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An Implicit Unsteady Finite Volume Formulation for
Natural Convection in a Square Cavity

Edoardo Bucchignani1

Abstract: This article describes an implicit method for the solution of time de-
pendent Navier-Stokes equations written in terms of vorticity and velocity. The
field equations are discretized using a finite volume technique over quadrilateral
meshes.
The numerical code has been applied to the classical window cavity test, employing
a fine stretched non-uniform grid, in order to provide an accurate steady solution
for a high value of the Rayleigh number (108). It has also been performed a sim-
ulation for a value of Rayleigh larger than the critical value, in order to show the
capabilities of the proposed method to properly simulate the unsteady regime.

1 Introduction

In the last decade, implicit methods became more popular in research and indus-
try because of their stability and robustness when used in everyday applications.
Especially in the field of computational fluid dynamics, a large effort has been
done in order to develop robust and efficient flow solvers based on fully implicit
approaches. The benefits of such methods are well known: a greater robustness,
allowing the capability of solving problems that cannot be handled with explicit
schemes; moreover, they allow the possibility of using larger time steps, reduc-
ing the global cpu-time. Promising results have been obtained and very stiff cases
have been solved. However, the practical use of implicit based codes has been sig-
nificantly limited, because they require a large amount of computational resources
when fine computational grids are adopted. In fact, implicit schemes request the so-
lution of large sparse linear systems of equations, whose sizes grows linearly with
the number of grid-points, while the cpu-time grows with the cube of the number
of unknowns. It is clear that with the computational resources available in the ’90,
it was impossible to deal with systems characterized by millions of unknowns. In
several sectors such as the aerospace, where very fine computational meshes are
needed, the use of implicit methods was prohibitive and for this reason they have
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been neglected. Only in the last three years, with the fast increase of the compu-
tational power even on a notebook, there has been a renewed interest for implicit
schemes as it is now possible to take into account such methods for practical appli-
cations, on very fine grids.

Stella and Bucchignani (1996) introduced a true transient vorticity-velocity for-
mulation for incompressible two dimensional flows, based on a finite difference
approximation of the governing equations and using a fully implicit approach for
the time integration. The linear systems arising from discretization were solved by
using a preconditioned Bi-CGSTAB algorithm. The code was used to obtain steady
solutions of the window cavity (test case defined by de Vahl Davis (1983) at values
of the Rayleigh (Ra) number in the range 104−108. Even if the solutions obtained
were sufficiently accurate, it was not possible to perform numerical simulations on
meshes with more than 257 ·257 points.

Successively, in 1999 the proposed methodology was extended to three dimen-
sional flows (see Stella and Bucchignani, 1999, Bucchignani and Stella, 1999) and
successfully used for solving problems of natural convection in limited domains
(Bucchignani and Mansutti, 2000, Bucchignani, 2004) showing the effectiveness
of the vorticity-velocity formulation also for three dimensional cases.

However, the finite difference approach allowed to use only regular cartesian meshes,
while it is well known that, in order to obtain an accurate resolution of the boundary
layers, stretched variable grids must be employed. For this reason, with the aim of
better exploiting the computational resources available nowadays, in this work it
has been developed a numerical code based on a finite volume discretization of the
governing equations, associated with a fully implicit approach for the time integra-
tion. In this way, also very fine non uniform meshes can be adopted. Furthermore,
a procedure that ensures good coupling between the equations has been adopted, in
order to guarantee the mass conservation together with a second order accuracy in
time. It is worth to point out that this methodology allows the simulation of more
complicated geometries (not only rectangular domains) or domain with a time de-
pendent shape.

