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Three-dimensional Simulations of Water-Mercury Anticonvection

Thomas Boeck1, Alexander Nepomnyashchy2,3 and Ilya Simanovskii2

Abstract: Anticonvection in a two-layer sys-
tem of mercury and water is studied using three-
dimensional direct numerical simulations with a
Fourier-Chebyshev spectral method. The two
fluid layers have equal thicknesses and are uni-
formly heated from above. Interface deformations
and surface tension gradients are neglected. The
quiescent state is replaced by steady hexagons
upon increasing the heating from above. We in-
vestigate the destabilization of this primary con-
vective pattern in a small and in a large compu-
tational domain upon increasing the temperature
difference across the two fluid layers. For the
large domain the convection cells become disor-
dered at about twice the critical temperature dif-
ference for the onset of convection. The mean in-
terfacial temperature spectrum shows a power-law
behavior with an exponent somewhat larger than
−4. Convection cells grow in size with increasing
temperature difference.

Keyword: buoyancy convection, two-layer sys-
tem

1 Introduction

Two-layer systems of immiscible fluids can dis-
play a variety of instabilities in the presence of
temperature gradients. Local perturbations of
the equilibrium state can be amplified when the
flow induced by either buoyancy or Marangoni
forces can overcome the damping effect of ther-
mal and viscous diffusion. The classical cases
are Rayleigh- and Marangoni instabilities when
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the layers are heated uniformly from below, which
have been at the origin of much research on non-
linear dynamics and pattern formation [Nepom-
nyashchy, Simanovskii, and Legros (2006)]. In
the typical liquid-gas system, the flow in the gas
is unessential for the instability mechanism. It
is therefore frequently neglected. Heat conduc-
tion in the gas layer can then be approximately
described through an effective thermal boundary
condition at the interface with a suitably defined
Biot number [Nepomnyashchy, Simanovskii, and
Legros (2006)].

Remarkably, certain two-liquid systems can be-
come unstable also by heating from above. We-
lander first noted that buoyancy forces can gen-
erate the so-called anticonvection when the ther-
mophysical properties of the liquids are very dif-
ferent [Welander (1964)]. In contrast to the clas-
sical instabilites, the flow in both layers, and the
mechanical coupling by the stress balance at the
interface are essential for the instability mecha-
nism. A suitable configuration for anticonvection
requires a lower, dense liquid of high thermal con-
ductivity combined with an upper liquid with con-
siderably smaller heat conductivity. The insta-
bility mechanism can then be described by con-
sidering a rising fluid element in the lower layer
approaching the interface. Because of continuity
and mechanical coupling at the interface, a cor-
responding downward motion is generated in the
upper liquid. This downward motion in the top
layer carries warmer fluid towards the interface,
whereby the temperature rises in the lower layer
near the interface thanks to the high thermal con-
ductivity of the lower liquid. This way, the ris-
ing fluid element in the lower layer can obtain an
excess temperature relative to the mean (positive)
temperature gradient and thereby sustain its mo-
tion through positive buoyancy. In the top layer,
the downward flow is opposed to the buoyancy
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forces.

Welander analyzed the instability mechanism by
means of linear stability theory. In his paper he
identifies the pairing of water and mercury at tem-
peratures below 18◦ C as a suitable system for an-
ticonvection [Welander (1964)].

To the present date, no successful anticonvec-
tion experiments have been reported to the knowl-
edge of the authors. Nepomnyashchy et al.
recently studied the effect of heat sources or
sinks on the interface between liquid layers
[Nepomnyashchy, Simanovskii, and Braverman
(2000), Nepomnyashchy and Simanovskii (2001),
Nepomnyashchy and Simanovskii (2002)]. In this
case, anticonvection can appear more easily, and
the thermophysical properties of the liquids need
not be as dramatically different as in the mercury-
water case. Heat sources or sinks can, in prin-
ciple, be produced by interfacial chemical reac-
tions, but this would make potential experimental
studies considerably more complex.

On the computational side, several numerical
studies of anticonvection have been performed
for the two-dimensional case [Simanovskii
(1980), Simanovskii (2000), Simanovskii,
Colinet, Nepomnyashchy, and Legros (2002),
Simanovskii (2004)]. Three-dimensional simula-
tions of anticonvection have not been reported so
far with exception of the thesis of Merkt (2005),
where some convective pattern are shown for
the water-mercury system. In the present paper,
we shall systematically study three-dimensional
water-mercury anticonvection using direct
numerical simulations with a pseudospectral
two-layer code originally developed for the sim-
ulation of two-layer Marangoni convection. In
particular, we provide first results on the strongly
nonlinear regime far away from the threshold of
anticonvection. Before discussing the simulation
results in section 3, we summarize the governing
equations and our numerical method in section 2.
Conclusions are presented in section 4.

