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Abstract: Dynamic free surface deformations
induced by buoyant and thermocapillary convec-
tion in liquid bridges of 5cSt silicone oil are stud-
ied experimentally and numerically. The exper-
iments are performed in ground conditions and
static deformation is unavoidable. Convective
motion starts in the liquid bridge as soon as ΔT �=
0 and initially leads to a stationary dynamic de-
formation of the free surface. Oscillatory motion
starts at a critical value of ΔT and causes oscilla-
tions of the interface. The final supercritical shape
of the free surface is a result of the static shape
with superimposed subcritical stationary and os-
cillatory dynamic deformations. All these contri-
butions are strongly influenced by the initial vol-
ume of the liquid bridge. The study was per-
formed in three steps for different initial volumes:
(1) the static shape was measured experimentally
and the physical properties of liquid were fine-
tuned by comparing the measured shape with the
computed one; (2) subcritical deformations due to
stationary convection were studied numerically;
(3) supercritical dynamic deformations due to os-
cillatory convection were measured experimen-
tally.
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1 Introduction

The temperature variation along the interface in-
duces thermocapillary stresses which cause bulk
motion. A great number of studies has been con-
ducted over the last decades devoted to the hy-
drodynamic stability of thermocapillary convec-
tion as it relates to the float-zone crystal-growth
process. The float zone is commonly analyzed by
a half-zone model, when a drop of a liquid is kept
by surface tension between two differently heated
rods. The thermocapillary flow arises as soon as a
tiny temperature difference ΔT is applied between
supporting rods. At ground conditions this flow is
modified by the buoyancy force. The relative im-
portance of buoyancy to thermocapillary effect is
determined by the so called dynamic Bond num-
ber, which is the ratio of the Rayleigh number, Ra,
and the Marangoni number, Ma. The convective
flow causes a dynamic free surface deformation.

The free surface shape is controlled by the char-
acteristic capillary (σ0/d), hydrostatic (ρgd)
and hydrodynamic (σT ΔT/d) pressures, and the
viscous force per unit area Pscale = ρV 2

scale =
ρ(ν/d)2. Here the magnitude of the static defor-
mation of the interface depends on the static Bond
number which is the ratio of the hydrostatic to the
capillary pressure:

Bost =
(ρgd)
(σ0/d)

=
ρgd2

σ0
(1)

Here ρ is the density, ν is the kinematic viscosity,
σ0 is the surface tension at reference temperature,
σT = dσ/dT , and d is the length scale.

The experimental studies of the hydrothermal sta-
bility in statically deformed liquid bridges were
much more advanced then theoretical develop-
ments, e.g. Hu et al. (1994), Shevtsova et al.
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(1999), Sumner et al. (2001). The first theoreti-
cal work considering half-zones with a free sur-
face deformation was the two-dimensional calcu-
lation by Shevtsova & Legros (1998) assuming
static free surface position. Later on a number of
3D computational studies of thermocapillary and
buoyant flows in liquid bridges appears which as-
sumed statically deformed interface, see for ex-
ample Chen & Hu (1998), Lappa et al. (2001),
Nienhüser & Kuhlmann (2002), Sim & Zebib
(2002), Ermakov & Ermakova (2004),Shevtsova
(2005).

The Capillary number provides a measure of the
magnitude of dynamic free surface deformations.
One may define the Capillary number in two dif-
ferent manners: Ca as the ratio of the hydrody-
namic pressure to the typical capillary pressure or
C as the ratio of the viscous force per unit area
to the typical capillary pressure. These Capillary
numbers are coupled through the Reynolds num-
ber

Ca =
(σT ΔT/d)

(σ0/d)
=

σT ΔT
σ0

, (2)

C =
(ρν2/d2)
(σo/d)

=
ρν2

σ0d
, Ca = C ·Re (3)

In most liquid bridge experiments C � 1 and
Ca < 1. The small value of the Capillary num-
ber, Ca, corresponds to the case of small surface
tension variation as compared to the mean surface
tension and thus the dynamic free surface defor-
mations can be neglected. The first attempt to cap-
ture dynamic free surface deformations in liquid
bridges was reported by Shevtsova et al. (1997).
Two-dimensional calculations for small capillary
numbers Ca � 1 with Pr = 105 showed that the
amplitude of interface oscillations is very small
and is only about 1% of the static shape. They
obtained that the amplitude of the free surface os-
cillation varied along the axial coordinate and de-
pends on the initial volume of the liquid.

