends on the Galileo number in contradis-
tinction to earlier results.

1 Introduction

A thin layer of ferrofluid is sandwiched between
a solid surface and an inert gas, submitted to the
joint action of a weak magnetic field and of a gra-
dient of temperature, both normal to the unper-
turbed horizontal borders of infinite extent. Such
a shallow pond enables to neglect all bulk forces
fluctuations, whether of buoyancy or of magnetic
origin. The free surface of the ferrofluid layer
couples the Marangoni instability due to surface
traction along the interface [Pearson (1958)] to
the static isothermal Cowley-Rosensweig insta-
bility [Rosensweig (1997)], due to the inbalance
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between the magnetic traction, the surface ten-
sion and gravity leading to a change of the shape
of the free surface. The influence of a magnetic
field has been also considered for liquid metals
where electrical charges are to be taken into ac-
count [Kakimoto and Liu (2006); Votyakov and
Zienicke (2007)].

In this note, we develop the study of the lin-
ear marginal non ocillating coupling between
both instabilities [Rosensweig (1997); Bashtovoi
and Pavlinov (1979); Pavlinov (1979); Bashtovoi,
Berkovski and Vislovitch (1988); Salin (1993);
Hennenberg, Weyssow, Slavtchev and Legros
(2001); Weilepp and Brand (1996)], when the fer-
rofluid deformable layer rests on the solid wall,
or hangs down from it [Smith (1966); Takashima
(1981); Velarde, Nepomnyaschy and Hennen-
berg (2000)]. Our analysis show that when
both isothermal situations (Rayleigh-Taylor and
Cowley-Rosensweig) are stable, the Marangoni
stability criterion can be modified to give a crit-
ical value of the Marangoni number less than the
one of Pearson [Pearson (1958)] for a wavelength
of the order of the capillary length. Also, we cor-
rect the result derived by Bashtovoi and Pavlinov
[Bashtovoi and Pavlinov (1979); Pavlinov (1979);
Bashtovoi, Berkovski and Vislovitch (1988)] for
the long wavelength approximation which failed
to get back the classical results in the absence
of a magnetic field [Smith (1966); Takashima
(1981); Velarde, Nepomnyaschy and Hennenberg
(2000)]. A complete study is in progress.

2 The Problem

A horizontal layer of a ferrofluid of width d and
of infinite lateral extent, is bordered by a nonmag-
netic solid (superscript s), located at z∗ = 0 and
by a free limiting surface Σ, that is an infinite flat
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plane at z∗ = d in the reference rest state, which is
in contact with a gaseous magnetically inert phase
(superscript g). This layer is submitted to a gradi-
ent of temperature and to an exterior weak mag-
netic field, both normal to the unperturbed liquid-
gas and liquid-solid interfaces (see Fig. 1).
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Figure 1: Ferrofluid layer submitted to a nor-
mal constant magnetic field He

0 = He
0 1z and to

a normal temperature gradient ΔT = T (gas)−
T (solid). 1z = unit normal directed from solid
into gas, 1x = horizontal unit vector along z = 0.

Ferrofluid magnetic properties

The magnetic field derives from a gradient in all
three phases Hl = ∇φ l, l = g, s and H = ∇φ in
the ferrofluid layer, where also the Maxwell equa-
tion ∇ · (μ0 [H+M]) = 0 intervenes, μ0 being the
magnetic void permeability. The magnetic field
H and the ferrofluid magnetisation M = χH are
collinear defining the permittivity χ [Bashtovoi
and Pavlinov (1979); Pavlinov (1979); Bashtovoi,
Berkovski and Vislovitch (1988); Weilepp and
Brand (1996)], whose change with temperature
accross the layer is neglected. Then, the Maxwell
equations reduce to

∇2 φ g = 0 for z ≥ d +ξ ,

∇2 φ s = 0 for z ≤ 0 ,

∇2 φ = 0 for 0 ≤ z ≤ d +ξ
(1)

where d +ξ is the height of the liquid-gas surface
Σ. On the upper and lower boundaries of the fer-
rofluid layer, one has the continuity of the normal
components of μ0 [H+M] and of the tangential
component of the magnetic field H [Rosensweig
(1997)].