2 Mathematical model & numerical method

We consider a layered system of two immiscible
liquids with thicknesses d1 and d2, where sub-

script 1 refers to the top layer and subscript 2
refers to the bottom layer. The interface between
the liquids is located at z = 0, and the upper
and lower bounding plates are at z = d1 and at
z = −d2, respectively. We disregard the deforma-
tion of the interface. It has been shown recently
that such deformations are incompatible with the
Boussinesq approximation used in the present pa-
per [Velarde, Nepomnyashchy, and Hennenberg
(2001)].

Between the plates, the temperature difference ΔT
is applied with T = T0 + ΔT at the top plate and
T = T0 at the bottom plate. In the horizontal direc-
tions x and y we assume periodic boundary condi-
tions with periodicity lengths Lx and Ly.

The material properties of the fluids are the dy-
namic viscosities μ j, the kinematic viscosities ν j,
the densities ρ j, the heat conductivities λ j, the
thermal diffusivities κ j and the thermal expansion
coefficients β j, where j ∈ {1,2}.

We choose d1 as the unit of length, ν1/d1 as
the unit of velocity, d2

1/ν1 as the unit of time,
ρ1ν2

1/d2
1 as the unit of pressure, T0 as reference

temperature and ΔT as temperature unit. In the
basic state of pure heat conduction, the temper-
ature depends linearly on the vertical coordinate
in each layer. Because of different thermal con-
ductivities, the slope of the temperature profile
changes at the interface. The conductive profile
is

Tc(z) =

{
(λ +dz)/(λ +d) 0 ≤ z ≤ 1,

λ (1+dz)/(λ +d) −1/d ≤ z ≤ 0,

(1)

where f = f1/ f2 denotes the ratio of the values
f1 and f2 of the corresponding parameter in the
layers 1 and 2, respectively, e.g., d = d1/d2. We
can now introduce the temperature perturbation

θ = T −Tc(z) (2)

as deviation from the distribution in the quiescent
state. The velocity fields v j = (u j,v j,wj) and the
temperature perturbations θ j in each of the incom-
pressible fluid layers are governed by the Navier-
Stokes and energy equations. In Boussinesq ap-
proximation, and with our choice of units they
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take the following dimensionless form

∂tv1 +(v1 ·∇)v1 = −∇p1 +∇2v1 +Gezθ1, (3)

∇ ·v1 = 0, (4)

P(∂t θ1 +(v1 ·∇)θ1) = ∇2θ1 − Pd
d +λ

w1, (5)

ν (∂tv2 +(v2 ·∇)v2)

= −μ∇p2 +∇2v2 +
Gν
β

ezθ2, (6)

∇ ·v2 = 0, (7)

Pκ (∂tθ2 +(v2 ·∇)θ2) = ∇2θ2− Pκdλ
d +λ

w2. (8)

The separation of the linear conductive profile ac-
cording to equation (2) gives rise to the linear
terms proportional to wj in equations (5) and (8).
The Grashof number G and the Prandtl number P
are defined by

G =
β1gΔT d3

1

ν2
1

, P =
ν1

κ1
. (9)

The boundary conditions complementing the evo-
lution equations are

z = 1 : θ1 = v1 = 0, (10)

z = −1/d : θ2 = v2 = 0 (11)

at the top and bottom walls. At the liquid-liquid
interface z = 0 the following conditions hold:

θ1 = θ2, (12)

∂zθ2 = λ ∂zθ1, (13)

u1 = u2, v1 = v2, w1 = w2 = 0, (14)

μ∂zu1 = ∂zu2, (15)

μ∂zv1 = ∂zv2. (16)

Conditions (12) and (13) imply the continuity of
temperature and heat flux, conditions (14) de-
scribe the continuity of velocity and the non-
deformability of the interface, conditions (15)
and (16) reflect the balance of the interfacial
shear components. Marangoni forces are ne-
glected. The equations are solved using the paral-
lel numerical code discussed in [Boeck, Nepom-
nyashchy, Simanovskii, Golovin, Braverman, and
Thess (2002)]. It is based on a Fourier-Chebyshev
expansion of the hydrodynamic fields in each of
the liquid layers. The horizontal boundary condi-
tions are periodic.