Kuhlmann & Nienhuser (2002) performed a de-
tailed 3D linear stability analysis of the dynamic
free-surface deformations in liquid bridges with
Pr = 0.02 and Pr = 4.38 using an asymptotic ex-
pansion in the limit Ca → 0. Dynamic deforma-
tions caused by steady axisymmetric flows and by

Figure 1: Sketch and coordinate system of the liq-
uid bridge

time-dependent three dimensional critical modes
were examined.

The role of the dynamic deformation in the
mechanism of instability is still under discussion.
Kamotani et al. (2000, 2007) advocates an idea
that dynamic deformation is important in the de-
velopment of instability for high Prantdl fluid.
They argue that the main driving force is confined
at the small region near the hot corner and it is
possible disturb the region significantly even by
small free surface deformations. Theoretical re-
sults, performed in asymptotic limitCa→ 0, show
that surface deformations are caused by lower or-
der flow fields. Thus dynamic deformations do
not feed back to the leading order thermocapillary
flow.

Obviously, there is a lack of experimental re-
sults. The existence of free surface oscilla-
tions above the critical point was experimentally
demonstrated by Shu et al. (1994) using an optical
technique. Nishino & Yoda (2000) reported that
the maximal value of amplitude of oscillations is
about 1μm in experiments with 5cSt silicone oil.

A comprehensive experimental study of the shape
and amplitude of dynamic interface oscillations
was recently conducted by Ferrera et al. (2007)
in a liquid bridge filled with 5cSt silicone oil
(Pr ≈ 68). The free surface shape was determined
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Figure 2: Experimental set-up: rods (A), heating
element (B), cooling system (C), thermocouples
(D), video camera (E), micrometer screw (F), op-
tic fiber (G), diffuser (H), plexiglass box (I).

by silhouette measurements. Temperature oscilla-
tions inside the liquid bridge were also recorded
by five thermocouples. Comparing the dynamic
behavior of temperature and amplitude of oscil-
lations the authors drew the conclusion that the
non-linear dynamics of flow is well described by
the free surface oscillations.

The present paper is the further development of
the previous experimental study by Ferrera et al.
(2007). One of the major goals is to examine the
shape and dynamic behavior of free surface os-
cillations in subcritical and oscillatory regimes of
thermo-capillary and buoyant convection.

2 Experimental

The experiments are performed in ground condi-
tions and static deformation is unavoidable. Con-
vective motion starts in the liquid bridge as soon
as ΔT �= 0 and initially leads to a stationary dy-
namic deformation of the free surface. Oscilla-
tory motion starts at a critical value of ΔT and
causes oscillations of the interface. The final su-
percritical shape of the free surface is a result
of the static shape with superimposed subcritical
stationary and oscillatory dynamic deformations.
The static shape can be measured by the proposed
technique with good accuracy and the physical
properties of liquid can be fine-tuned by compari-
son of measured shape with numerical one, calcu-
lated according Young-Laplace equation. In the
case of dynamic shape analysis our attention is
focused on measurement of the oscillation ampli-
tude.

2.1 Set-up

A small volume of 5cSt silicone oil is held be-
tween two coaxial rods of radius R0 = 3.0mm
placed a distance d = 3.7mm apart as shown in
Fig. 1. The lateral free surface is described by
a function of the vertical coordinate F = F(z, t),
which measures the distance between a surface el-
ement and the liquid bridge axis (the z axis).

The sketch of the experimental arrangement is
shown in Fig. 2. The rods (A) are made from
aluminum alloy (with a thermal conductivity of
164 W/m K) and lateral sides are coated with Flu-
orad FC-723 to prevent liquid creeping over the
edges. A heating element (B) (Minco electrical
resistance of 100 Ohms) was mounted around the
upper rod while the lower rod was connected to a
thermoregulated water cooling system (C).

