
Copyright © 2009 Tech Science Press FDMP, vol.5, no.2, pp.149-160, 2009

Stability of Marangoni Convection in a Composite
Porous-Fluid with a Boundary Slab of Finite Conductivity

Norihan M. Arifin1 and Ioan Pop2

Abstract: A linear stability analysis is used to investigate the onset of Marangoni
convection in a three-layer system comprising an incompressible fluid saturated
porous layer over which lies a layer of the same fluid and below which lies a solid
layer. The lower boundary is subjected to a fixed heat flux, while the upper free
surface of the fluid is non-deformable. At the interface between the fluid and the
porous layer, the Beavers-Joseph slip condition is used and the Darcy law is em-
ployed to describe the flow in the porous medium. The asymptotic analysis of the
long-wavelength is performed and the results are compared with those for the case
of porous-fluid layer system. The effects of the thermal conductivity and the thick-
ness of the solid plate on the onset of convective instability are studied. It is found
that the solid plate with a higher relative thermal conductivity or higher thickness
ratio tends to stabilize the system.

Keywords: Linear stability, Marangoni convection, Porous medium, Regular Per-
turbation Method.

1 Introduction

The problem of thermoconvective instability in a horizontal fluid layer driven by
the surface tension effects (Marangoni convection) has been studied extensively
by many researchers. The first theoretical study on the steady Marangoni con-
vection in a horizontal fluid layer was made by Pearson (1958). The convective
instability of a fluid overlying a porous region saturated with the fluid subjected to
uniform temperature gradient has been investigated extensively by several authors
[Nield(1977,1998), Nield and Bejan(2006), Straughan (2001), Taslim and Naru-
sawa (1989)]. Nield (1977) considered a layered model and employed an empirical
interfacial condition at the fluid-porous interface suggested by Beavers and Joseph
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(1967). Chen and Chen (1988) produced a classical paper in which they have stud-
ied the thermal convection in two-layer system composed of a porous layer satu-
rated with fluid over which lay the same fluid. The work of Chen and Chen (1988)
employed the fundamental model for convection in a porous-fluid-layer system de-
veloped originally by Nield (1977). McKay (1998) examined the onset of Bénard
convection in a layer of fluid on top of a saturated porous layer. He reported that
the relative thickness of the two layers determined whether this convection is con-
centrated in the fluid layer or in the porous layer. The presence of thin porous
layers was found to have a small destabilizing influence on the system. Shivaku-
mara, Suma and Chavaraddi (2006) studied the onset of Marangoni convection in
a composite porous-layer system and the Beavers-Joseph slip condition is used at
the interface while the Darcy law is employed to describe the flow in the porous
medium. They showed that the linear stability curves for the onset of Marangoni
convection depend on the parameter in their analysis, which is the number

ζ =
depth of fluid layer

depth of porous layer
.

They interpreted their findings by showing that for ζ small, the instability was ini-
tiated in the porous medium, whereas for larger ζ , the instability was controlled
by the fluid layer. They also suggested that the regular perturbation technique with
small wave number a as a perturbation parameter can conveniently be used in solv-
ing convective instability problems for the case of insulating boundaries.

In this paper, we extend Shivakumara, Suma and Chavaraddi (2006) work to the
problem of the Marangoni convection in a composite porous-fluid layer with a
boundary slab of finite conductivity. We use the regular perturbation technique
to obtain the asymptotic solutions of the long-wavelength.

2 Physical Formulation

Consider an infinite horizontal porous layer of thickness dp underlying a liquid
layer of thickness d f and overlying a solid layer of thickness ds. The physical con-
figuration is shown in Fig. 1. The lower boundary is subjected to a fixed heat flux,
while the upper surface of the fluid is free and is assumed to be non-deformable.

Based on the above assumptions together with the Boussinesq approximation, the
governing equations for the continuity, momentum and energy in the fluid layer are
respectively

∇ ·u f = 0 (1)

ρ0

(
∂
∂ t

+u f ·∇
)

u f = −∇p f +ν∇2u f (2)
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Figure 1: Physical Model

(
∂
∂ t

+u f ·∇
)

Tf = κ f ∇2Tf , (3)

and for the porous layer, the equations are

∇ ·up = 0 (4)

ρo

Φ
∂up

∂ t
= −∇p pp − μ

K
up (5)

H
∂Tp

∂ t
+(up ·∇p)Tp = κp∇2

pTp (6)

while for the solid layer, the energy equation takes the form

∂Ts

∂ t
= κs∇2Ts (7)

where u is the velocity vector, T is the temperature, p is for pressure, K is the
permeability of the porous medium, H is the ratio of heat capacity, μ is the fluid
viscosity, κ is the thermal diffusivity and ρo is the reference fluid density. The
subscripts f , p and s refer to the quantities in the fluid, porous and solid layers,
respectively.