This numerical code has been applied to the classical window cavity, in order to
provide more accurate results than those provided in 1996. In spite of its appar-
ent simplicity, it represents a serious test case from a computational point of view,
especially at high values of the Rayleigh number (108 and larger values). It is not
simple to find an accurate solution, as evidenced by the significant discrepancy
of the existing results. In fact, this problem has been investigated by several au-
thors, with different numerical models. In 1983, de Vahl Davis (1983) provided
a benchmark solution for this problem, assuming the Prandtl number (Pr) equal
to 0.71, for values of Ra limited to 106. Successively, Le Queré (1991) provided
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accurate results also for higher values of Ra (107 and 108). In 1994, Ravi, Henkes
and Hoogendoorn (1994) performed an analysis of the flow structure evolution in
the corner region of the cavity, as the value of Ra is increased. Numerical results
were provided also by Mayne, Usmani and Crapper (2000), who employed an h-
adaptive finite element method, founding a good agreement with Le Queré. Wan,
Patnaik and Wei (2001) introduced a quasi-wavelet-based discrete singular convo-
lution (DSC) to solve the window cavity, presenting benchmark quality data for the
range 103 ≤ Ra ≤ 108. Their results match quite good with previous ones, even if
DSC seems to fail to accurately simulate the velocity field in the boundary layers at
high Ra. In a recent paper, Dixit and Babu (2006) used a thermal lattice Boltzmann
method to simulate natural convection in a square cavity for high Ra, as a novel
alternative to traditional numerical methods. Their results show good agreement
with reference ones at small-medium values of Ra, but for larger values the dis-
crepancy is not negligible, also due to the unsteadiness of the flow that is not taken
into account by their model. Finally, Gelfgat (2006) applied the global Galerkin or
weighted residuals method to the incompressible Navier-Stokes equations, provid-
ing good quality results.

It is evident that the window cavity still represents an useful test case to evaluate
the power and correctness of numerical codes. The difficulties are increased by
the transition to the unsteady periodic regime that, from the numerical findings of
Le Queré and Behnia (1998), should appear at about Ra = 1.82 · 108. The benefits
of implicit time integration procedures are not so obvious for solving unsteady
flows, because the CFL number must be anyhow of the order of unity, otherwise
there could be a lack of accuracy in the transient histories if the time step is too
large. However, in the opinion of the author, the use of implicit methods is always
strongly recommended, because at these large values of Ra, explicit or ADI solver
based codes need very small CFL (order of 0.001 or smaller) and in some cases it
has been experienced that they do not allow the possibility to simulate these cases,
whatever was the CFL chosen.

The main aims of this paper are:
- to describe the implicit numerical model adopted, and particularly the spatial
discretization of the incompressible Navier-Stokes equations in vorticity-velocity
formulation;
- to show the capabilities of the code to accurately simulate domains with very fine
meshes with second order accuracy in reasonably limited cpu-time even on a note-
book;
- to provide a more accurate steady solution of the window cavity at Ra = 108 with
respect to the one obtained in the previous work, Stella and Bucchignani (1996);
- to provide a description of an unsteady solution, for a value of the Rayleigh num-
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ber (Ra = 2 ·108) larger than the critical value, with analysis of the transient histo-
ries and flow configurations.

The paper is organized as follows: in Sec. 2 the mathematical model is briefly
recalled; in Sec. 3 the numerical method is widely explained and in Sec. 4, after a
short description of the problem, results are presented, both for the steady and for
the unsteady case.

2 Mathematical model

2.1 Governing equations

The mathematical model is widely explained in Stella and Bucchignani (1996);
however, it is briefly recalled here. The vorticity-velocity form of the non-dimensional
equations governing two-dimensional natural convection for a Newtonian fluid, as-
suming the Boussinesq approximation to be valid, is (Guj and Stella, 1993):
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where ωωω is the vorticity vector, u(u,v,0) is the velocity vector and θ is the temper-
ature. The non-dimensional parameters Ra and Pr are defined as:

Ra =
gβ ΔTL3

κν
Pr =

ν
κ

in which g is the gravitational acceleration, β is the coefficient of thermal expan-
sion, L is the size of the box, ΔT the temperature difference between hot and
cold walls, κ the thermal diffusivity and ν is the kinematic viscosity. The non-
dimensional scheme is based on a reference velocity u∗ defined as κ/L and a refer-
ence time t∗ defined as L2/κ .

