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Solutocapillary Convection in Spherical Shells with a Receding and
Deforming Interface

Pravin Subramanian1 and Abdelfattah Zebib1

Abstract: A theoretical and computational
study of solutocapillary driven Marangoni insta-
bilities in small spherical shells is presented. The
shells contain a binary fluid with an evaporat-
ing solvent. The viscosity is a strong function
of the solvent concentration, the inner surface of
the shell is assumed impermeable and stress free,
while non-linear boundary conditions are mod-
eled and prescribed at the receding outer bound-
ary. A time-dependent diffusive state is possi-
ble and may lose stability through the Marangoni
mechanism due to surface tension dependence on
solvent concentration (buoyant forces are negligi-
ble in this micro-scale problem). The Capillary
number (Ca) provides a measure of the deviation
from sphericity and to leading order in the limit
Ca → 0 the outer surface evolves with time in a
convective state as it does in the diffusive state.
We model the motion in this limit and compute
supercritical, nonlinear, time-dependent, axisym-
metric and three-dimensional, infinite Schmidt
number solutocapillary convection. The normal
stress balance imposes compatibility restrictions
and allows two admissible states: axisymmetric
hemispherical convection and three-dimensional
solutions exhibiting cubic symmetry. We em-
ploy global mass conservation to compute upper
bounds on the companion O(Ca) free surface de-
formations.

1 Introduction

It is well known that surface tension dom-
inates buoyant forces either in small scale
hydrodynamics or in a microgravity environ-
ment. A temperature difference across a thin
fluid layer can thus drive convective instabili-
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ties due to surface tension variation with tem-
perature (Pearson 1958; Smith 1966). Likewise
these Marangoni instabilities can arise in a bi-
nary fluid contained in a spherical shell due
to surface tension variation with either tem-
perature or concentration (Cloot and Lebon 1985;
Hoefsloot et al 1990; Wilson 1994). This lat-
ter problem gained interest in recent times in
the context of manufacturing small poly (α-
methyl styrene) spherical shells by microencap-
sulation, used as laser targets in inertial con-
finement fusion (McQuillan 1997). Almost per-
fect target sphericity is required in order to
eliminate Rayleigh-Taylor instabilities during im-
plosion. However it was experimentally hy-
pothesized that this smoothness can be defeated
by Marangoni instabilities driven by surface
tension dependence on the evaporating solvent
concentration (McQuillan and Greenwood 1999;
McQuillan and Takagi 2002). Linear stability of
the underlying time dependent diffusive state
(Subramanian et al 2005a) demonstrated that this
indeed may be the case.

The theoretical model (Subramanian et al 2005a)
considered a solute and a solvent binary fluid in a
spherical shell. The solvent evaporates in an aque-
ous environment with a prescribed mass trans-
fer coefficient while the viscosity grows expo-
nentially as the solvent depletes. The inner sur-
face was assumed impermeable and stress free.
The Capillary number Ca was taken small so that
deformations of the receding outer surface were
also small O(Ca). Linear stability limits, found
independent of the azimuthal wavenumber, were
established both through a frozen-time, quasi-
steady state approximation, as well as by inte-
grating the initial value problem in time subject
to arbitrary initial conditions. It was shown that
in the limit Ca → 0 the normal stress balance re-
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quired the outer surface to recede as it does in
the diffusive state. This enabled computations
of nonlinear axisymmetric supercritical convec-
tion (Subramanian et al 2005b) that were consis-
tent with linear predictions. A pair of axisymmet-
ric states, one of them hemispherically symmet-
ric, were found. The nonlinear problem is thus de-
generate with additional three dimensional states
possible.

In the present study we reconsider the
previous model (Subramanian et al 2005a;
Subramanian et al 2005b). The normal stress
balance is employed to both decrease the degen-
eracy and to determine the magnitude of surface
deformation. In section 2 we present the full
nonlinear problem and boundary conditions at
the impermeable and stress free inner boundary
and the receding outer surface. In sections 3 and
4 we compute nonlinear, time-dependent,
infinite Schmidt number, axisymmetric
(Subramanian et al 2005b) and three-dimensional
convection at parameter values which mimic the
experiments (McQuillan and Greenwood 1999;
McQuillan and Takagi 2002). Detailed analysis
of the normal stress boundary condition at the re-
ceding interface and derivation of the solvability
condition are given in section 5 and Appendices
A, B and C. Global mass conservation is then
utilized to calculate an upper bound on the O(Ca)
surface deformations associated with compatible
solutions.

2 Theory and Mathematical Model

Consider the spherical shell shown in Figure 1
of initial thickness Lr = R∗

20
−R∗

1, where R∗
1 and

R∗
20

are the shell’s inner and initial outer radii re-
spectively. The center of the shell is assumed
fixed and possible Marangoni-migration phenom-
ena is neglected. The aspect ratio of the shell
is η = R∗

1/R∗
20

< 1 (all starred quantities are di-
mensional). The shell contains a mixture of sol-
vent and solute with mass concentrations C∗ and
(1−C∗), respectively. The ambient is a mixture
of solvent and water into which the solvent in the
shell is evaporating. Thus there is a net mass flux
across the receding outer interface.