We may introduce the infinitesimal disturbances to the governing equations by set-
ting

(u f ,up,us,ρ , p,μ ,Tf ,Tp,Ts) =
(0,0,0,ρ , p̄, μ̄ , T̄f , T̄p, T̄s)+

(
u′f ,u′p,u′s,ρ ′, p′,μ ′,T ′

f ,T ′
p,T ′

s

)
where the primed quantities are the perturbed ones over their equilibrium counter-
parts. The variables are then nondimensionalized using d f , d2

f /κ f , κ f /d f , ΔTf as
the units of length, time, velocity and temperature, respectively in the fluid layer
and dp, d2

p/κp, κp/dp, ΔTp as the corresponding characteristic quantities in the
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porous layer. The detailed flow fields in both the fluid and porous layers can be
clearly discerned for all depth ratios, ζ = d f/dp. Then the linearized perturbation
equations in dimensionless forms for the fluid layer are[

1
Pr

∂
∂ t

−∇2
]

∇2wf = 0, (8)

(
∂
∂ t

−∇2
)

θ f = wf , (9)

and for the porous layer are(
Da
Prp

∂
∂ t

+1

)
∇2

pwp = 0, (10)

(
H

∂
∂ t

−∇2
p

)
θp = wp. (11)

For the fluid layer, Pr = υ/κ is the Prandtl number, ∇2 = ∂
∂x2 + ∂

∂y2 + ∂
∂z2 is the

Laplacian operator and for the porous layer, Prp = υ/κpφ is the Prandtl number,
Da = K/d2

p is the Darcy number and ∇2
p = ∂

∂x2
p
+ ∂

∂y2
p
+ ∂

∂z2
p
.

The linearized pertubation equation in dimensionless forms for the solid layer is

∂θs

∂ t
=

κs

κp
∇2θs. (12)

Also, the linearized perturbed boundary conditions in dimensionless forms at the
non-deformable and insulating upper surface (at z = 1), are

wf = 0, (13)

∂θ f

∂ z
= 0, (14)

∂ 2wf

∂ z2 = M∇2
hθ f (15)

where M = σΔTf d f /μκ f is the Marangoni number and ∇2
h = ∂

∂x2 + ∂
∂y2 is the hori-

zontal Laplacian operator. At the porous-fluid interface (z = 0) the boundary con-
ditions are

wf − ς
εT

wp = 0, (16)

θ f − εT

ς
θp = 0, (17)
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∂θ f

∂ z
− ∂θp

∂ zp
= 0, (18)

∂ 2wf

∂ z2 −χ∇2
hwf − ας√

Da

∂wf

∂ z
+

ας 3

εT

[
1√
Da

]
∂wp

∂ zp
= 0, (19)

(
3∇2

h +
∂ 2

∂ z2

)
∂wf

∂ z
− 1

Pr

∂
∂ t

(
∂wf

∂ z

)
+

ς 4

εT

[
1

Da

]
∂wp

∂ zp
+

1
Prp

∂
∂ t

(
∂wp

∂ zp

)
= 0, (20)

where χ is a constant taking the value 0 for the Beavers-Joseph condition and 1
for the Jones condition (see Shivakumara, Suma and Chavaraddi (2006)) and εT =
κ f /κp is the ratio of the thermal diffusivities. At the solid-porous interface (zp =
−1), the boundary conditions are

wp = 0, (21)

∂θp

∂ zp
= 0, (22)

θp = θs, (23)

∂θp

∂ zp
=
(

ks

kp

)
∂θs

∂ zp
. (24)

At the bottom surface, at zp = −ds/dp, a uniform heat flux is imposed and

∂θs

∂ zp
= 0 (25)

The perturbation quantities in terms of normal modes are expressed as

(wf ,θ f ) = [W f (z),Θ f (z)]exp [i (axx+ayy)+ωt] (26)

(wp,θp,θs) = [Wp (zp) ,Θp (zp) ,Θs (zp)]exp [i (ãxx+ ãyy)+ωpt] (27)

where a =
√

(a2
x +a2

y) is the dimensionless wave number in the fluid layer, while

ap =
√

(ã2
x + ã2

y) is the dimensionless wave number in the porous layer. By sub-

stituting Eqs. (26) and (27) into Eqs. (8)-(12), and setting ω = 0, the governing
equations of the perturbed state become

(
D2 −a2)2

W f = 0, (28)