Figure 3: A digital image of the liquid bridge in-
terface close to the upper rod

The liquid bridge was formed by injecting liq-
uid from a regulated push syringe (syringe infu-
sion pump KDS200) which enabled measuring
the liquid volume with high accuracy. Temper-
ature oscillations due to time-dependent convec-
tion were measured by inserting 5 shielded ther-
mocouples (D) of 0.25 mm diameter inside the
liquid at the same height z = 1.26 mm and radial
position r = 2.2 mm, and with an azimuthal an-
gle displacement of 72◦.The temperature signals
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Table 1: Physical properties of 5cSt silicone oil (25◦C)
ν β σ α dσ/dT ρ

m2/s 1/K N/m m2/s N/mK kg/m3

5 ·10−6 1.09 ·10−3 1.97 ·10−2 7.31 ·10−8 −6.37 ·10−5 912.

from the thermocouples were amplified and band-
pass filtered before being recorded by a computer
at time intervals of 0.1 s.

Digital images were taken using a CCD camera
(E) with optical lens providing a frame covering
an area of about 0.809× 0.809 mm. Digital im-
ages of 1004× 1004 pixels were acquired dur-
ing the experiment at 45 frames per second and
recorded by the computer. The camera was dis-
placed vertically during the experiment using a
micrometer screw (F) for image acquisition along
the whole liquid bridge. Another micrometer
screw allowed horizontal translation to focus the
liquid bridge contour. The liquid bridge was il-
luminated from the back side by cool white light
provided by an optic fiber (G) connected to a light
source. The light crossed a diffuser (H). The
whole system (liquid bridge cell, camera, opti-
cal lens, . . . ) was mounted on a fixed platform
and surrounded by a Plexiglas box (I) to protect
against ambient-air disturbances. The measure-
ments procedure is described elsewhere, e.g. Fer-
rera et al. (2007).

2.2 Processing of data

The results presented hereafter were mainly ob-
tained from the measurement in the first field of
view, i.e. near the upper hot corner.

Figure 3 shows a digital image of the interface
close to the upper rod. The amplitude of the in-
terface oscillations is much smaller than the pixel
size (0.806 μm) in many of the cases analyzed,
and thus the position of the liquid bridge contour
must be determined at the sub-pixel level.

Mathematically, a digital image is defined by the
grey intensity matrix I(i, j), which takes an in-
teger value between 0 (black) and 255 (white)
for each pixel (i, j), where i and j correspond
to the horizontal and vertical directions, respec-
tively. Ideally, the interface should correspond to
a step in the grey intensity in the direction per-

pendicular to the interface. However, in real im-
ages the intensity change smears out over several
pixels. Different approaches were analyzed for
more precise determination of the interface po-
sition and preference was given to the criterion
based on thresholding, i.e. the separation of light
and dark regions. Among this class, global thresh-
olding techniques was chosen, see Ferrera et al.
(2006). This method is adequate for processing
images of uniformly illuminated objects, which is
the case in the present study. Comparison of the
local and global thresholding techniques reveals
the difference about two pixels in the determina-
tion of the interface position. Nevertheless, this
discrepancy is not relevant when calculating the
amplitude and frequency of the oscillation.

Following the thresholding technique, time de-
pendence of the interface position for fixed val-
ues of z are obtained. The distance R0 −F(z; t)
between the interface position and the cylindri-
cal shape was measured as a function of the dis-
tance Δz ≡ d − z from the top solid support. The
amplitudes and characteristic frequencies are ob-
tained from either a non-linear fitting procedure
or a Fourier analysis, depending on the shape of
the oscillations.

Temperature oscillations inside the liquid bridge
are also recorded by five thermocouples. All
temperature signals given by the thermocouples
were amplified and bandpass filtered before being
recorded by a computer at time intervals of 0.1
s. The characteristic frequencies are determined
applying the Fourier analysis to records of tem-
perature on large time interval.

3 Numerical solutions

3.1 Formulation of the problem

As it was mentioned above, the present experi-
mental set-up allows us to determine the displace-
ment of the interface with great accuracy while
sub-critical liquid-gas position can be evaluated
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up to the constant of a few microns depending on
the method.

For this reason the dynamic surface deforma-
tions were numerically calculated. The two-
dimensional calculations in cylindrical geometry
were performed in sub-critical parameter space,
ΔT < ΔTcr. The motion of the liquid is induced
by thermo-capillary effect and by buoyancy force.
The surface tension acting on the free surface and
the density are assumed linearly decreasing func-
tions of the temperature:

σ(T ) = σ0(Tc)−σT (T −Tc), (4)

ρ(T) = ρ0(Tc)−βT (T −Tc), (5)

where σT = −(dσ/dT )|Tc, β =−1/ρ0(dρ/dT).