The physical quantities are non-dimensionalized

with respect to the scales ρr, μr, νr, Dr, Lr,
tr = Lr

2/Dr, Cr, Dr/Lr, μr/tr for density, dy-
namic viscosity, kinematic viscosity, mass diffu-
sivity, length, time, concentration, velocity, and
pressure, respectively. We assume linear varia-
tion of interfacial tension σ∗ with concentration
C∗ according to:

σ∗ = σr − γ(C∗ −Cr) (1)

where subscript r designates a reference state and
γ = −dσ∗/dC∗ which is taken small and positive.
The Capillary number is defined as:

*
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Figure 1: Sketch of the mathematical model

Ca = Δσ/σ = (σ −σr)/σ = γCr/σ (2)

where σ = σr + γCr is a typical value of the
surface tension. Other relevant non-dimensional
quantities are: the mass transfer Biot num-
ber Bi = KLr/ρrDr based on a mass transfer
coefficient K assumed constant, the Reynolds
number Re = γCrLr/μrνr and the Marangoni
number Ma = Re ·Sc, where the Schmidt number
Sc = νr/Dr. We assume constant density and
mass diffusivityat their reference values and μ(C)
is a prescribed function μ(C) = eα(1−C), where
α = 25.675Cr for the PAMS-FB system. C∞ is
the concentration of the solvent in the ambient
and H is a partition coefficient (thermodynamic
property) relating the equilibrium concentration
of the solvent in the shells to its concentration
in the ambient water. To compare with the
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experiments (McQuillan and Greenwood 1999;
McQuillan and Takagi 2002) we take C∞ in
the range 0.0001 − 0.0014 which is close to
saturation, Bi in the range 1−5, and H = 0.0015.
Because the viscosity of the PAMS-FB is much
larger than that of the water in the core, and
because in the experiments the mass transfer co-
efficient at the inner surface is much smaller than
that at outer surface, it will be assumed here that
the inner surface is impermeable and stress free
(Subramanian et al 2005a) . The value of the dif-
fusion coefficient which sets the time scale is not
precisely known for our system and is assumed
1.8×10−6cm2/s (Subramanian et al 2005a).

The motion is described in a spherical coordinate
system (r,θ ,φ ). The O(1) dimensionless system
of the governing equations written in the standard
divergence form suitable for solution by the fi-
nite volume method (Patankar 1980), and bound-
ary conditions (Subramanian et al 2005a) for non-
linear variable viscosity, infinite Sc, and three-
dimensional convection are:
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with the boundary conditions at r = r1 given by:
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and at the receding outer boundary r = r2d(t)
determined from the diffusive state solution
(Subramanian et al 2005a), we have:

Ur = BiCr(HC−C∞)+ ˙r2d (9)

∂C
∂ r

= −Bi(HC−C∞)(1−CCr) (10)
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The inertia terms in the momentum equations
have been neglected as they multiply 1/Sc �
10−6. The appropriate boundary conditions im-
posed in the θ and φ directions are discussed in
detail in the following sections.

The normal stress balance at the receding outer
interface is used to compute the magnitude of
surface deflection and hence the deviation from
sphericity; it is given by:

n̂ ·S · n̂ = −Ma
Ca

(1−CaC)∇ · n̂ (13)

where S = −pI +τ is the stress tensor in the fluid
(I is the unit tensor and τ = μ(∇u + t∇u) is the
viscous stress tensor). n̂ is the outward pointing
normal at the receding outer boundary given by:
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where F(x, t) = r−R2(θ ,φ , t) = 0 is the location
of the perturbed outer boundary. Hence the nor-
mal stress balance at the outer interface r = r2d(t)
reduces to (see Appendix A):
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is the negative of the surface Laplacian on a unit
sphere.

3 Axisymmetric Convection

The system of equations and boundary conditions
for axisymmetric convection are derived from the

governing three-dimensional equations by elimi-
nating the dependence in the φ direction. In the
full sphere axisymmetric model, we also impose
the following symmetry boundary conditions at
θ = 0 and π :

Uθ =
∂Ur

∂θ
=

∂C
∂θ

= 0 (17)

which yields convection with even and odd
number of cells that correspond to the de-
gree of surface harmonic l (employed in the
linear theory (Subramanian et al 2005a)). The
hemispherical model with the symmetry condi-
tions (17) imposed at θ = 0 and π/2 results
(Subramanian et al 2005b) in convection with
even number of cells and is further investigated
here.
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Figure 2: Variation (Subramanian et al 2005a) of
Recr with wavenumber l for the 1 mm shells (inner
radius = 0.470 mm and the initial outer radius =
0.592 mm) at various frozen times t0. Concentra-
tion, time and length scales are respectively, 0.92,
83 sec and 0.122 mm, Bi = 5 and C∞ = 0.0001.

3.1 Numerical Scheme

A front-fixing coordinate transformation given by
ζ = (r− r1)/(r2(t)− r1) is employed where 0 ≤
ζ ≤ 1 for the shells at all times (t). The trans-
formed equations in the computational domain
(ζ ,θ , t) are rigorously derived (not shown here)
and the partial differential equations expressed in
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the divergence form are discretized via a second-
order accurate finite volume method. The compu-
tational domain is divided into a number of cells
whose surfaces coincide with the spherical coor-
dinate surfaces. The grid points are located at the
geometric centers of these small cells and addi-
tional boundary points are included to incorporate
the boundary conditions. The equations are inte-
grated over each small control volume assuming
linear interpolation.

The primitive variable formulation used calcu-
lates the pressure and concentration at the vol-
ume centers (grid points) while the velocities are
staggered at the volume faces to avoid unrealis-
tic pressure fields and associated numerical in-
stabilities. The viscosity which is a function of
the concentration is also calculated at the grid
points. The average values for μ and its deriva-
tives at cell interfaces are found by either lin-
ear or harmonic interpolations. Time marching
is accomplished by either a fully implicit first-
order forward Euler scheme or by a second-order
accurate Crank-Nicholson scheme, and an itera-
tive approach (based on the SIMPLER algorithm
(Patankar 1980)) is used. Numerical convergence
studies were performed using the solution ob-
tained from the finest discretization in space and
time as the reference. By changing the values of
grid spacing in the r and θ directions, along with
the time step the solutions were compared to the
reference solution. The results reported here are
with a 51×51 grid and a time step 0.01. Under-
relaxation was employed to obtain convergence
of the iterative solution of the nonlinear equa-
tions. Computations are performed and supercrit-
ical patterns are investigated in the relevant pa-
rameters space with random initial conditions.