(
D2 −a2)Θ f = −W f , (29)(
D2

p −a2
p

)
Wp = 0, (30)
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(
D2

p −a2
p

)
Θp = −Wp, (31)(

D2
p −a2

p

)
Θs = 0, (32)

where D and Dp denote the differentiation with respect to z and zp, respectively.
The wave number in the fluid and porous layer must be the same, so that we have
a/d f = ap/dp and hence ζ = a/ap. Using Eqs. (26) and (27), the boundary condi-
tions given by Eqs. (13)-(25) now take the form at z = 1:

W f = 0, (33)

DΘ f = 0, (34)

D2W f +Ma2Θ f = 0, (35)

at z = 0:

W f − ζ
εT

Wp = 0, (36)

DΘ f −DpΘp = 0, (37)

Θ f − εT

ζ
Θp = 0, (38)

[
D2 + χa2 − αζD√

Da

]
W f +

αζ 3

εT
√

Da
DpWp = 0, (39)

[
D2 −3a2]DW f +

ζ 4

εT Da
DpWp = 0, (40)

at zp = −1:

Wp = 0, (41)

DpWp = 0, (42)

Θp = Θs, (43)

DΘp = krDΘs, (44)

and at zp = −dr:

DΘs = 0, (45)

where kr = ks/kp is the ratio of the thermal conductivity of the solid plate to that
of the porous layer, and dr = ds/dp is the ratio of the solid plate thickness to the
porous layer thickness. Solving the perturbation equation (32) for the solid layer,
together with the boundary conditions (43)-(45), the thermal boundary condition at
the solid-porous interface, at zp = −1 becomes

DΘp = krap tanh(apdr)Θp (46)
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3 Long Wavelength Asymptotic Analysis

As the fluid is subjected to a uniform heat flux below (kr = 0 or dr = 0) and above
(Bi = 0), the critical wave number vanishes, ac → 0. For studying the validity of the
small wave number analysis, the dependent variables in both the fluid and porous
layer are now expanded in powers of a2 in the form

(W,Θ) =
N

∑
i=0

(
a2)i

(Wi,Θi) , (47)

(Wp,Θp) =
N

∑
i=0

(
a2

p

ζ 2

)i

(Wpi,Θpi) . (48)

Substitution of Eqs. (47) and (48) in Eqs (28)-(31) and collecting the terms of
zeroth order, we obtain

D4W f 0 = 0, (49)

D2Θ f 0 = −W f 0, (50)

D2
pWp0 = 0, (51)

D2
pΘp0 = −Wp0, (52)

and the boundary conditions (33)-(42) and (46) become at z = 1:

W f 0 = DΘ f 0 = D2W f 0 = 0, (53)

at z = 0:

W f 0 =
ζ
εT

Wp0, (54)

Θ f 0 =
εT

ζ
Θp0, (55)

DΘ f 0 = DpΘp0, (56)

D2W f 0 − αζ√
Da

DW f 0 +
αζ 3

εT
√

Da
DpWp0 = 0, (57)

D3W f 0 = − ζ 4

εT Da
DpWp0, (58)

and at zp = −1:

Wp0 = DpΘp0 = 0. (59)
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The terms of order a2 are

D4W f 1 = 0, (60)

D2Θ f 1 − εT

ζ
= −W f 1, (61)

D2
pWp1 = 0. (62)

D2
pΘp1 −1 = −Wp1, (63)

and the corresponding boundary conditions at z = 1:

W f 1 = DΘ f 1 = 0, (64)

D2W f 1 +MΘ f 0 = 0, (65)

at z = 0:

W f 1 =
1

ζεT
Wp1, (66)

Θ f 1 =
εT

ζ 3 Θp1, (67)

DΘ f 1 =
1

ζ 2 DpΘp1, (68)

D2W f 1 − αζ√
Da

DW f 1 +
αζ

εT
√

Da
DpWp1 = 0, (69)

D3W f 1 = − ζ 2

εT Da
DpWp1, (70)

and at zp = −1,

Wp1 = 0, (71)

DpΘp1 =
krdr

ζ 2 Θp0. (72)

We use the symbolic algebra package MAPLE 10 running on a Pentium PC to carry
out much of the tedious algebraic manipulations to obtain the critical Marangoni
number Mc as

Mc =
[
864αkrdrDa3/2 +A1ζ +A2ζ 2 +A3ζ 3+

A4ζ 4 +A5ζ 5 +A6ζ 6]/[εT A7

(
αζ +6

√
Da
)]

+
48α2ζ 7

A7
(
αζ +6

√
Da
) (73)
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where

A1 =864αDa3/2(1+krdr)+144α2krdrDa

A2 =Da
(

864α
√

Da(1+εT )+144α2 (1+krdr)
)

A3 =Da
(

864εTα
√

Da+144α2 (1+εT )+864krdr

)
A4 =144εT α2Da+864Da+432αkrdr

√
Da

A5 =864εT Da+432α
√

Da+48α2krdr

A6 =48α2 +432εT α
√

Da

A7 =αζ 6 +6ζ 5
√

Da+12αζ 3Da+48αζ 2Da+(36εT αDa+72Da3/2)ζ

+72εT Da3/2

As kr = 0 or dr = 0, Eq. (73) can be reduced to the result of Shivakumara, Suma
and Chavaraddi (2006).