Balance of momentum and Laplace-Marangoni
boundary condition

As a consequence of Eq. 1, for an incompress-
ible viscous ferrofluid, whose constant density is
ρ (thus whose specific volume V = ρ−1), the mo-
mentum balance law reads:

ρ Dt v = −∇p+η ∇2v+ρg and ∇ ·v = 0

(2)

where v = (U,V,W) is the velocity, p =
pL(ρ ,T) + μ0

∫ H
0

∂MV
∂V

∣∣
H,T dV is the total pres-

sure, pL(ρ ,T) is the hydrostatic pressure, Dt is
the operator ∂t +v ·∇, and η is the kinematic
viscosity. Since we are supposing that 1z is al-
ways directed from the solid boundary at z = 0
toward the deformable surface Σ at z = d + ξ ,
two cases are summarized by the gravity field
g = −g1z. If g = |g|, we are considering a fer-
rofluid resting above a solid non magnetic bor-
der. When g = −|g|, the magnetisable layer is
hanging below the solid ceiling. This extends
Rayleigh-Taylor instability to a magnetized fer-
rofluid submitted to a vertical gradient of temper-
ature [Chandrasekhar (1981); Burgess, Juel, Cor-
nick, Swift and Swinney (2001); Pacitto, Fila-
ment, Bacri and Widom (2000)]. The boundary
conditions on momentum on the solid-liquid in-
terface are v = 0 or U = V = W = 0 at z = 0. The
deformable liquid-gas interface Σ is defined by
the Monge equation r = x1x + y1y + ξ (x,y, t)1z

so that the unit normal linearised expression is
n = −∂x ξ 1x −∂y ξ 1y +1z.

Let us call
[
T l

i j −T g
i j

]∣∣∣
Σ

n j = Fi , the projection on

the normal n at the interface Σ of the difference
between T l

i j the stress tensor in the liquid phase
and T g

i j the stress tensor in the inviscid magnet-
ically inert gaseous phase. Then along Σ, one
has the following linerarized Marangoni-Laplace
condition [Hennenberg, Weyssow, Slavtchev and
Legros (2001); Weilepp and Brand (1996)]:

Fi = 2K σ δiz + (1−δiz)
∂σ
∂xi

(3)
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where T l
i j and T g

i j are respectively

T l
i j = −

{
p+

μ0

2
H2

}
δi j

+μ0(1+ χ)Hi Hj +η
[

∂vi

∂x j
+

∂v j

∂xi

]

T g
i j = −

{
pgas +

μ0

2
H2

}
δi j + μ0 Hi Hj (4)

where δi j is the Kronecker delta. The surface
mean curvature is 2K = ∂ 2

x ξ + ∂ 2
y ξ . Since gas

and liquid are immiscible, Dt ξs = v|Σ ·1z.

Heat balance, state equation and boundary con-
ditions

The energy equation reduces to the usual Fourier
equation [Rosensweig (1997)]:

ρ cp,H Dt T = λ ∇2 T (5)

where cp,H is the specific heat capacity at con-
stant pressure and magnetic field, λ is the thermal
conductivity. Along the free deformable liquid-
gas surface Σ, the heat flux will be proportional
to the difference between the surface temperature
and the temperature Tgas of the gaseous phase:

−λ [n ·∇T ]
∣∣
Σ = a

[
T

∣∣
Σ −Tgas

]
(6)

where a is the heat transfer coefficient. The sur-
face tension varies linearly with temperature, so

that σ = σ0

[
1− γ (T −T 0

lg)
]

where T 0
lg is the ref-

erence liquid gas temperature, σ0 is the value of

the surface tension at T 0
lg and γ = − 1

σ0

∂ σ
∂ T

is a

positive quantity. Along the other boundary, the
solid is a perfect conductor, so that T = T

∣∣
wall =

Const at z = 0. The reference temperature at the
lower solid-liquid surface will hereafter be de-
noted Tsol .