3.2 Numerical Results

The maximum growth rates of perturba-
tions (σmax) determined by solving the
linear eigenvalue problem and/or initial
value problem subject to random initial
conditions revealed that modes with in-
creasing l are preferred at later times
(Subramanian et al 2005a; Subramanian 2005).
In this section, we present results for nonlinear
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Figure 5: Similar to Figure 3a at time t=40.0

axisymmetric convection in terms of the stream
function (Ψ) and concentration (C) contours.

1 mm Shells

The critical curves (Subramanian et al 2005a) for
the 1 mm shells at the parameter values of Figure
2 show that at all times during the curing process
Recr always corresponds to mode 1. Since the ini-
tial state is one of uniform concentration, Recr first
decreases with time as a destabilizing gradient de-
velops and then increases with viscosity increase
due to loss of solvent.

We compute nonlinear axisymmetric convection
in the 1 mm shells for this set of parameters
which mimic the experiments and an operating
Reynolds number Reop=2.0. According to Figure
2 this value of Reop is supercritical during early
times while subcritical at later times. Thus we
expect convection to first grow and to gradually
weaken at later times. Our nonlinear calculations
are consistent with this prediction as can be seen
in Figure 3a where a one cell motion (l = 1) ap-
pears at early times and develops into multiple
cell convection at later times. As seen in Figure
3b the concentration C contour plot correspond-
ing to Figure 3a [both plotted in the physical do-
main (r,θ )] shows that at early times the varia-
tion of C in the shells is almost diffusive since
the motion is very weak as indicated by the val-
ues of Ψ in Figure 3a. A five cell motion (l = 5)
appears at a later time t = 15.0 and is presented
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Figure 3: (a) Full sphere axisymmetric convection stream function (Ψ) for 1 mm shells in the physical
domain (r,θ ) at time t=0.1 and Reop=2.0, at parameter values of Figure 2. (Negative values of Ψ indicate
counter-clockwise motion) (b) Corresponding concentration (C) contour plot in the physical domain.
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Figure 4: Similar to Figure 3 but in the computational domain (ζ ,θ ) at time t=15.0

in the computational domain (ζ ,θ ) in Figure 4a.
As can be seen in the C contour plot in Figure 4b
the contours are shifted in the direction of motion,
with upwelling at the north pole and downwelling
at the south pole. The contours in the remain-
ing parts of the shell are shifted due to the mul-
tiple cell motion. The motion changes to the three
cell convective pattern at t = 40.0 shown in Figure
5. The corresponding plot in the (ζ ,θ ) domain is
presented in Figure 6a for clarity. This initial in-
crease in l followed by a decrease in l as time pro-

gresses is in agreement with the σmax calculated in
the linear theory because Reop is largely supercrit-
ical at early times, while the difference between
Reop and Recr decreases as time progresses. At
later times the strength of the circulation as mea-
sured by Ψmax diminishes as the Reop is subcriti-
cal and the motion dies out eventually. It should
be noted that the computed cellular patterns are in
good agreement with the critical curves of Figure
2 which are almost flat up to modes 3-5 at early
times. As can be seen from Figure 3a and 5, the
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Figure 6: (a) Full sphere convection Ψ in the computational domain (ζ ,θ ) of Figure 5. (b) Corresponding
concentration (C) contour plot.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

3
2
1
0

-1
-2
-3
-4
-5
-6

ψ

(a)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

0.99565
0.995605
0.99556
0.995515
0.99547
0.995425
0.99538
0.995335
0.99529
0.995245
0.9952

C

(b)

Figure 7: (a) Hemispherical axisymmetric convection Ψ for 1 mm shells in the (ζ ,θ ) domain at time t=5.0
and Reop=2.0, at parameter values of Figure 2. (b) Corresponding concentration (C) contour plot.

thickness of the shell in the physical domain de-
creases as time progresses since the outer radius
recedes due to the evaporation of the solvent.

Figure 6b gives the corresponding concentration
(C) field of the motion in Figure 6a with the iso-
concentration lines pushed in the direction of mo-
tion. Hemispherical axisymmetric convection is
also possible as shown in Figures 7 and 8 where
an eight cell motion (l = 8) appears at an early
time t = 5.0 and evolves into a four cell (l = 4)
motion at t = 20.0.

2 mm Shells

The critical curves in Figure 9 show that at early
times, Recr corresponds to mode 2, while higher
modes are preferred at later times.

For Reop = 2.0 which is supercritical at early
times, multiple cell motions develop up to t =
300.0. Figures 10 and 11a show a nine cell mo-
tion (l = 9) at time t = 200.0 from the full sphere
calculations. This is consistent with the critical
curves (Figure 9) that are almost flat up to mode
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Figure 8: (a) Hemispherical axisymmetric convection Ψ for 1 mm shells in the (ζ ,θ ) domain at time t=20.0
and Reop=2.0, at parameter values of Figure 2. (b) Corresponding concentration (C) contour plot.
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Figure 9: Variation (Subramanian et al 2005a) of
Recr with wavenumber l for the 2 mm shells (in-
ner radius = 1.000 mm and the initial outer radius
= 1.077 mm) at various frozen times t0. Concentra-
tion, time and length scales are respectively, 0.82, 33
sec and 0.077 mm, Bi = 1 and C∞ = 0.0014.
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Figure 10: Full sphere axisymmetric convection
stream function Ψ for 2 mm shells in the physical
domain (r,θ ) at time t=200.0 and Reop=2.0, at pa-
rameter values of Figure 9.