3 Numerical results

3.1 Convection near the instability threshold

For the water-mercury system we use the material
properties listed in Table 1. These values apply
for an ambient temperature of 10◦ C. The density
ratio ρ is then given by ρ = μ/ν ≈ 0.07367. The
Prandtl number of mercury is Pκ/ν ≈ 0.027.

The ratio of thicknesses d is fixed to d = 1 in our
present study. For this case, linear theory predicts
the onset of steady convection for Gc = 2010.5
with a critical wavenumber kc = 0.97.

Table 1: Ratios of material properties used in the
simulations.

ν μ λ κ P β
10.941 0.806 0.0685 0.0311 9.44 0.4906
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Figure 1: Interface temperature distribution for
G = 2050. Numerical resolution is Nx = Ny = 128
Fourier modes in x and y. The number of Cheby-
shev polynomials is 32 in each layer. Dashed lines
indicate a negative value of the temperature per-
turbation θ .

The expected convective planform near the insta-
bility threshold Gc is hexagonal due to the lack of
up-down symmetry in the problem. Starting from
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random initial conditions of small amplitude in a
large domain with Lx = Ly = 40 we find the steady
hexagonal pattern shown in Fig. 1. The selection
of the proper wavelength can be verified by count-
ing the number of hexagons in the domain and
comparing it with the theoretical estimate based
on the area

Ac =
8π2
√

3k2
c

(17)

per hexagon with wavenumber kc. The expres-
sion (17) originates from the Christopherson so-
lution for hexagonal flow patterns [Chandrasekhar
(1961)]. In our case we have LxLy/Ac ≈ 33.0. The
number of hexagons in Fig. 1 is 34.

To explore the properties of perfect hexagons with
wavenumber kc we have performed simulations
in the elementary rectangular domain compatible
with a perfect hexagonal pattern. This domain
has the dimensions Lx = 4π/kc, Ly = 4π/kc

√
3

and contains two hexagons, as can be seen in Fig.
2. The additional benefit is that the number of
Fourier modes can be reduced to Nx = 32 and
Ny = 16, which reduces the computational cost of
the simulations.

The results of these simulations with the small
domain are summarized in Fig. 3. It shows the
Reynolds number Re1 of layer 1 as function of G.
The Reynolds numbers are defined separately for
each layer as

Rei =
di

νi

∣∣∣∣ 1
LxLydi

∫ Lx

0

∫ Ly

0

∫ di

0
v2

i (x,y, z)dxdydz

∣∣∣∣
1/2

,

(18)

i.e., with the spatial rms velocity. In case of time-
dependent flow, time-averaging is also applied to
obtain Rei. To construct Fig. 3, we have first
systematically decreased G from a value slightly
larger than Gc into the subcritical range below Gc.
Simulations were started from the converged state
for the neighboring value of G. Convection per-
sisted down to Gs ≈ 1730, i.e., the relative size of
the subcritical range is 1−Gs/Gc ≈ 0.14. This is
much larger than in one-layer Marangoni convec-
tion, where the subcritical range is about 1% or
less [Thess and Orszag (1995), Boeck and Thess
(1999)].
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Figure 2: Interface temperature distribution for
G = 2900 in the small domain.
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Figure 3: Reynolds number in the top layer as
function of G for a small domain containing two
perfect hexagons. The theoretical curve is a
parabola in Re1 in agreement with the leading
terms in the amplitude equations for hexagons
[Hoyle (2006)].
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Figure 4: Reynolds numbers Re1 in the top layer
vs. Re2 in the bottom layer for a small domain
containing two perfect hexagons.
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The hexagonal solutions have also been traced for
increasing G. Oscillatory states appear around
G = 2900. This solution branch departs visi-
bly from the parabola representing the amplitude
equation solution for steady hexagons. The par-
ticular properties of these oscillatory solutions are
probably significantly affected by the small com-
putational domain, and do therefore not neces-
sarily reflect the behavior of the flow in larger
cells. The oscillations are accompanied by a non-
vanishing horizontal mean flow, which is oscilla-
tory by itself. Mean flow dynamics may exhibit
very slow transients, which can extend over 103

or more oscillation periods. We found such be-
havior, e.g., at G = 3200. The computational cost
of such simulations can therfore be rather large,
in spite of the moderate number of modes in the
Fourier-Chebyshev expansion.