The reference rest state

The steady solution of Eq. 5 is:

T 0 = Tsol −β z (7)

A conducting liquid-gas interface corresponds to
the case a → ∞, and an insulating one to λ →

∞. The quantity β = a [Tsol −Tgas]/(ad + λ ) de-
pends on which boundary interface is the heating
one, so that β is positive when heating from the
solid wall (Tsol > Tgas) and negative when heating
from the gaseous phase (Tsol < Tgas).

The ferrofluid is submitted to an exterior constant
magnetic field H = 1z He

0 . Thus, the Maxwell
equations Eq. 1 give the unperturbed magnetic
field H0 and the unperturbed magnetisation M0 in
the ferrofluid layer as:

He
0 = H0 +M0 = (1+ χ) H0

The continuity of the normal component of the in-
duction and of the stresses, accross the reference
liquid gas interface leads to the well known mag-
netic pressure jump [Rosensweig (1997); Weilepp
and Brand (1996)]

pgas − pliq =
μ0

2
[χ H0 ]2 =

μ0

2
M2

0 (8)

3 The dimensionless linear perturbation of
the state

To study the linear stability of the reference
motionless conductive state Eq. 7 - Eq. 8, we
write the problem in a dimensionless form. We
use the following scaling units [Bashtovoi and
Pavlinov (1979); Pavlinov (1979); Bashtovoi,
Berkovski and Vislovitch (1988); Weilepp and
Brand (1996)]: any spatial dimension is scaled
by d (so that the reference free surface is z = 1),
the time by d2/κ (κ = (cp,H ρ)−1 is the ther-
mal diffusivity), the temperature by β d and the
magnetic field or the magnetization by M0/(1 +
χ) = χ H0/(1 + χ) = χ He

0/(1 + χ)2. Each di-
mensionless perturbed quantity δ f keeps its for-
mer symbol f to identify its physical origin and
we develop it in a Fourier expansion in normal
modes so that we must keep only one single mode
in the form δ f (z)exp[ı (kx x + ky y) + ω t] [Bash-
tovoi and Pavlinov (1979); Weilepp and Brand
(1996); Chandrasekhar (1981)]. The dimension-
less wavenumber k = (kx, ky) has real compo-
nents and ω = ℜ(ω) + ıℑ(ω), where ℜ(ω)
shows whether the situation is stable (ℜ(ω) <

0), marginally stable (ℜ(ω) = 0) or unstable
(ℜ(ω) > 0), while ℑ(ω) being different from
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zero indicates an oscillating solution. Calling D,
the differential operator D = d/d z and introduc-

ing k =
√

k2
x +k2

y , we obtain the normal mode di-

mensionless formulation of the problem. We re-
strict our analysis to the non oscillating marginal
case ℜ(ω) = ℑ(ω) = 0.

The dimensionless Maxwell equation Eq. 1 give
us
[
D2 − k2]δφ = 0 for 0 ≤ z ≤ 1+ξ[
D2 − k2]δφ g = 0 for z ≥ 1+ξ[
D2 − k2]δφ s = 0 for z ≤ 0

(9)

The momentum balance Eq. 2 describing the fer-
rofluid layer becomes

(
D2 −k2)2

W = 0 (10)

The energy equation Eq. 5 leads to its dimension-
less equivalent

(
D2 − k2)δT +W = 0 (11)

The physical relevance of Eq. 10 and Eq. 11
assumes to study only cases where d <<
1/

√
ρ g/σ [Velarde, Nepomnyaschy and Hen-

nenberg (2000)].