Table 1: The critical Marangoni numbers for different values of thickness dr and ζ
in the case of εT = 0.725 and Da = 0.003

ζ Shivakumara Present Study (kr = 1)
et. al. [10] dr = 0.0 dr = 1.0 dr = 10.0 dr = 100.0

0.001 0.33229 0.33229 332.384 3320.854 33205.559
0.01 2.39090 2.38979 239.649 2374.980 23728.319
1.0 90.3660 90.3660 142.752 614.227 5328.975
2.0 77.6648 77.7225 94.788 239.381 1685.306
3.0 68.7142 68.7153 76.371 141.677 794.735
5.0 60.7071 60.7166 63.447 87.116 323.807
10 54.4200 54.4401 55.100 61.040 120.428
100 48.6459 48.6460 48.653 48.712 49.308

1000 48.0646 48.0646 48.0647 48.065 48.071

4 Results and discussion

The onset of Marangoni convection corresponds to a vanishing small wave num-
ber in a three-layer system, comprising of an incompressible fluid saturated porous
layer over which lies a layer of the same fluid and below which lies a solid layer, is
investigated theoretically. As the fluid is subjected to a uniform heat flux below and
above (Bi = 0), the critical wave number (ac) is vanishing. The regular perturba-
tion technique is used to obtain the analytical expression for the critical Marangoni
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Figure 2: Variation of Mc with ζ for different values of drin the case εT = 0.725,
kr = 1, α = 1 and Da = 0.003

numbers, Mc for long-wavelength (a → 0). The critical Marangoni number Mc de-
pends on the depth ratio ζ = d f/dp and dr = ds/dp, the thermal conductivity ratio
kr, the Darcy number Da and α .

The critical Marangoni numbers obtained for different values of ζ and dr when
α = 1.0, εT = 0.725 and Da = 0.003 are presented in Table 1. From the table, we
note that the asymptotic solutions are in good agreement with Shivakumara, Suma
and Chavaraddi (2006) for dr = 0. As ζ → ∞, the critical Marangoni number Mc

attains a constant value 48, which is the exact value known for the case of single
fluid layer (Pearson (1958)). Also, we note that Mc increases for all values of dr

with ζ and for higher value of ζ , requiring higher value of dr, for the system to
become more stable.

Figure 2 shows the variation of the critical Marangoni number Mc with the depth
ratio ζ for various values of dr in the case of εT = 0.725 and kr = 1. All curves
have the regular trends with ζ , in which they increase, then they reach the peak and
finally they decrease. Further, increasing the value of dr leads to a higher curve
due to the increase of the critical Marangoni number Mc and it is found to have a
stabilizing influence on the system. In addition, we have also used different values
of Da in order to see their effects on the critical Marangoni number as shown in
Fig. 3 for various values of dr. For all values of Da considered, increasing the
value of dr gives a stabilizing system.

Fig. 4 shows the variation of the critical Marangoni number Mc with the thickness
ratio ζ for various values of kr and dr = 1. From the figure, it is obvious that for an
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Figure 3: Variation of Mc with ζ for different values of Daand drin the case of
εT = 0.725, kr = 1, α = 1 and Da = 0.003

Figure 4: Variation of mc with ζ with for different values of kr in the case εt =
0.725, α = 1,dr = 1and da = 0.003

increasing value of kr, the curve is higher due to the increasing critical Marangoni
number Mc. In all of the cases above, we use the values of the parameter similar to
Shivakumara, Suma and Chavaraddi (2006) and also, we recover their results for
the case of dr = 0or kr = 0.

5 Conclusion

The onset of Marangoni convection corresponds to a vanishingly small wave num-
ber in a fluid-porous-solid layer system is studied. We found that it is possible to
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control the onset of Marangoni convection effectively by appropriately choosing
the values of ζ , dr, kr and Da. A larger depth ratio dr is stabilizing and the critical
Marangoni number Mc increases with dr. Also, an increase in the thermal con-
ductivity ratio kr results in a stabilizing state, since thermal disturbances are easily
dissipated deep into the solid layer and the critical Marangoni number Mc increases.
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