8-10 with multiple modes excited and interact-
ing nonlinearly. Due to upwelling at one pole
and downwelling at the other, the C contours are
shifted upwards as can be seen from Figure 11b.
One also notes the shifts in the C contours in the
remaining parts of the shell due to the multiple
cell motions. As expected, at later times when
the Reop is subcritical, the convection slowly dies
down as two cell motions until there is no further

motion in the shells.

Finally, Figure 12a shows the hemispherical ax-
isymmetric solution with a four cell motion (l =
4) at time t = 300.0 and the corresponding C con-
tour plot is shown in Figure 12b.
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Figure 11: (a) Full sphere axisymmetric convection Ψ in the computational domain (ζ ,θ ) corresponding to
Figure 10. (b) Corresponding concentration (C) contour plot.
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Figure 12: (a) Hemispherical axisymmetric convection stream function Ψ for 2 mm shells in the (ζ ,θ )
domain at time t=300.0 and Reop=2.0, at parameter values of Figure 9. (b) Corresponding concentration (C)
contour plot.

4 Three-Dimensional Convection

The solutions to the governing 3D system of equa-
tions (3)-(12) are required to be finite at θ = 0&π
and 2π periodic in φ . 3D hemispherical convec-
tion is also possible with symmetry conditions im-
posed at θ = π/2:

Uθ =
∂Ur

∂θ
=

∂Uφ

∂θ
=

∂C
∂θ

= 0 (18)

Convection with tetrahedral symmetry is also pos-

sible and satisfies the following symmetry bound-
ary conditions at φ = 0 and φ = π :

Uφ =
∂Ur

∂φ
=

∂Uθ

∂φ
=

∂C
∂φ

= 0 (19)

Convection with cubic symmetry exhibits both
symmetries given by (18) and (19) in addition to
symmetry about φ = π/2. Thus there are four
possible 3D solutions: full sphere convection, or
convection with hemispherical, tetrahedral, or cu-
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bic symmetries. It was a remarkable finding that
starting from arbitrary initial conditions convec-
tion always evolved into the cubic pattern. It
should be noted that these symmetries are possi-
ble in our small capillary number model. If large
surface deformations are considered there will ex-
ist flow states with all the symmetries broken.

4.1 Numerical Scheme

As in the case of axisymmetric convection, we
employ the front-fixing coordinate transformation
given by ζ = (r− r1)/(r2(t)− r1) where 0 ≤ ζ ≤
1 for the shells at all times (t). The transformed
equations in the computational domain (ζ ,θ ,φ , t)
are derived and nonlinear three-dimensional con-
vection is computed using the second-order ac-
curate finite volume approach. Time marching is
accomplished by either a fully implicit first-order
forward Euler scheme or by a second-order accu-
rate Crank-Nicholson scheme.

Since an orthogonal grid in spherical coordinates
is used, the convergence of lines of longitude at
the poles results in grid points being much more
closely spaced in the polar regions. This “pole
problem” can sometimes lead to spurious results
near the coordinate singularities at the poles. The
staggered, control volume discretization handles
the singularities for all but latitudinal velocity Uθ
by defining the polar control volumes to be of zero
size. Zero size control volumes have no mass, mo-
mentum, or species fluxes into or out of the vol-
ume; they do not contribute to the final solution,
and thus we need not compute the dependent vari-
ables at the poles. The grid staggering, however,
results in half sized control volumes at the pole for
the latitudinal component of the momentum equa-
tion. This requires a solution for Uθ at the poles.
To mitigate this situation, the control volumes ad-
jacent to the polar control volumes are expanded
to include the regions that would make up for the
half size control volumes. Tests of the effect of
this treatment at the polar region were performed
wherein converged solutions with cubic symme-
try (which have upwelling at the pole) were ro-
tated in the θ direction, randomly perturbed, and
fed back into the numerical model as initial con-
ditions. These rotated patterns rapidly converged

to new solutions, which maintained the shifted
orientation and had fluid flow and mass transfer
properties identical to the original, unrotated solu-
tions. In another test, the solutions of the numer-
ical model with symmetry boundary conditions
imposed at the poles were found to be identical to
the solutions from the other test. These findings
indicate that the pole treatment does not induce
unwanted, numerical artifacts into the solutions.

Numerical convergence studies were performed
using the solution obtained from the finest dis-
cretization in space and time as the reference. By
changing the values of grid spacing in the r, θ
and φ directions, along with the time step the so-
lutions were compared to the reference (finest)
solution. The results reported here are with a
51×51×51 grid and a time step ≤ 0.01 for the
hemispherical solution (half range in θ ). In the
case of full 3D convection (full range in θ ), the
number of grid points in the θ directions were in-
creased and at least a 51×71×51 grid was used.

4.2 Numerical Results

In this section we present results for nonlinear
three-dimensional convection with supercritical
patterns investigated in the relevant parameters
space starting from random initial conditions.

Validation of the 3D code

By turning off the calculations in the third dimen-
sion (φ ), we first test the 3D model to see how
it compares with the axisymmetric results. As
seen in Figure 13a, the result compares well with
the axisymmetric calculations (Figure 8b) for the
same set of parameters. Also shown in Figure 13b
is the velocity vector plot showing the direction of
fluid motion in the shells, due to which there is a
shift in the concentration C contours.