Boundary conditions at the deformable surface
Σ

For any scalar quantity g and for any vector f
taken along the deformed surface Σ, their linear
perturbation is defined as the sum of two con-
tributions [Bashtovoi and Pavlinov (1979); Pavli-
nov (1979); Hennenberg, Weyssow, Slavtchev
and Legros (2001)]

δgΣ = δg1 +
∂g
∂ z

ξ and δ fΣ = δ f1 +n ·∇f

Introducing the Biot number Bi = ad/λ , the di-
mensionless expression of Eq. 6, along the de-
formed surface Σ for which W = 0, is

DδT = −Bi [δT −ξ ] (12)

The dimensionless lateral component of Eq. 3 is
independent upon the presence of a magnetic field

and is the usual Marangoni tangential shear stress
balance:
[
D2 +k2] W +Ma k2 [δT −ξ ] = 0 (13)

with Ma = − ∂ σ
∂T

β d2

η κ
being the Marangoni

number.

The Maxwell boundary conditions on the liquid-
gas surface give the following dimensionless re-
sult:

ξ =
δ φ −δ φ g

1+ χ
, and Dδ φ = k

[
ξ − δ φ

1+ χ

]

Introducing the following dimensionless num-
bers - the crispation number Cr = μ κ/σ d,
the Bond number Bo = ρ gd2/σ with√

Bo < 1, the magnetic Bond number
Bom = μ0 (χ Hl

0)
2 d/σ (1+ χ), the Galileo

number Ga = gd3/ν κ = Bo/Cr [Velarde,
Nepomnyaschy and Hennenberg (2000); Abou,
de Surgy and Wesfreid (1997)] - enables us to
obtain the final dimensionless expression of the
Laplace equation derived from Eq. 3 and Eq. 4:

k2 Δ±ξ +
1
Ga

[
3k2−D2] DW +k3 Bom

Bo
δφ = 0 (14)

where Δ± = +
k2

Bo
−k

μ0 (χ Hl
0)

2

ρ gd
±1 . In Δ±, the

upperscipt + (respectively −) means a ferrofluid
layer resting on the underneath rigid wall (fer-
rofluid layer hanging down from the upper rigid
wall) which corresponds to the + (−) sign in front
of 1. The magnetic Bond number Bom is due to
the magnetic pressure jump along the free sur-
face [Rosensweig (1997); Hennenberg, Weyssow,
Slavtchev and Legros (2001); Abou, de Surgy
and Wesfreid (1997); Bacri, Perzynski and Salin
(1988)].

We will suppose the solid wall to be a perfect heat
conductor, so that, we have at z = 0,

W = DW = δT = 0 and

δφ s = δφ so that Dδφ − k δφ
1+ χ

= 0
(15)

From Eq. 9 and using the boundary conditions
Eq. 15 at the wall, the magnetic potential reads
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[Weilepp and Brand (1996)] along z = 1:

δ φ (1) = ξ (1+ χ) Λ(k) (16)

where Λ(k) = (μ tanhk + 1)/(
[
μ2 +1

]
tanhk +

2 μ). The function Λ(k) is a monotoneous in-
creasing function from its minimum value 1/2 μ
at k = 0 up to its maximum 1/(1 + μ) at k = ∞
since the relative permeability μ = 1+χ is always
larger than one [Rosensweig (1997); Weilepp and
Brand (1996)].

From Eq. 12, Eq. 13, Eq. 14, using Eq. 16, we
obtain the following compatibility condition that
takes into account the Rayleigh-Taylor case:

Ma = Ma±(k) = 8k×
[coshk sinhk−k ] [k sinhk +Bi coshk ]

(
sinh3 k−k3 coshk

)
+

8Crk5 coshk
±Bo + k2 − k Λ(k)Nm

(17)

where by definition Nm = [1+ χ ]2 Bom is directly
linked to the magnetic Bond number. When
the magnetic field is absent Nm = 0, we find
back from Eq. 17 the Marangoni problem stud-
ied by Smith and Takashima [Smith (1966);
Takashima (1981)]. The term multiplying Cr cou-
ples the classical Marangoni case studied from
Pearson onwards [Pearson (1958); Smith (1966);
Takashima (1981); Velarde, Nepomnyaschy and
Hennenberg (2000)] and the isothermal Cowley-
Rosensweig instability [Rosensweig (1997); Hen-
nenberg, Weyssow, Slavtchev and Legros (2001);
Abou, de Surgy and Wesfreid (1997); Bacri,
Perzynski and Salin (1988)].