The governing equations, describing stationary
states, are the momentum, energy and continuity
equations for an incompressible Newtonian fluid
in the Boussinesq approximation

[∂t +V ·∇]V = − 1
ρ

∇P +ν∇2V+β g(T −To)ez,

(6)

[∂t +V ·∇]T = κ∇2T, (7)

∇ ·V = 0, (8)

where the velocity, pressure and temperature are
denoted as V, T and P. Here ν is the kinematic
viscosity and κ is the thermal diffusivity.

The stress balance between the viscous fluid and
the inviscid gas on the non-flat free surface r =
F(z, t) is given by

[P−Po +σ(∇ ·n) ]ni = Siknk +τ i ·∇σ (9)

where Sik = μ(∂Vi/∂xk +∂Vk/∂xi) is the viscous
stress tensor, P and Po, are the liquid and ambient
gas pressures, and σ(∇ · n) is the Laplace pres-
sure.

The dimensionless parameters appearing in the
governing equations and boundary conditions (ex-
cept defined earlier in Eqs. 1-3) are: the Prandtl,
Grashof, surface Reynolds and dynamic Bond

numbers as well as the aspect and volume ratios:

Pr =
ν
k
, Gr =

gβ ΔTd3

ν2 , Re =
σT ΔT d

ρ0ν2 ,

Bodyn =
Gr
Re

=
gρβ d2

σT
, Γ =

d
R0

, V =
V

πR2
0 d

(10)

3.2 Solution method

The moving boundary problem Eq. 6–Eq. 9 can
be solved by perturbation methods in the asymp-
totic limit of small Capillary numbers Ca,C → 0,
assuming that O(Ca) ≈ O(C). The following ex-
pansions are used to find the leading order contri-
butions to the flow and temperature fields:

f (r, z, t) = f0(r, z, t)+C f1(r, z, t)+O(C2),

P̃ = C−1Pst +P0 +CP1 +O(C2), (11)

h̃(h, t) = h0(z)+C h1(z, t)+O(C2)

Here f (r, z, t) reads for the components of veloc-
ity vector V and the temperature T , and the di-
mensionless free surface h(z, t) = F(z, t)/R0.

The perturbation method splits the solution in a
few steps: first the shape of interface is accurately
determined in a static configuration; then the com-
plete moving boundary problem transforms into
a convection problem with the previously calcu-
lated free-surface location. At the next point dy-
namic surface deformations are determined from
the flow field computed in the previous step.

The numerical code, which was used in previous
studies, e.g. Shevtsova et al. (1997), Shevtsova
(2005) was adapted to the present experimental
system. Here we just mention some key points of
the solution method. The static free surface shape
is calculated by solving the Young-Laplace equa-
tion at the prescribed static Bond number, aspect
ratio, and volume.

Body-fitted curvilinear coordinates were em-
ployed for solving the Navier-Stokes and energy
equations. The original physical domain of non-
rectangular cross section (liquid bridge with de-
formed interface) was transformed into a rectan-
gular computational domain. On this rectangu-
lar domain the two-dimensional discretized equa-
tions are solved directly by iterative Newton-
Raphson procedure with optimal choice of the
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Figure 4: Static shapes (ΔT = 0) for different vol-
umes of the liquid bridge: V = 0.8, 0.9, 1.0 when
Bost = 6.25 and Γ = 1.23; dashed line indicates
F = R0.

relaxation parameter. The steady-solution is ob-
tained by convergence of the transient calcula-
tions. Calculations were performed on a non-
uniform staggered grid [161×161].

3.3 Subcritical dynamic deformations

Parameter settings are selected to match the ex-
periments including gravity (Gr) and to allow dy-
namic free-surface deformation (Ca,C). The tem-
perature independent parameters are the Prandtl
number, Pr = 68, and aspect ratio Γ = 1.23. In
agreement with the experimental runs, the calcu-
lations were done for 3 different volumes of liq-
uid bridge, V = 0.8, 0.9, 1.0. Reynolds, Grashof
numbers as well as Bond and Capillary numbers,
are functions of ΔT. The flow solutions, static and
dynamic deformations of the free surface were
calculated for wide range of temperature differ-
ences ΔT = 0., 2.5, 5.0, 7.5, 10.0, 12.5, 15.0,
17.5, 20.0K. To determine the static shape the
new values of Bond and Capillary numbers were
calculated for each temperature difference using
temperature dependence of the surface tension
and density, Eqs. 4-5.