1 mm Shells

The critical curves for Recr shown in Figure 2
along with the axisymmetric results are used as
a guide to describe the 3D solutions. By specify-
ing an operating Reynolds number Reop=2.0 we
compute nonlinear 3D convection for this set of
parameters which mimic the experiments. This
value of Reop is supercritical during early times
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Figure 13: Axisymmetric convection computed by the 3D code at the parameter values of Figure 8 (a) C
contour plot (b) Velocity vector plot.

while is subcritical at later times. Thus we ex-
pect convection to first grow and then gradually
weaken at later times. This is shown at early
times in Figure 14. The motion with tetrahedral
symmetry is very weak and the solution is al-
most axisymmetric. The iso-contours of concen-
tration C in Figure 14b show that the motion is
slowly developing in the latitudinal direction. A
four cell motion (l = 4) which appears at a later
time t = 20.0 is shown in Figure 15. As can be
seen in the C contour plots in Figure 15 and 16,
the contours are shifted in the direction of mo-
tion, with upwelling at the north and south poles.
Also shown in Figure 16 are slice planes at two
different values of θ and φ where we see an az-
imuthal wavenumber m = 4 motion in the φ di-
rection. It is this l = 4 motion which persists over
a long period of time during the curing process.
At later times the motion dies down as a one cell
motion when Reop becomes subcritical. This is
reasonable in comparison with the axisymmetric
calculations where we found a three cell motion
that exists for a long period of time and weakens
as a one cell motion at later times. It should be
noted that the computed cellular patterns are also
in good agreement with the critical curves of Fig-
ure 2 which are flat up to modes 3-5 and the val-
ues of σmax as computed from the linear theory.
It is also noted that the computed convection with

tetrahedral symmetry also exhibits hemispherical
symmetry. In Figure 17, we find that in the case of
hemispherical 3D convection, the motion at time
t = 30.0 is once again the same four cell motion
with tetrahedral symmetry and the C contours are
shifted in the direction of motion as can be seen in
the iso-contour plot in Figure 17b. The C contour
plots at two slice planes in θ and φ are shown in
Figure 18. It is also noted that the computed hemi-
spherical solution exhibits tetrahedral symmetry.

Symmetry Comparison

Here we compute 3D convection in the entire
sphere where 0 ≤ φ ≤ 2π . This is accomplished
by imposing periodicity at φ = 2π . As can be seen
in Figure 19, we find that the 3D solution in this
case is identical to the solution obtained with ei-
ther of the symmetry conditions imposed (shown
in Figures 15 and 17). Thus we conclude that 3D
convection exhibits cubic symmetry.

2 mm Shells

The critical curves for Recr shown in Figure 9
along with the axisymmetric results are used as a
guide to analyze the calculations. As in the case of
axisymmetric convection, for Reop = 2.0 which is
supercritical at early times, multiple cell motions
develop up to t = 200.0 as shown for the convec-
tion with tetrahedral symmetry in Figure 20. The



150 Copyright c© 2008 Tech Science Press FDMP, vol.4, no.3, pp.139-161, 2008

C

0.9995
0.99945
0.9994
0.99935
0.9993
0.99925
0.9992
0.99915
0.9991

(a)

C

0.9995
0.99945
0.9994
0.99935
0.9993
0.99925
0.9992
0.99915
0.9991

(b)

Figure 14: 3D convection with tetrahedral symmetry in 1 mm shells at parameter values of Figure 2 at time
t = 1.0 and Reop=2.0. (a) Surface concentration C contour plot (b) Iso-contour levels.
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Figure 15: Same as Figure 14 but at t = 20.0.

multiple cell motion which develops is not very
clear in Figure 20a showing the contours on the
surface which makes it seem almost axisymmet-
ric. But this is not true, as can be seen from the
φ = 0 plane contour plots in Figure 21 where mo-
tions up to mode l = 8 develop in the 2 mm shells.
The shifts in the contours of C in the direction of
motion increase as time progresses. As a conse-
quence of this, multiple modes in the azimuthal
direction are also excited as can be seen in Fig-
ure 22. Due to the large values of l and m, the C
contours in the equatorial plane (θ = 90) possess

a wavy nature which grows up to t = 200.0. At
later times, as Reop becomes subcritical, the shifts
in C are minimal as the strength of the convection
decreases until there is no further motion in the
shell.

5 Surface Deformations

Equation (15) requires δ ∼ O(Ca) in the limit
Ca → 0, so we write a perturbation series expan-
sion for the surface deformation δ in terms of Ca
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Figure 16: C contours at various slice planes corresponding to Figure 15 (a) φ = 0 ◦ (b) φ = 45◦ (c) θ = 45◦

(d) θ = 90◦.

as:

δ = Caδ1 +Ca2δ2 + ..., (20)

and we have:

[2−L2]δ1 = H(θ ,φ , t) (21)

where H(θ ,φ , t) is the l.h.s. of Eqn. (15) and
represents the nonlinear convective motion arising
from the fluid mechanics. The structure of Eqn.
(21) demands careful analysis. If we consider the
homogeneous form of Eqn. (21) i.e. with H = 0,
then on re-arranging the terms we have:

[L2]δ1 = 2δ1 (22)

This equation is the eigenvalue problem of the
L2 operator, which has characteristic values l(l +
1) with corresponding analytic and 2π periodic
eigenfunctions Y m

l (θ ,φ ) so that:

[L2]Ym
l = l(l +1)Y m

l (23)

where the surface harmonics
(Chandrasekhar 1961) Y m

l = eimφ Pm
l (cosθ ), l

is the latitudinal wavenumber (the degree of
surface harmonic), and |m| ≤ l is the azimuthal
wavenumber. From Eqn. (22) and Eqn. (23) we
observe that the homogeneous problem for δ1

has three nontrivial solutions with l = 1 given
by Y 0

1 , Y1
1 and Y−1

1 . Hence the inhomogeneous
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Figure 17: 3D hemispherical convection in 1 mm shells at parameter values of Figure 2 at time t = 30.0 and
Reop=2.0. (a) Surface concentration C contour plot (b) Iso-contour levels.

problem in Eqn. (21) either has infinite number of
solutions or no solutions depending on whether
or not H is orthogonal to each of the nontrivial
homogeneous solutions (Fredholm alternative
theorem).