a) Indeed, should we neglect the deformation and
thus use Cr = 0, we obtain Ma = Ma0(k) where

Ma0(k) = 8k×

×(k−coshk sinhk)(k sinhk +Bi coshk)
k3 coshk− sinh3 k

(18)

This is the classical Marangoni compatibility con-
dition [Pearson (1958)], whose critical value is
Ma0(1.992) ≈ 79.6, at a critical wavenumber
kcrit ≈ 1.992.

b) If the fluid is isothermal, Ma = 0. But since the
numerator of Eq. 17 is always positive, the com-
patibility condition Eq. 17 reduces to zero only if
the denominator is infinite, which means to have
Δ±

d (k) = 0, where we define

Δ±
d (k) = +

k2

Bo
− k Λ(k)Nm

Bo
±1 (19)

But Δ±
d (k) = 0 corresponds to the generalisation

of the compatibility condition of the Cowley-
Rosensweig instability for any layer width d
[Rosensweig (1997); Abou, de Surgy and Wes-
freid (1997); Bacri, Perzynski and Salin (1988);
Chandrasekhar (1981)]. If we use K = k/

√
Bo

and the function Φ = Nm/2(1+ μ)
√

Bo [Abou,
de Surgy and Wesfreid (1997)], we can rewrite
last equation Eq. 19 as

Δ±
∞(K)≤ Δ±

d ≤ Δ±
∞(K)+K Φ

(μ −1)
μ

(20)

where Δ±
∞(K) = K2 − 2K Φ ± 1, Δ±

d = Δ±
∞(K)−

α Φ, and α = (1 + μ) μ tanh(K
√

Bo)+1
(μ2+1) tanh(K

√
Bo)+2 μ

−
2K. The above inequality defines two extreme
cases. A thick layer supposes the width d to
be much larger than the capillary length

√
σ/ρ g

[Rosensweig (1997); Salin (1993); Hennenberg,
Weyssow, Slavtchev and Legros (2001); Abou,
de Surgy and Wesfreid (1997)]. The isother-
mal inviscid Cowley-Rosensweig instability re-
duces to the study of Δ±

∞(K
√

Bo) = 0 where
Δ±

∞(K
√

Bo) = K2 − 2K Φ ± 1. A very very
thin layer exists when the capillary length is
much more larger than the width d [Abou,
de Surgy and Wesfreid (1997); Bacri, Perzyn-
ski and Salin (1988)] and the compatibility con-
dition is the study of Δ±

0 (K
√

Bo) = 0, where
Δ±

0 (K
√

Bo) = Δ±
∞(K)+K Φ μ−1 (1+ μ).

4 Preliminary results

Using Eq. 18 and Eq. 19 we can rewrite Eq. 17 as

Ma±(k) = Ma0(k)A (21)

where A = Δ±
d (k)/

{
Δ±

d (k)+ 8 k5 coshk
Ga [sinh3 k−k3 coshk]

}
.

We will restrict ourselves to some preliminary re-
sults and discuss the longwavelength approxima-
tion of Eq. 21.
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4.1 The ferrofluid layer resting on a solid sur-
face

Increasing the magnetic field, Eq. 20 shows
that Δ+

d (k) has either no positive real root
(Cowley-Rosensweig stable case), one posi-
tive zero (Cowley-Rosensweig marginal stabil-
ity) or two positive roots (Cowley-Rosensweig
unstable case) [Rosensweig (1997); Hennenberg,
Weyssow, Slavtchev and Legros (2001); Salin
(1993); Abou, de Surgy and Wesfreid (1997)].