The vorticity ωωω = (0,0,ω) is defined as usual:

ωωω = ∇×u (4)

where, because the flow is two-dimensional, only the third component of ωωω is ob-
viously non-zero.

Heat flux, from hot to cold wall, has been evaluated using the proper definition of
the mean Nusselt number on a vertical section:

Nu =
1
S

∫
S
(θu−∇θ ) ·ndS (5)
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2.2 Boundary conditions

The above formulation allows a very simple form of the boundary conditions:

• the boundary conditions associated to eq. (1) are obtained by the vorticity
definition written on the boundary.

• Dirichlet boundary conditions are associated to the elliptic velocity equation
(2). In particular null velocity field is assigned at the solid walls.

• the boundary conditions for the energy equation are easily derived from the
definitions and are of Dirichlet or Neumann type in those portions of the
boundary where respectively the value of temperature or its normal derivative
are known.

θ = Th
{

x = 0

θ = Tc
{

x = L

∂θ
∂n

= 0
{

y = 0, y = H

3 Numerical method

As already explained in the Introduction, the methodology proposed in this paper
is an extension of an existing one introduced by Stella and Bucchignani (1996). In
that work, the governing equations were discretized using a finite difference tech-
nique on a uniform cartesian grid. The time integration was performed by means of
a fully implicit approach and solving the linear system arising from discretization
using an iterative method belonging to the Krylov subspace class. It was opin-
ion of the authors that proposed methodology represented a useful compromise
between numerical efficiency and robustness. It is worth noting that it allows easy
and straight-forward applications on parallel computers, subdividing the coefficient
matrix in horizontal bands, each of them is assigned to a processor, allowing to ob-
tain the same transient history as on a uniprocessor machine, with interesting values
of speed-up.

Its main lack was of course the scarce flexibility in applications, due to the dis-
cretization performed on cartesian grids, that limits the use only to regular do-
mains. For this reason, in order to overcome this problem, in this work the gov-
erning equations have been discretized using a finite volume approximation on a
non uniform mesh made up of quadrilateral elements, following the approach de-
scribed in Fletcher (1991). Each equation is integrated over an appropriate control
surface, as proposed by Labonia, Stella, Leonardi and Guj (1997). Staggering of
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the variable locations has been chosen in order to obtain the maximum accuracy of
the discretized terms.

The time derivative and the convective term in the vorticity equation are discretized
using the control surface shown in Fig. 1. Due to the staggering of the variables,
none of the unknowns is positioned at the points labelled with e, w, n, s, so they
are evaluated by averaging the values of the variables in the computational nodes
rounding the mentioned points.

In a similar manner, the time derivative and the convective term of the energy equa-
tions have been discretized using the control surface shown in Fig. 2.

The Laplacian term in the vorticity equation has been discretized by means of the
formula described, for example, in Labonia, Stella, Leonardi and Guj (1997), con-
sidering the same control surface of Fig. 1. The Laplacian terms contained in the
energy equation and velocity equations have been discretized in the same way, but
assuming different control surfaces. The buoyancy term in the vorticity equation
and the spatial derivatives of ω in the velocity equations are discretized without
particular difficulties.

The time integration of non-linear systems has two important aspects: time dis-
cretization and treatment of the non-linear terms. For what concerns the first topic,
a three point second order backward difference is employed in this work, which
is commonly used. Implicit methods differ one another by the way in which non-
linear terms are treated. A simple solution consists in decoupling the equations
(as in the SIMPLEC algorithm, Barakos and Mitsoulis, 1994); however, a proce-
dure that ensures good coupling between the equations has been preferred (Lowrie,
2004), in order to guarantee mass conservation. In fact, since the continuity equa-
tion is not explicitly imposed, mass conservation and definition of vorticity could
be violated, if good coupling between the full set of the equations is not ensured.
The procedure adopted is the following: let us consider a non-linear term, for ex-
ample a convective term in the vorticity equation (i.e. uω). If u0 and ω0 are the
known values (at the previous time step), and Δu and Δω are the variations (to be
calculated), the non-linear term can be written as:

uω = (u0 +Δu)(ω0 +Δω) = u0ω0 +u0Δω +ω0Δu+ΔuΔω (6)

the last term can reasonably be neglected, obtaining the searched linearization. This
procedure leads to a large sparse linear system of equations Rx = b to be solved
at each time step. The Bi-CGSTAB algorithm (Van der Vorst, 1992) has been
adopted, because of its numerical stability and speed of convergence. Bi-CGSTAB
is an iterative method belonging to the Krylov subspace class. Although, from a
theoretical point of view, iterative methods can be used without preconditioning
the linear systems of equations, the use of a preconditioning technique is, in many
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Figure 1: Control surface for the discretization of the convective term in vorticity
equation.

practical applications, essential to fulfil the convergence and stability requirements
of the iterative procedure itself. In this work a ILU factorization has been adopted
as preconditioner.
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Figure 2: Control surface for the discretization of the convective term in energy
equation.

4 Results

4.1 Description of the problem

The problem under consideration is depicted in Fig. 3.

The flow domain is the interior of a 2D square cavity (L = H). The horizontal walls
are assumed to be perfectly adiabatic, while the vertical walls are kept isothermal
with the left wall at high temperature Th and the right wall at low temperature Tc.
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Figure 3: The square cavity with boundary conditions.

The cavity is filled with air, and all the properties are calculated at a reference
temperature of 273 K. In such conditions, the Prandtl number is equal to 0.71 and
is kept constant. Owing to heat transfer, density changes result in a recirculating
flow.

4.2 Steady solution

The first simulation has been performed at Ra = 108, which is the larger values
usually adopted by researchers to compare steady solutions of the window cavity.
The results obtained by the author (Stella and Bucchignani, 1996) using a finite
difference code were affected by an error generally three to four times higher with
respect to those obtained at lower values of Ra. This indicates greater difficulty
in the resolution of thermal and kinematic boundary layers at this high value of
Ra with a uniform grid. As suggested by Barakos and Mitsoulis (1994), the use
of non-uniform meshes is recommended, since the influence of the steep gradients
near solid walls dominates at high Ra: the node density is higher near the walls of
the cavity. An example of non-uniform grid is shown in Fig. 4.

As usual, it has been assumed that L = H = 1, Th = 1, Tc = 0 (non dimensional
values). All the numerical simulations have been performed on a PC - Pentium IV
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Figure 4: The computational grid with 129 ·129 points.

3 GHz with 1 GB of memory.
A mesh sensitivity analysis has been performed, considering three different grids:
129 · 129, 257 · 257 and 513 · 513. The maximum and minimum values of the cell
size for each mesh are reported in Tab. 1, together with the maximum allowable
value of the time step and with the cpu-time required to perform a single iteration.
In all the cases the CFL order of magnitude is unity. The simulation on the grid
129 ·129 has performed starting from rest. The simulation on the grid 257 ·257 has
been performed starting from a flow field obtained by appropriately interpolating
the steady solution on the grid 129 · 129. And in the same way, the computation
on the grid 513 · 513 has been started from a flow field obtained by appropriately
interpolating the steady solution on the grid 257 · 257. For this reason, the global
cpu-time required to reach the steady state does not grow quickly with the size of
the problem, being on the three grids respectively equal to 40, 250 and 530 hours.

The following quantities have been selected for the comparison:

|ψ |max the maximum value of the stream function ψ ;
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Table 1: Maximum and minimum values of the cell size, maximum time step, cpu-
time x iteration for each mesh.

mesh max Δx min Δx Δt cpu x it.
129 ·129 10−2 10−3 10−6 3.2 sec
257 ·257 5 ·10−3 5 ·10−4 10−7 16 sec
513 ·513 2.5 ·10−3 2.5 ·10−4 2 ·10−8 69 sec

|ψ |mid the value of the stream function ψ in the centre of the cavity;

umax the maximum value of the horizontal velocity distribution at the mid width
(x = 0.5) (together with its location);

vmax the maximum value of the vertical velocity distribution at the mid height
(y = 0.5) (together with its location);

Umax the maximum value of the horizontal velocity component on the whole do-
main;

Vmax the maximum value of the vertical velocity component on the whole domain;

Nu1/2 the average Nusselt number on the vertical mid-plane of the cavity;

Nu the average Nusselt number throughout the cavity;

Nu0 the average Nusselt number on the vertical left wall;

NuL the average Nusselt number on the vertical right wall;

that are the same proposed by de Vahl Davis (1983) with the addition of the max-
imum values of the velocity components on the whole domain, proposed by Wan,
Patnaik and Wei (2001).