The numerical results for the static shape at ΔT =
0 are presented in Fig. 4 for different volumes:

Figure 5: The evolution of dynamic surface defor-
mations with the increasing ΔT for V = 0.8

V = 0.8, 0.9, 1.0. The smaller the volume is,
the large static deformation is with respect to the
straight cylinder (dashed line). For the smallest
volume studied, V = 0.8, the main deviation is
observed in the upper region of the narrow neck.
As the volume increases, the maximum deviation
occurrs at the bottom part (outward bulging). The
maximum deviations from the straight shape at
the upper part, is δ1 = R0 −Fmin, and at the bot-
tom part, is δ2 = Fmax −R0. The results are sum-
marized in Table 2. The net static deformation,
δnet = δ1 + δ2, is about 600 μm for V = 0.8 and
reduces down to 400 μm for V = 1.0

Table 2: Static and dynamic (as compared with
static shape) deformations.

V δ1 δ2 δnet δ dyn
1 δ dyn

2 δ dyn
net

μm μm μm μm μm μm
0.8 609 9 618 39 28 67
0.9 386 74 460 26 22 48
1.0 208 200 408 22 20 42

The dynamic deformation due to the flow was cal-
culated with regular increase of applied temper-
ature difference. The evolution of the dynamic
deformation with increase of ΔT for V = 0.8 is
shown in Fig. 5 and for V = 1.0 in Fig. 6. The dy-
namic deflections from the static shape are about
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Figure 6: The evolution of free surface dynamic
deformation with the increasing ΔT for V = 1.0

one order of the magnitude smaller than the static
deformation. Due to the hardly visible deflec-
tions, they are shown on the scale in microns.
Note that Fig.4 has scale in mm. For each vol-
ume (we also calculated V = 0.9), similar ten-
dency is observed in transformation of the free
surface shape: the neck part bulges inward and
bottom part bulges outward. For V = 0.8 and
V = 0.9, the bulging is stronger at the upper part
and for heavier liquid bridge, V = 1.0, the out-
ward bulging is larger at the bottom part. Again,
as in the case of the static deformation, the de-
flections of the interface are larger for the smaller
volume. In Table 2 the maximum value of the dy-
namic deviation from the static shape in the upper
part, δ dyn

1 , near the bottom δ dyn
2 and net deforma-

tion δ dyn
net = δ dyn

1 + δ dyn
2 are given for ΔT = 20K.

The experimental study indicated that this value
of ΔT = 20K is very close to the threshold of os-
cillatory instability.

Actually, the progression of the dynamic defor-
mation with applied temperature difference can be
described by linear law, see Fig.7:

ΔF = max|F −Fstatic |= γ ΔT.

If ΔF is the maximum deformation at the neck
region, then γ1(V ) < 0 and ΔF is a decreasing
function of ΔT . If ΔF is the maximal deforma-
tion at the bottom part, then γ2(V ) > 0 and ΔF is

Figure 7: The progression of the dynamic surface
deformation (DSD) with increasing ΔT for V =
0.8,0.9,1.0, Pr = 68,Γ = 1.23

an increasing function of ΔT . The values of the
coefficients γi are given in Table 3.

These linear dependencies allow us to estimate
the magnitude of dynamic deformation near the
onset of oscillatory convection. Surprisingly, for
analyzed system at the threshold of instability, the
net dynamic deformation does not depend on vol-
ume and in average is about 44μm. Extrapolat-
ing these linear dependencies in Fig. 7 beyond
ΔT = 20K, one may estimate that δ dyn

net = 62μm
for V = 0.9 at ΔT = 25.8. These results are in ex-
cellent agreement with our previous experimental
measurements, δ dyn

net ≈ 60−65 μm for V = 0.883
and ΔT = 25.8, see Ferrera et al. (2007).

Table 3: The growth rate of dynamic deformation,
ΔF, and their values at critical point.