The appearance of the oscillatory solution branch
is also apparent in Fig. 4. The oscillations pro-
duce a departure from the approximate propor-
tionality between Re1 and Re2 for steady solu-
tions. The Reynolds number Re2 of the mercury
also turns out to be significantly larger than Re1,
which is to be expected because of the very differ-
ent material properties of the two liquids. We re-
mark that the oscillatory solutions eventually be-
come chaotic in the range 3500 < G < 3600. The
transition scenario has not been conclusively de-
termined so far.

3.2 Strongly nonlinear convection

We shall now focus exclusively on the large com-
putational domain with Lx = Ly = 40 used to ob-
tain Fig. 1. As for the small domain, we can re-
duce G starting from G = 2050 in the simulations
to trace the hexagonal solutions into the subcrit-
ical range. Again, the solution persists down to
G = 1730. Likewise, the hexagonal pattern of Fig.
1 remains steady upon increasing G (in steps) to
G = 2600. For G = 2700 the mean flow is ex-
cited, and the pattern starts to drift as a whole.
We have found such behavior up to G = 3000. At
G = 3050, the hexagonal pattern finally displays
periodic oscillations with a period T ≈ 3.9, which
become chaotic at G = 3100. At G = 3150, the
hexagonal pattern is replaced by a rhombic pat-

tern with chaotic oscillations of local and global
quantities. Fig. 5 shows a snapshot of this pat-
tern. We remark that Merkt (2005) has apparently
obtained stable square patterns, but for somewhat
different liquid properties and at lower supercriti-
cality, i.e., relative distance of G from the thresh-
old Gc.

The change from a largely hexagonal to the rhom-
bic pattern produces an increase in Reynolds
numbers in each layer. This increase cannot be
easily quantified for our large computational do-
main since the pattern does not settle into a steady
state. We have unsuccessfully tried to obtain sta-
ble square patterns by reducing G and starting
with the solution for G = 3150 as initial condi-
tion. An increase in G actually favors a return to
a predominately hexagonal pattern at G = 3200.
For G = 3300 and G = 3500 the pattern is more
disorganized, and retains some domains where the
cells are arranged in a square configuration.

Further increase of G destroys the remaining spa-
tial order in the convective patterns, as can be
seen in Fig. 6 for G = 5000. The typical size of
the convective cells is significantly larger in Fig.
6 than in Fig. 5 or Fig. 1. This trend contin-
ues further upon increasing G to G = 10000 and
G = 20000. Fig. 7 allows us to quantify this ob-
servation. It shows time-averaged spectra of the
temperature distribution on the interface between
the liquids. More precisely, Eθ (k) is calculated
from the mean square of the absolute values of
Fourier coefficients θ̂k with a wavevector of given
modulus, i.e.,

Eθ (k) = ∑
k−Δk<|k|<k+Δk

|θ̂k|2 (19)

in the discrete numerical representation. The
wavenumber increment Δk is prescribed through
the periodicity length Lx = Ly = 40 as Δk = π/Lx.
The peak of Eθ is around k ≈ 1 for G = 3500
and shifts to smaller values upon increasing G.
For G = 20000, the decaying part of the spec-
trum can be approximated by a k−3.5 power law
for wavenumbers from the peak up to about k ≈ 3,
i.e., over about one decade in k. The spectra for
lower G show a similar behavior over a shorter
k-interval. The power law in Fig. 7 is drawn
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Figure 5: Interface temperature distribution for
G = 3150. Numerical resolution is Nx = Ny = 128
Fourier modes in x and y. The number of Cheby-
shev polynomials is 32 in each layer.
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Figure 6: Interface temperature distribution for
G = 5000. Numerical resolution is Nx = Ny = 256
Fourier modes in x and y. The number of Cheby-
shev polynomials is 32 in each layer.

for comparison, it does not represent a fit to the
data. The growth of the spectra at large wavenum-
bers is due to aliasing errors of the pseudospectral
method, and has no physical significance.

The growth of the rms velocities with G for the

time-dependent flows in the large domain is illus-
trated by plotting the Reynolds number Re2 in the
mercury layer as function of G in Fig. 8. The
parabolic theoretical curve based on the cubic am-
plitude equations (as in Fig. 3) is shown for com-
parison. It is distorted by the logarithmic repre-
sentation. The ratio between Re1 and Re2 contin-
ues to diminish at a relatively small rate upon in-
creasing G in agreement with the trend of the os-
cillatory solution branch for the small aspect ratio
case in Fig. 4.

3.3 Vertical flow structure

The vertical structure of the flow fields displays
features in agreement with the instability mecha-
nism described in the introduction. Fig. 9 shows
a vertical cut through the two liquid layers in the
plane y = 0 in Fig. 2, i.e., for the small domain
with two hexagons at G = 2900.