A] Δ+
d (k) has less than two positive roots

Figure 2: Neutral curves Ma+(k) for k > 1 (Pear-
son curve). (a) Cowley-Rosensweig marginal
case (solid line), (b) Cowley-Rosensweig stable
case showing a finite minima at k ∼ O(

√
Bo) (dot-

ted line), and (c) case when the magnetic field has
a negligible influence (dashed line).

When Δ+
d (k) is non negative, the RHS of Eq. 21

is the product of the function Ma0(k) by a non
negative function A less than one. For very
large values of Ga, A ≈ 1 the interface is prac-
tically undeformable so that this explains why the
dashed curve in Fig. 2 followed by the solid line
gives back the classical curve of Pearson [Pear-
son (1958)]. However for lower value of Ga,
where the interface can deform, A is less than
1 so that it will decrease the value of Ma+(k)
with respect to Ma0(k), leading to a new min-
imum of the curve. One could obtain a new
critical wavelength giving rise to the same value
of the critical Marangoni number for two dif-
ferent critical values of the wavenumber (dotted

curve in Fig. 2). Increasing still the magnetic
field up to its marginal value, one observes that
this new critical wavenumber becomes the leading
one. The Cowley-Rosensweig isothermal prob-
lem is stable but the coupling allows a lower
gradient of temperature to reach the marginal
Marangoni value at a critical wavelength still of
O(d/

√
Bo). This exists until A = 0, where the

overall Marangoni problem Ma+(k) is equal to
zero at that finite wavenumber kcrit ≈ O(

√
Bo),

since the critical wavenumber of the isothermal
Cowley-Rosensweig instability is

√
Bo, both for

infinitely thin Δ+
0 (k) = 0 and large layer Δ+

∞(k) =
0 [Rosensweig (1997); Abou, de Surgy and Wes-
freid (1997); Salin (1993); Bacri, Perzynski and
Salin (1988); Hennenberg, Weyssow, Slavtchev
and Legros (2001)]. The RHS of Eq. 21 is pos-
itive for all other wavenumbers. The stable Cow-
ley and Rosensweig magnetic field induces a new
possible Marangoni pattern when heating from
below (Fig. 2). For the non oscillating case, heat-
ing from above, is physically meaningless since
the RHS of Eq. 21 is non negative.

B] Δ+
d (k) has two different positive roots

If Δ+
d (k) has two roots k− and k+, the isother-

mal inviscid Cowley-Rosensweig case is unstable
for k such that k− ≤ k ≤ k+, leading to change
of shape of the free surface [Rosensweig (1997)].
But for very large Ga, there cannot be any cou-
pling between the Marangoni problem and the
Cowley-Rosensweig one, since the gradient of
temperature is applied to a completely rigidified
surface where the Marangoni problem gives back
the result of Pearson [Pearson (1958)].

I] For highly deformable surface where Ga
is much smaller, one will have |Δ+

d (k)| <<

8k5 coshk

Ga
[
sinh3 k−k3 coshk

] for every k in the interval

[k−,k+], the numerator of A and its denominator
are of opposite sign, so that Ma+(k) is negative in
the interval [k−,k+] and strictly positive outside
that interval. Thus whatever the direction of heat-
ing and the heat jump, the coupling leads to an
unstable Marangoni problem.

II] In an intermediary range of Ga, the denomi-
nator of A might become equal to zero at wave-
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lengths k1 and k2, such that k− < k1 < k2 < k+
so that we will have two singularities since there
|Ma+(k)| becomes infinite. Again, whatever the
direction of heating, exists an unstable wavenum-
ber interval.

When the isothermal case is unstable by itself,
there exists thus a critical Galileo number such
that larger values of it amounts to uncouple both
problems. However, for lower values of the
Galileo number, the Marangoni problem is always
unstable, whatever the heating direction or the ap-
plied temperature gradient. The coupling looses
thus every interest since it considers a surface
whose shape has stopped to exist.