V −γ1 γ2 δ cr
1 δ cr

2 δ cr
net

μm μm μm
0.8 1.85 1.0 27 15 42
0.9 1.3 1.1 23 20 43
1.0 1.1 1.4 20 26 46

The most significant outcome of this numerical
study is that the static deformation at ΔT = 0
is ∼ 500μm, while the subcritical dynamic sur-
face deformation at ΔT = ΔTcr is at least 10 times
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smaller, e.g. ∼ 44μm. The ratio δdyn/δstatic in-
creases slightly with volume and is equal to 0.07,
0.09, 0.11 for V = 0.8, 0.9, 1.0, respectively. For
considered system near the onset of instability,
this ratio can be estimated as δdyn/δstatic = O(Ca)
with reasonable precision, while Ca ≈ 0.06.

The dynamic deformation, which is caused by the
oscillatory convection can only be captured using
the full three-dimensional calculations. The next
section of the paper will present results for the os-
cillatory deformations that were measured exper-
imentally.

4 Experimental results

In order to measure sub-micron deformation of
the interface, large magnification lenses were
used, which led to a decrease in the field of view.
One field of view covers about 800×800μm. To
obtain the axial dependence of the interface de-
formation of the entire liquid bridge, the cam-
era was sled down along the vertical axis during
the experiment. Eight displacements of the CCD
camera were needed to cover the whole height
of the liquid bridge. At each displacement the
camera was fixed so that the images at differ-
ent displacements correspond to various time in-
stants. Each camera displacement corresponds to
about 500μm, while the entire height of the liquid
bridge is 3.6− 3.7mm. Hence, the neighbouring
displacements are partly overlapping which allow
control of the measurements and/or the verticality
of the camera motion.

4.1 Static shape

The static shape of the isothermal liquid bridge,
i.e. ΔT = 0, was measured using eight displace-
ments of the CCD camera. For each displace-
ment, the experimental results are shown using
different colors in Fig. 8. The raw data for dif-
ferent displacements did not fit perfectly, reveal-
ing the small tilt of the camera axis and occa-
sional horizontal vibration of the camera. Multi-
colored curve in Fig. 8 is due to the processing of
raw experimental records taking into account this
imprecision. The original mismatch between the
two first displacements is kept at the upper part in

Figure 8: Experimental and numerical results.
Dependence of free surface on height of the liq-
uid bridge. The static shapes for the volume
V0 = 0.883 and aspect ratio Γ = 1.23; experi-
mental (multicoloured), numerical (dotted line)
for ΔT = 0 and Bo = 6.25 and numerical (dashed
line) for ΔT = 25.8 and Bo = 6.82;

Fig. 8, although it can be seen clearly only under
magnification. The static shape was also calcu-
lated from the Young-Laplace equation, knowing
the parameters of the system. For the prescribed
aspect ratio and volume, the static shape was cal-
culated at the reference temperature, T = Tcold,
when the parameters of the 5 cSt silicone oil from
Table 1 were used. This first numerical estima-
tion was slightly different from the experimen-
tally measured shape. Although the height and the
volume of the liquid bridge were accurately mea-
sured, these measurements permit some tolerance.
In addition, the deviation of physical properties of
the working liquid from the tabulated values oc-
cur.

Numerical fit was employed to minimize the
smallest horizontal distance from the experimen-
tal curve with respect to the surface tension and
geometrical parameters. The result of these cal-
culations is a profile, and more precise surface
tension value and geometrical dimensions. The
absolute differences are small but they become
important for achieving accurate measurements.
This procedure revealed that accuracy of the de-
termination of the static shape is about 1−3μm.



Dynamic Surface Deformations 51

The numerical shape at ΔT = 0K after fitting is
shown in Fig. 8 as the dotted line that corresponds
to Bo = 6.25 and is not distinguishable from the
multicoloured experimental curve without magni-
fication.

Large amount of measurements were obtained for
this particular liquid bridge volume V0 = 0.883 at
ΔT = 25.8. The static shape corresponding to this
ΔT and, respectively, to the larger Bond number,
Bost = 6.82, is shown in Fig. 8 by dashed line.

4.2 Supercritical dynamic deformations

As the applied temperature gradient is parallel to
the interface, motion from the hot to the cold re-
gion appears for any non-zero value of ΔT. When
the temperature difference between the disks ex-
ceeds the critical value, ΔT > ΔTcr, unique for
a given set of parameters, the flow is three-
dimensional and/or unsteady. Generally, two hy-
drothermal waves propagating in opposite direc-
tions bifurcate from two-dimensional state at the
critical point. They result in standing or traveling
wave depending on the ratio of their amplitudes.
As a rule, for the system under consideration with
volumes V = 0.8, 0.9, 1.0 a traveling wave with
azimuthal wave number m = 1 was observed at
the threshold of instability.