As can be seen in Fig. 2, the plane y = 0 cuts
through the center of a hexagon, which is located
at the middle of the x-interval. The vertical veloc-
ity contours in Fig. 9 show that the mercury is ris-
ing in is region, and that isotherms are displaced
towards the bottom, i.e., the temperature is ele-
vated there. The velocity distribution in the wa-
ter apparently corresponds to vertically stacked,
counter-rotating vortices. The isotherms in the
water layer also show a depression in the mid-
dle as expected from the descending flow near
the interface. Since the mean temperature dif-
ference across the water layer is about ten times
larger than for the mercury layer, the spacing of
isotherms in the water is ten times that for mer-
cury (in Fig. 9).

Vertical profiles of horizontal and vertical rms ve-
locities are shown in Fig. 10 for the large domain.
In the case G = 20000, spatio-temporal rms val-
ues are shown. We see that the stacked vertical
structure in the water layer is preserved even at
G = 20000, although the fluctuations render the
averaged profiles smoother than in the case of
stationary anticonvection. Another difference be-
tween the two cases is that at G = 20000 the hor-
izontal rms velocity is larger than the vertical rms
velocity for all z, whereas at G = 1730 it can be
exceeded by the vertical rms velocity for certain
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Figure 7: Temperature spectra on the interface.
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Figure 8: Reynolds number Re2 in the mercury for
the large domain with Lx = Ly = 40.
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Figure 9: Isotherms (top) and isolines of vertical ve-
locity (bottom) in a vertical plane. The spacing be-
tween isocontours is not equidistant. Dashed lines
correspond to negative values.
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Figure 10: Vertical profiles of vertical and horizon-
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values of z. This observation is in line with the
tendency of the convection cells to expand with
the increase of G.

The mean kinetic energy dissipation rate ε is of
interest for the kinetic energy budget of the flow.
The dissipation rate of kinetic energy in layer i is
defined (in dimensional units) as

εi = 2ρiνi ∑
kl

SklSkl, (20)

where k, l runs through the values x,y, z. The rate-
of-strain tensor Skl is defined by

2Skl =
∂Uk

∂xl
+

∂Ul

∂xk
, (21)

where Ul denotes the velocity component in co-
ordindate direction l.

Vertical profiles of ε are shown in Fig. 11 for
G = 20000 and G = 1730. They appear rather
similar in spite of the large increase in G. In ab-
solute values, about one third of the kinetic en-
ergy is dissipated in the water. In Fig. 11, ε is
made non-dimensional with the units of the wa-
ter (layer 1). Dissipation is strongest near the in-
terface, but significant dissipation occurs also at
the bottom of the mercury layer due to the strong
shear caused by the no-slip condition. The ap-
pearance of a local minimum near the interface in
the mercury layer is unexpected and has no ob-
vious connection with features of the flow field
discussed so far.

Kinetic energy is produced in the mercury layer
due to the work by the buoyancy forces. In the
water, this work is negative but rather small when
compared with total energy production (about 20
times smaller).

Concerning the mean temperature profiles, it was
already noted by Welander (1964) that the total
heat flux does not change much by anticonvection,
and that a plot of heat flux vs. temperature dif-
ference can probably not reliably detect anticon-
vection in an experiment. We cannot, therefore,
expect a significant deviation from the conduc-
tive profile due to anticonvection. This conclusion
is supported by the mean temperature profile for
G = 20000 in Fig. 12, which differs only slightly
from the conductive profile.

4 Conclusions

The paper presents nonlinear three-dimensional
simulations of anticonvective flows in the water-
mercury system. As explained above, the physi-
cal source of an anticonvective motion is the bulk
buoyancy force (like in the case of the Rayleigh-
Bénard convection), but nevertheless this type of
convection is generated by the interface between
the liquids (like in the case of the Marangoni-
Bénard convection). Despite the unusual insta-
bility mechanism, the anticonvective patterns near
the threshold are generic: they are hexagonal pat-
terns which are developed in a subcritical way.
With the growth of the Grashof number G, the
hexagonal cells start to oscillate, first in periodic
and then in a chaotic way, while keeping their
spatial order. The further growth of G leads to
a desorganization of patterns in space. The ap-
proximate k−3.5 power-law decay of the interface
temperature spectrum with the wavenumber k in-
dicates that the distribution of horizontal temper-
ature gradients organizes into rather flat patches
connected by fairly abrupt “jumps”, which pro-
duce a k−4 temperature spectrum as noted by
Thess and Orszag (1995).
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