5.1 Compatibility of Axisymmetric Solutions

Here Eqn. (21) becomes:

δ1,θθ +cotθδ1,θ +2δ1 = H(θ , t), (24)

and there is only one nontrivial homogeneous so-
lution Y 0

1 = cosθ . It is shown (see Appendix B)
that compatibility requires H to be orthogonal to
x = cosθ in 0 < θ < π so that:
∫ +1

x=−1
Hxdx = 0 (25)

which implies that H has to be symmetric about
x = 0 (or θ = π/2). Thus only the solutions with
hemispherical symmetry are compatible in the ax-
isymmetric case.

5.2 Compatibility of 3-D Solutions

In 3-D, the δ1 equation is given by:

δ1,θθ +cotθδ1,θ +
1

sin2θ
δ1,φφ +2δ1 = H(θ ,φ , t),

(26)

and we have three nontrivial homogeneous solu-
tions Y 0

1 = cosθ and Y±1
1 = sinθeiφ (sinθ sinφ and

sinθcosφ ). As in the case of axisymmetry we can
show (see Appendix C) that the only compatible
H must satisfy the following orthogonality rela-
tions in 0 < θ < π and 0 < φ < 2π :

∫ 2π

φ=0

∫ +1

x=−1
Hxdxdφ = 0 (27)

∫ 2π

φ=0

∫ +1

x=−1
H

√
1−x2eiφ dxdφ = 0 (28)

Thus only the solutions with cubic symmetry are
admissible.

5.3 The Global Conservation Condition

We rewrite Eqn. (21) as

[2−L2]δ1 = h(θ ,φ , t)+α(t) (29)

where H(θ ,φ , t) = h(θ ,φ , t)+ α(t) and α(t) is
an arbitrary function of time associated with the
pressure field and also contains the capillary pres-
sure term 2r2d/Ca. The solution to Eqn. (29) is
written as:

δ1 = δ1p +α(t)δ1g (30)

where [2−L2]δ1g = 1 and [2−L2]δ1p = h(θ ,φ , t).
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Figure 18: C contours at various slice planes corresponding to Figure 17 (a) φ = 0 ◦ (b) φ = 45◦ (c) θ = 45◦

(d) θ = 90◦.

We now need a global conservation condition on
δ1 in order to determine α(t). This may be ob-
tained by equating the swept volume of solvent
shown in Figure 23 and given by:

∫
Ω

∫ R20

R2

r2drdΩ (31)

to the evaporated volume resulting from the
convection-diffusion process and given by:

∫ t

0

∫
a

ṁ′′dadt =
∫ t

0

∫
a
(u−v) · n̂dadt (32)

where ṁ′′ is the solvent mass flux and
R2(θ ,φ , t) = r2d(t) + Caδ1(θ ,φ , t) +

O(Ca2). From Figure 24 we
have da = R2

2NdΩ, it was shown
(Subramanian et al 2005a; Subramanian 2005)
that v · n̂ = (−1/|∇F|)(∂F/∂ t) = Ṙ2/N, and
∇ · u = 0 requires

∫
a(u · n̂)da = 0. Hence we

find that the expressions for the amount of mass
transfer mv is identically given by either Eqns.
(31) or (32), i.e. we have the identity:
∫

Ω

∫ R20

R2

r2drdΩ ≡ −
∫ t

0

∫
Ω

R2
2Ṙ2dΩdt (33)

Thus the net mass transfer mv is calculated by ei-
ther of the integrals in Eqn. (33) as:

mv =
∫

Ω

1
3
[R3

20
−R3

2]dΩ, (34)
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Figure 19: 3D full sphere convection in 1 mm shells with periodic boundary conditions in φ (corresponding
to Figures 15 and 17).
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Figure 20: 3D convection in 2 mm shells at parameter values of Figure 9 at time t = 200.0 and Reop=2.0.
(a) Surface concentration C contour plot (b) Iso-contour levels.

and is further given by:

mv =
4
3

π [R3
20
− r3

2d ]−Ca
∫

Ω
r2

2dδ1dΩ−O(Ca2)

(35)

Had there been no mass transfer, i.e. mv = 0 and
R20 = r2d = constant, Eqn. (35) would provide
the required global conservation condition to cal-
culate α(t). Note that mv also represents the net
mass transfer across the interface due to convec-
tion and diffusion. The first term in the right-hand

side of Eqn. (35) represents the mass transfer
purely by diffusion given by md = 4

3π [R3
20
− r3

2d].
If it is reasonable to assume mv ≥ md then we
must have:∫

Ω
δ1(θ ,φ , t)dΩ≤ 0, (36)

and with δ1 given by Eqn. (30), we have:∫
Ω

δ1pdΩ+α(t)
∫

Ω
δ1gdΩ ≤ 0 (37)

This inequality can be used to calculate an up-
per bound for δ1 in the following way. Be-
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Figure 21: C contours in 2 mm shells at various times t and Reop=2.0 along the plane at φ = 0 ◦ (a) t = 50.0
(b) t = 100.0 (c) t = 150.0 (d) t = 200.0.

cause δ1g > 0 and
∫

Ω δ1gdΩ > 0, we have α(t)≤
−

∫
Ω δ1pdΩ∫
Ω δ1gdΩ . Since

∫
Ω δ1pdΩ was found < 0 choos-

ing the equality determines the deflection with the
largest positive δ1.