The critical temperature difference was identified
by two quantities: oscillations of the free surface
and the temperature on five thermocouples. Both
quantities exhibit the same ΔTcr.

The critical frequency of the interface oscillation
was calculated by averaging over the whole in-
terface. Fourier analysis was used for processing
the time-dependent signals of the thermocouples.
The values of ΔTcr and fcr for different volumes
are given in Table 4.

Table 4: The critical parameters for Γ = 1.23 and
Pr = 68.

V ΔTcr f cr

K Hz
0.8 14.71 0.336
0.9 18.02 0.415
1.0 18.44 0.403

Oscillatory motion starts at a critical value of ΔT
and causes oscillation of the interface. One of the
goals of this study was to examine the develop-
ment of oscillation amplitude above the critical
point. Partly such analysis was performed using
the measurements in the first field of view, i.e.
near the hot corner.

For each examined temperature difference the six
images of the interface, corresponding to the six
equidistant time intervals over the period, were
analyzed. The oscillation amplitudes were calcu-
lated from these snapshots for each vertical coor-
dinate z.

The z -dependence of the oscillation amplitude
near the hot corner for V = 0.8 is shown in
Fig. 9 where different colours correspond to var-
ious ΔT above the threshold of instability. Just
above the critical point, the amplitude gradu-
ally increases over the entire height of the liq-
uid bridge. First four curves show similarity with
self-similar regime of propagation. In general,
such behaviour corresponds to the flow pattern
when hydrothermal wave propagates azimuthally.
When the system is above the threshold of insta-
bility by about 17%, the amplitude growth starts
decelerating and a pronounced peak appears on
the amplitude shape A(z). The amplitude profiles
are very smooth and the peak of amplitude of
each profile is located very close to the upper rigid
wall, d − z ≈ 120μm. When the system is close
to the critical point the amplitude has sub-micron
size and our digital optical imaging technique al-
lows us such measurements. When sustained os-
cillations are established, the amplitude of oscil-
lations attains ∼ 1μm for V = 0.8.

Using eight successive displacement of the CCD
camera, the oscillation amplitude over the en-
tire height of the liquid bridge was measured for
V = 0.883 and ε = 55.4 (ΔTcr = 16.6). Using var-
ious symbols at different displacements, the re-
sults are presented in Fig. 10. The amplitude of
oscillations exhibits a strong z-dependence. The
largest variation of the amplitude takes place at
the upper part when z/d > 0.4. The amplitude
reaches a maximum at z/d ≈ 0.9 or, in other
words, d − z ≈ 350− 370μm. The maximum is
located noticeably lower than in the previous case
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Figure 9: z-dependence of oscillations am-
plitude near the hot corner for V = 0.8,
when ΔTcr = 14.71. Parameter ε = 100 · (ΔT −
ΔTcr)/ΔTcr characterizes the supercriticality (per-
centage above the threshold). Different col-
ors correspond to the various applied tempera-
ture differences: (from the left to the right) ε =
0., 3.18, 9.70, 17.64, 22.32, 27.17, 32.01, 39.44
and 46.85

V = 0.8, see Fig. 9, but still very close to the
hot wall. The maximum measured amplitude for
these parameters of the system is about 1.2 μm.

Moving down from the hot wall to z/d ≈ 0.4
the amplitude sharply decreases. The relatively
large region where the amplitude practically does
not change occurs when 0.2 < z/d < 0.4. Be-
low, closer to the cold disk, the free surface os-
cillations quenche and it results in diminishing of
the amplitude. Actually, the z-dependence of the
oscillation amplitude A(z) is strongly related to
the temperature deviations from mean value, e.g.
[T −Tmean](z). The stronger temperature variation
is, the larger free surface deformation is.