Tab. 2 reports the values of these quantities obtained on each grid. The analysis
of the table confirms that the numerical model is “nearly" second order accurate in
space. Besides, being a difference lesser than 1 % between the values of each veloc-
ity component obtained on the different grids, the results are “mesh - independent".
The percentage error for Nu is slightly higher: this difficulty in numerical conver-
gence of Nu has been already observed (Stella, Guj and Leonardi, 1993) and is
related to the calculation of Nu which is a derived quantity in the vorticity-velocity
formulation.
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Table 2: Steady solution: mesh sensitivity analysis.

129 ·129 257 ·257 513 ·513
ψmid 52.40 52.43 52.44
ψmax 53.84 53.89 53.90
Umax 1127.6 1125.9 1125.4
Vmax 2227.6 2233.5 2235.1
umax 315.4 320.4 321.7
vmax 2224.4 2224.3 2224.3

Nu1/2 32.72 30.78 30.15
Nu 29.31 28.78 28.42
Nu0 29.22 28.80 28.57
NuL 1.94 1.92 1.92

Streamlines contour plots and isothermal lines are shown in Fig. 5 and 6. An anal-
ysis of the pictures shows that, as already found in previous works, the temperature
and velocity fields are skew symmetric with respect to the centre of the compu-
tational domains. While for smaller values of Ra the heat transfer is mainly due
to conduction, increasing Ra causes a change of heat transfer mechanism, in fact
convection tends to become dominant: the isothermal lines are vertical everywhere,
being horizontal only in the proximity of vertical walls (very thin thermal boundary
layer).

As already described in the Introduction, the window cavity problem has been
investigated by several authors, with different numerical techniques, so a large
amount of data is available for comparison. Tab. 3 reports some of the quanti-
ties found in literature, together with the present results.

The analysis of Tab. 3 allows the following considerations. First, it is evident that
the use of non-uniform meshes significantly increases the quality of the solution.
In fact, assuming the data of Le Queré (1991) as reference, the error that affects the
present results obtained on the grid 257 · 257 is lower than the error related to the
solution obtained by the author on a uniform grid (Stella and Bucchignani, 1996)
with the same number of points. The vertical velocity distribution has a direct
relation to the size of the boundary layers near the hot and cold walls: the non-
uniform grid 513 ·513 allows an optimal resolution of the vertical boundary layers,
as stated by the excellent agreement of vmax, concerning both the value (error 0.1
%) and its location. The same good agreement is registered for umax and for the
values of ψ , even if ψ is a derived variable in the present formulation. Fig. 7 shows
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Figure 5: Streamlines at Ra = 108.

Figure 6: Isothermal lines at Ra = 108.
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Table 3: Steady solution: comparison of the current solution on the grids 257 ·257
and 513 ·513 with available data. (1) Stella and Bucchignani (1996), (2) Le Queré
(1991), (3) Mayne and Usmani (2000), (4) Wan, Patnaik and Wei (2001), (5) Dixit
and Babu (2006), (6) Gelfgat (2006)

257 ·257 513 ·513 (1) (2)
ψmid 52.43 52.44 52.97 52.32
ψmax 53.89 53.90 54.44 53.85
umax 320.4 321.7 326.48 321.90

x 0.914 0.925 0.931 0.928
vmax 2224.3 2224.3 2200.9 2222.0

y 0.015 0.015 0.017 0.012
Umax 1125.9 1125.4 - -
Vmax 2233.5 2235.1 - -
Nu1/2 30.78 30.15 30.75 30.22