5.4 Numerical Scheme

We write expansions for δ1 and H in terms
of surface harmonics (Chandrasekhar 1961)
as δ1 = ∑∞

l=0 ∑+l
m=−l δ1lmeimφ Pm

l , H =
∑∞

l=0 ∑+l
m=−l Hlmeimφ Pm

l so that Eqn. (21) be-
comes:

∞

∑
l=0

+l

∑
m=−l

[2− l(l +1)]δ1lmeimφ Pm
l

=
∞

∑
l=0

+l

∑
m=−l

Hlmeimφ Pm
l (38)

or δ1lm = Hlm/[2− l(l +1)] =⇒ we clearly have
a problem when l = 1 except if H1m = 0 which
is precisely the compatibility condition. Accord-
ing to Eqn. (29) we also write Hlm = hlm + αlm

where αlm = α(t) if l = m = 0 and zero otherwise.
Hence we have:

[2− l(l +1)]δ1lm = (h00 +α)+hlm (39)

for all l ≥ 1 and |m| ≤ l. It is important to observe
that if h does not contain Y 0

1 and Y±1
1 then it is

compatible. This is only true for the cubic solu-
tions in 3D and the hemispherical solutions in 2D
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Figure 22: C contours in 2 mm shells at various times t and Reop=2.0 along the plane at θ = 90 ◦ (a) t = 50.0
(b) t = 100.0 (c) t = 150.0 (d) t = 200.0.

(m = 0) in which case we have:

δ1 =
(h00 +α)

2
+

∞

∑
l=2

+l

∑
m=−l

hlm

2− l(l +1)
eimφ Pm

l

(40)

5.5 Numerical Results

In this section, we present the admissible axisym-
metric and 3D solutions for maximum δ1 at pa-
rameter values close to those in the experiments
with the 1 and 2 mm shells. Figure 25 shows the
axisymmetric maximum δ1 at t = 10.0 in 1 mm
shells. Also shown in Figure 25 are the individ-
ual contributions to maximum δ1 from the pres-

sure, concentration and viscous terms in the nor-
mal stress balance Eqn. (15). The variation of
maximum δ1 with time for the 1 and 2 mm shells
is shown in Figure 26 where its magnitude in-
creases as the motion develops and Reop is super-
critical. At later times when the motion is weak
and Reop is subcritical there is no further change
in maximum δ1.

As seen in Figure 27, the 3D maximum δ1 in the 1
mm shells is almost axisymmetric at early times.
This is reasonable as the motion is only devel-
oping at early times when Reop is supercritical.
Figure 28 shows that at later times (t = 20.0), the
maximum δ1 has a more three-dimensional struc-
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ture. This is consistent with the l = 4, m = 4 mo-
tion which develops in the shells at this t (see Fig-
ure 15). The maximum value of δ1 in the 1 mm
shells is order 0.01 and hence the actual maximum
physical value of δ ∗ computed is order 1 ·Ca mi-

crons (i.e. δ ∗ = δ1∗Lr ∗Ca, where Lr=0.122 mm).

The value of maximum δ1 at t = 100.0 in the
2 mm shells is shown in Figure 29. At a later
time t = 200.0 the surface deflection has a more
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Figure 25: Axisymmetric maximum surface de-
flection δ1 at time t = 10.0 and Reop=2.0 for the 1
mm shells at parameter values of Figure 2.

involved structure as can be seen in Figure 30.
As the maximum value of δ1 is about 0.04-0.05,
the actual maximum physical value of δ ∗ com-
puted for the 2 mm shells is order 3 ·Ca microns
(where Lr=0.077 mm). This is in reasonable com-
parison with experiments (McQuillan et al 2004)
where the maximum magnitude of the surface de-
flections for the 2 mm shells is about 1 micron.

6 Concluding Remarks

We have developed a mathematical model for so-
lutocapillary instabilities in spherical shells. The
outer surface of the shell recedes due to mass
transfer of the solvent into the ambient. To lead-
ing order in the limit (Ca→ 0) r2(t) is fixed by the
nonlinear system that describes the diffusive state
(Subramanian et al 2005a; Subramanian 2005).
Linear instability of this time-dependent dif-
fusive state was determined from frozen time
or quasi-steady state analysis and from time
evolving initial value problem calculations.
(Subramanian et al 2005a) Results from these two
approaches are in agreement for t > 0 with de-
pendence on initial conditions only near t = 0.
The results for the diffusive state solution and lin-
ear stability analysis are also in good qualitative
and quantitative agreement with the experiments
(Subramanian et al 2005a; Subramanian 2005).
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Figure 26: Axisymmetric maximum surface de-
flection δ1 at various times t and Reop=2.0 (a) 1
mm shells at parameter values of Figure 2. (b) 2
mm shells at parameter values of Figure 9.

The linear system is degenerate and is indepen-
dent of the azimuthal wavenumber. A nonlin-
ear selection mechanism is expected which also
determines the convective amplitude and hence
δ . Time-dependent, nonlinear, variable viscosity,
axisymmetric and three-dimensional studies were
performed to calculate the supercritical motions
and associated compatible dynamic free surface
deformations. It was shown that the only possi-
ble 3D motion possesses cubic symmetry. The
results from the nonlinear computations compare
well with linear theory.
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Figure 27: Contours of 3D maximum surface de-
flection δ1 for 1 mm shells at time t = 5.0 and
Reop=2.0 at parameter values of Figure 2.
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Figure 28: Contours of 3D maximum surface de-
flection δ1 for 1 mm shells at time t = 20.0 and
Reop=2.0 at parameter values of Figure 2.