The evolution of two different quantities, the am-
plitude of the free surface and of the temperature
oscillations, with the increase of applied temper-
ature difference is shown in Figure 11. The am-
plitude of temperature oscillations at the thermo-
couple, closest to the examined silhouette in az-
imuthal direction, is presented by filled symbols
while the amplitude of the interface oscillations is
shown by open symbols. The green squares and
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Figure 10: z-dependence of oscillations ampli-
tude over the whole height of the liquid bridge,
V = 0.883 and ε = 55.4 (ΔT = 25.8 while ΔTcr =
16.6). Various symbols correspond to the results
from the different displacement of the CCD cam-
era

red circles correspond to V = 0.8 and 0.9, respec-
tively. The amplitude of the free surface oscilla-
tions was measured at the distance d−z≈ 500 μm
from the upper disk for each ΔT . The thermocou-
ples are positioned much below, d− z ≈ 1260 μm
and inside the liquid r/R0 ≈ 0.75. By chance both
quantities can be represented using the same ver-
tical scale where temperature is measured in K de-
grees and the interface deflection in microns.

The same critical temperature differences are
identified by both quantities, i.e. ΔTcr = 14.7K
for V = 0.8 and ΔTcr = 18.0K for V = 0.9. In ad-
dition both amplitudes (temperature and interface
oscillations) grow with increase of ΔT in the same
manner. For V = 0.8 both profiles demonstrate
similar dynamical trends for all examined ΔT . For
the larger volume, V = 0.9, the small difference
in the dynamic behavior appears at ΔT > 23K (or
when ε > 28). It may be a sign of some additional
transitions which occur on the free surface.

Our results are in good agreement with the mea-
surements by Nishino & Yoda (2000) who ob-
tained dynamic surface deformations of about
1μm in experiments with 5 cSt silicone oil. They
also indicated that the maximum of the oscilla-
tions amplitude was located at the upper part of
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Figure 11: Amplitudes of the free surface defor-
mations at d − z ≈ 500μm (open symbols) and
of the temperature oscillations at thermocouple
(filled symbols) vs. the applied temperature dif-
ference ΔT . The green squares and red circles
corresponds to V = 0.8 and 0.9 respectively.

the liquid bridge. It seems that such shape of
the amplitude profile, when maximum is located
near the hot wall, corresponds to the hydrother-
mal traveling wave with azhimutal wave number
m = 1.

To summirize the most important result of this
section, one may notice that the supercritical os-
cillatory deformations are one or two order of
magnitude smaller that stationary dynamic defor-
mation, i.e. δos ∼ 1 μm. Consequently, compar-
ison of the oscillatory deflections with the static
deformation indicates that their ratio is δos/δst ∼
1/500≈ 0.002 ∼ O(C). As it is seen from Fig. 9,
this ratio depends how far the system is above the
critical point.

5 Conclusions

Static and dynamic free surface deformations
(DSD) induced by buoyant and thermocapillary
convection in liquid bridges of 5cSt silicone oil
are studied experimentally and numerically. The
final supercritical shape of the free surface is a
result of the static shape with superimposed sub-
critical stationary and supercritical oscillatory dy-
namic deformations. The study was performed in

three steps for different initial volumes: (1) the
static shape was measured experimentally and the
physical properties of liquid were fine-tuned by
comparing the measured shape with the computed
one; (2) subcritical deformations due to stationary
convection were studied numerically; (3) super-
critical dynamic deformations due to oscillatory
convection were measured experimentally.

The study was performed for different liquid
bridge volumes: V = 0.8, 0.883, 0.9, 1.0. The
important result of the numerical study is that
the static deformation at ΔT = 0 is ∼ 500μm,
while the subcritical dynamic surface deforma-
tion at ΔT = ΔTcr is at least 10 times smaller, e.g.
∼ 44μm. The ratio δdyn/δstatic increases slightly
with volume and near the onset of instability, this
ratio can be estimated as δdyn/δstatic ∼ 10−1 =
O(Ca).
The most significant result of the experimental
study is that the supercritical oscillatory deforma-
tions are one or two order of magnitude smaller
that stationary dynamic deformation. The max-
imum amplitude of the oscillations around their
mean value (i.e. stationary dynamic deformation)
is δos ∼ 1 μm. The comparison of the supercriti-
cal oscillation amplitude with the static deforma-
tion leads to δos/δstatic ∼ 10−3 ≈ O(C). Note that
C = Ca/Re and in the superctitical regime Re >>
1. Thus, to capture the oscillatory deformation
in three-dimensional calculations the straightfor-
ward expansion in the limit of small Ca could be
not sufficient.
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