Nu 28.78 28.42 30.75 -
Nu0 28.80 28.57 30.75 30.22
NuL 1.92 1.92 1.90 1.92

(3) (4) (5) (6)
ψmid - - - 52.32
ψmax - - - 53.84
umax 283.6 295.7 373.8 321.86

x 0.94 0.940 0.933 0.927
vmax 2223.4 2290.1 2256.5 2222.28

y 0.013 0.013 0.0112 0.012
Umax - 1006.3 - -
Vmax - 2293.6 - -

Nu1/2 - - - -
Nu - 23.67 30.15 -
Nu0 29.62 - - 30.22
NuL - 1.43 - -
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the temperature profile at y = 0.5 and Fig. 8 shows a close-up view of the boundary
layer near the left wall.

A scarce agreement with the results of Wan, Patnaik and Wei (2001) is observed,
being the discrepancy included in the range 3 - 10 %, with larger errors for the
horizontal velocity components. They used a DSC approach that, in spite of several
advantages, seems not suitable for high Ra fields, because it is not able to accurately
simulate the velocity distribution in the boundary layer. This is also confirmed by
the large error on Umax, which is localized at a point close to the top left corner of
the cavity. For what concerns the solution of Dixit and Babu (2006), they provide
a value of umax that is very different from the one of other authors. The possible
reason is that their solution is not really “mesh - independent" because, in spite of a
fine grid adopted (512 ·512), they report a non negligible difference (4 %) between
the solutions obtained on consecutive grids. Finally, a quantitative comparison with
the results of Ravi, Henkes and Hoogendoorn (1994) is not possible, because they
do not provided the values used in Tab. 3, however the streamlines contour plot of
Fig. 5 looks very close to their analogous plot.

4.3 Unsteady solution

In contrast to steady solutions, only a few numerical simulations of unsteady flows
have been performed in cavities heated from a side. From the stability linear analy-
sis (P. Bergé, Pomeau and Vidal, 1984) it is detected that, when a system undergoes
a supercritical Hopf bifurcation (as in the present case), a complex pair of eigen-
values of the Jacobian crosses the imaginary axis, giving rise to a perturbation that
causes unsteadiness and could break the skew symmetry of the field.

The critical value of Ra for the transition to the unsteady periodic regime was eval-
uated, with a reasonable degree of certainty, by Le Queré and Behnia (1998) and
is equal to 1.82± 0.01 · 108. In order to show the capabilities of the proposed
method to properly simulate the unsteady regime, a simulation was performed at
Ra = 2 ·108, using the same grid (257 ·257) already described in the previous sub-
section, and assuming a time step Δt = 10−7.

In Tab. 4 the oscillation frequency and the maximum value of the vorticity at the
point C (see below) obtained using different time steps are shown, in order to eval-
uate the accuracy of the numerical scheme with respect to time derivative. The
results obtained show that method is second order accurate with regards to time
discretization, and that Δt = 10−7 (the CFL order of magnitude is unity) provides
results sufficiently accurate for our purposes.

It is well known that in the steady regime the solution does not depend on the ini-
tial conditions, but this is not true when the solution becomes time dependent, so
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Figure 7: Temperature profile at Ra = 108, at y = 0.5: entire cavity.

Figure 8: Temperature profile at Ra = 108, at y = 0.5: close up view near the left
wall.
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Figure 9: Time history of ω at Ra = 2 ·108, at the point C(0.007,0.81).

Figure 10: Frequency analysis of the time history of ω at Ra = 2 ·108, at the point
C(0.007,0.81).
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Figure 11: Time history of ω at Ra = 2 ·108, at the point A(0.007,0.007).

Figure 12: Frequency analysis of the time history of ω at Ra = 2 ·108, at the point
A(0.007,0.007).
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Table 4: Unsteady solution: time step sensitivity analysis.