Our mathematical model is applicable to the dry-
ing phase of microencapsulation of ICF targets.
Comparisons between our theoretical predictions
and measurements indicate good agreement given
the uncertainty in the values of thermodynamic
properties and conditions in the experiments.
Hence, we conclude that the Marangoni instabili-
ties could well be the source of the observed sur-
face roughness in the shells.
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APPENDIX A

The dimensionless normal stress balance at the
outer interface is given by:

n̂ ·S · n̂ = −Ma
Ca

(1−CaC)∇ · n̂ (A1)
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Substituting R2(θ ,φ , t) = r2(t) + δ (θ ,φ , t) in
Eqn. (14) we have:

n̂ = (1,−1
r

∂θ δ ,− 1
rsinθ

∂φ δ )+O(δ 2) (A2)

and

∇ · n̂ =
[ 1

r2

∂ (r2)
∂ r

− 1
r2sinθ

∂
∂θ

(sinθ ∂δ
∂θ

)

− 1
r2sin2θ

∂ 2δ
∂φ 2

]
+ O(δ 2) (A3)

Hence (A1) reduces to:

− p+2μ
∂ur

∂ r
=

− Ma
Ca

(1−CaC)
[2

r
+

L2

r2 (δ )
]
+O(δ 2) (A4)

Writing r = r2 +δ we have to O(δ ) at r = r2:

− p+2μ
∂ur

∂ r
=

− 2Ma
r2Ca

+
2MaC

r2
+

Ma
r2

2 [2−L2](
δ

Ca
)+O(δ )

(A5)

which on rearrangement gives Eqn (15).

APPENDIX B

In axisymmetry, we begin with the equation for
δ1(θ , t):

(2−L2)[δ1] = δ1,θθ +cotθδ1,θ +2δ1 = H(θ , t)
(B1)

Substituting x = cosθ , we have δ1,θ = −δ1,xsinθ
and δ1,θθ = δ1,xxsin2θ − δ1,xcosθ . Thus Eqn.
(B1) is re-written as:

(1−x2)δ1,xx−2xδ1,x +2δ1 = [(1−x2)δ1,x]x +2δ1

= H(x, t) (B2)

We now have:
∫ +1

x=−1
xHdx =

∫ +1

x=−1

(
[(1−x2)δ1,x]x +2δ1

)
xdx

(B3)

which reduces to:

[(1−x2)δ1,x]x
∣∣∣1

−1
− (1−x2)δ1

∣∣∣1

−1

−
∫ +1

x=−1
2δ1xdx +

∫ +1

x=−1
2δ1xdx = 0 (B4)

APPENDIX C

In three dimensions, we begin with the equation
for δ1(θ ,φ , t):

δ1,θθ +cotθδ1,θ +
1

sin2θ
δ1,φφ +2δ1 = H(θ ,φ , t)

(C1)

Substituting x = cosθ this becomes:

[(1−x2)δ1,x]x +
1

(1−x2)
δ1,φφ +2δ1 = H(x,φ , t)

(C2)

Now we have:

∫ 2π

φ=0

∫ +1

x=−1
xHdxdφ =

∫ 2π

φ=0

∫ +1

x=−1

(
[(1−x2)δ1,x]x+

1
(1−x2)

δ1,φφ +2δ1

)

xdxdφ (C3)

which can be re-written as:

∫ 2π

φ=0

[∫ +1

x=−1

(
[(1−x2)δ1,x]x +2δ1

)
xdx

]
dφ

+
∫ 2π

φ=0

[∫ +1

x=−1

x
(1−x2)

dx
]
δ1,φφ dφ (C4)

Noting that the integral in (B3) vanishes, (C4) re-
duces to:
∫ 2π

φ=0
δ1,φφ dφ

∫ +1

x=−1

x
(1−x2)

dx (C5)

which is identically zero if δ1 is a single valued
function of φ . Thus the r.h.s. of (C3) is zero. We
also have:

∫ 2π

φ=0

∫ +1

x=−1
xH

√
1−x2eiφ dxdφ =

∫ 2π

φ=0

∫ +1

x=−1

(
[(1−x2)δ1,x]x+

1
(1−x2)

δ1,φφ +2δ1

)
√

1−x2eiφ dxdφ (C6)

Noting that:

∫ +1

x=−1

(
[(1−x2)δ1,x]x

)√
1−x2dx =
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−
∫ +1

x=−1
δ1

√
1−x2dx+

∫ +1

x=−1
δ1

x2
√

1−x2
dx

(C7)

We have that (C6) reduces to:

∫ 2π

φ=0

∫ +1

x=−1

(
δ1

√
1−x2+

δ1
x2

√
1−x2

+
δ1,φφ√
(1−x2)

)
eiφ dxdφ (C8)

which can be re-written as:

∫ 2π

φ=0

∫ +1

x=−1

(δ1 +δ1,φφ )√
(1−x2)

eiφ dxdφ (C9)

Now:

∫ 2π

φ=0
(δ1 +δ1,φφ )eiφ dφ =

∫ 2π

φ=0
δ1eiφ dφ +(δ1,φ eiφ

∣∣∣2π

0
)

−
[
δ1ieiφ

∣∣∣2π

0
−

∫ 2π

φ=0
δ1i2eiφ dφ

]

= 0 (C10)

Hence it follows that (C9) is also identically zero
and the r.h.s. of (C6) is zero.
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