4.2 The ferrofluid layer hanging down from
the ceiling

Then Δ−
d (k) has always one and only one real pos-

itive root k = k0 and is negative fom k = 0 up
to k0, where thus the overall Marangoni number
Ma− given by the RHS of Eq. 21 is equal to zero.
For wavenumbers larger than k0, Δ−

d (k) is posi-
tive so that the RHS of Eq. 21 is positive. Be-
tween k = 0 and k = k0, the denominator of A
is the sum of Δ−

d (k), a negative function mono-
toneously increasing from −1 at k = 0 up to 0,

and a positive function
8k5 coshk

Ga
[
sinh3 k−k3 coshk

]
that is equal to zero at k = 0 and k = ∞. Thus
this denominator has always one root k = k|Ma |=∞
smaller than k0, where the Marangoni number
given by the RHS of Eq. 21 becomes singular.
The Marangoni number Ma− is thus positive for
0 ≤ k ≤ k|Ma |=∞ since both the numerator and
the denominator of A are negative, and for all
wavenumbers larger than k0 since both the nu-
merator and the denominator of A are positive.
The Marangoni number Ma− is negative for all
wavenumbers k such that k∞ < k < k0. The
problem is always unstable due to the Rayleigh-
Taylor instability [Chandrasekhar (1981)], but the
magnetic field intervenes to change the critical
wavenumber k for which Δ±

d (k) is equal to zero.
The isothermal Rayleigh-Taylor instability makes
the Marangoni instability unstable, whatever the
direction of heating.

4.3 The long wavelength approximation

Since the Galileo number is anyway rather
large ([Rosensweig (1997); Weilepp and Brand
(1996)]), the fraction multiplying Ma0(k) dif-
fers from unity by an error that decreases as

O(
32k5

Ga∗ exp2k
), with increasing k. For large

wavenumbers k ≥ 3, thus the magnetic field He

and the deformation have a very minute role. We
find back the solution given by Pearson [Pear-
son (1958)], independent upon gravity and upon
magnetic field Nm. On the contrary, for long
wavelengthes, we develop Eq. 17 up to the term
multiplying k2. To do that in a meaningful way,
we have however to go to higher order terms in
the series development of coshk, sinhk and tanhk.
Then, from Eq. 21, we have

lim
k→0

Ma =
2
3

Ga (1+Bi)
{

Δ±
0 (k)−k2

[
± 2

15

+
Ga

120
+

Nm

Bo

μ2 −1
4 μ2 ∓ 1

3(1+Bi)

]}
(22)

This expression differs from the result of Bash-
tovoi and Pavlinov [Bashtovoi and Pavlinov
(1979); Pavlinov (1979); Bashtovoi, Berkovski
and Vislovitch (1988)] whose asymptotic formula
reads

lim
k→0

Ma =
2
3

Ga (1+Bi) Δ±
0 (k) (23)

In our opinion, Bashtovoi and Pavlinov went too
far in their long wavelength simplification, ne-

glecting a term O

(
k2

[
Ga

120
+

Nm

Bo

μ2 −1
4 μ2

])
that

is of the same order as the one they kept Δ±
0 (k),

(see for example [Weilepp and Brand (1996)]).
Let us note that, in the absence of magnetic field,
Eq. 22 gives back the result of Takashima and
Smith [Smith (1966); Takashima (1981); Velarde,
Nepomnyaschy and Hennenberg (2000)] obtained
for usual Newtonian fluids, which is out of ques-
tion starting with Eq. 23.

5 Conclusion

A magnetic field, less than its Cowley-
Rosensweig marginal value, can be coupled
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to a gradient of temperature. It will influence the
Marangoni instability, for a highly deformable
surface, and will affect an interval of wavenumber
centered around O

√
Bo, at a lower value of the

temperature gradient. The critical value of the
Marangoni number lies well below its classical
value for the undeformable surface. Also, we
corrected the long wavelength approximation
found in the literature.
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