Δt = 2 ·10−7 Δt = 10−7 Δt = 5 ·10−8

f 6873.86 6866.50 6864.61
ωωωmax 159324.7 159236.6 159214.3

in this case they must be clearly specified. In this work, the steady field obtained
at Ra = 108 has been used as initial condition. The time histories of the flow vari-
ables have been monitored in five distinct points: A(0.007,0.007), B(0.81,0.007),
C(0.007,0.81), D(0.81,0.81) and E(0.15,0.88). The first four points are located in
the proximities of the four corners, while the last one is the point that was selected
by Le Queré and Behnia (1998). The analysis of the time histories shows that the
flow is quasi-periodic with two incommensurate frequencies. This regime is char-
acterized by a couple of fundamental frequencies that could be different from a
point to another. Fig. 9 shows the time history of the vorticity at the point C and
Fig. 10 shows the FFT performed on this signal (65536 samples): it is characterized
by a main frequency f1 = 6866.5 (non-dimensional units), which is modulated by
a lower frequency f2 = 1220.7. The same behaviour is observed also at the point
E. Instead, the vorticity signal at the point A differs (Fig. 11 and 12), because in
this case the main frequency is f2, modulated by a lower one f3 = 915.5. Besides,
at the point B the couple of frequencies is f4 = 610.35 and f5 = 1068.11, while at
the point D is f2 and f5. It is worth noting that, at each point, the behaviour of the
other flow variables (u, v, θ ) is analogous to that of ω , with the same frequencies
of oscillations.

Fig. 13 shows the streamlines at Ra = 2 · 108 for four different time steps: t1 (be-
ginning of a period), t2 = t1 + T p/4, t3 = t1 + 2 ·T p/4, t4 = t1 + 3 ·T p/4, where
T p = 1/ f2. This picture shows that the flow configuration continues to be skew
symmetric at each time step, highlighting that the perturbations (numerical and
physical) at this value of Ra are not sufficient to break the symmetry. This should
happen at larger values of Ra, but this analysis is beyond the purpose of the present
paper.

A comparison with the results of Le Queré and Behnia (1998) is not immedi-
ate, because they used a different non-dimensional scheme. However, starting
from the same initial conditions, they also found a skew symmetric configura-
tion; concerning the time regime, they found at the point E a fundamental period
equal to 22.07 non-dimensional units. The period evaluated in the present work
is T p1 = 1/ f1 = 1.456 · 10−4 and making the opportune unit conversions, it cor-
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responds to 20.59 non-dimensional units (scheme of Le Queré Behnia). This is
of course a good agreement, also taking into account the FFT introduces a further
numerical error.

(a) (b)

(c) (d)

Figure 13: Streamlines at Ra = 2 ·108 for four different time steps: (a) t1 (beginning
of a period), (b) t2 = t1 +T p/4, (c) t3 = t1 +2 ·T p/4, (d) t4 = t1 +3 ·T p/4.
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5 Conclusions

A fully implicit finite volume formulation for the incompressible Navier-Stokes
equations has been described. The fast increase of computational power occurred
in the last few years has given rise to a renewed interest for the implicit methods,
making them appealing for practical everyday applications.

The proposed method allows the possibility of using non-uniform meshes, repre-
senting an improvement of the formulation introduced by Stella and Bucchignani
(1996).

The method has been applied to the classical window cavity problem at high values
of Ra. It has been shown that the code is able to accurately simulate domains with
very fine meshes in reasonably limited cpu-time, obtaining an excellent agreement
of a steady solution at Ra = 108 with a reference one.

An unsteady case has also been efficiently simulated, for a value of Ra (2 · 108)
larger than the critical value, with analysis of the transient histories and flow con-
figurations. The regime is quasi periodic with two incommensurate frequencies,
while the flow structure changes periodically, but continues to be skew symmetric
at each time step.

The present numerical code can also be applied to the simulation of domains with
a more complex shape, for example a box with curvilinear walls, or also domains
with a time-dependent shape: this occurs in the case of melting problems (Mansutti
and Bucchignani, 2005), which could benefit of such kind of methodology, or also
domains with a mobile free surface (Bucchignani, Stella and Paglia, 2004). This
will be the subject of future work.
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