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Determination of Physical Properties of Porous Materials
by a Lattice Boltzmann Approach
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Abstract: In this work, flows in porous media are simulated by using a Lattice
Boltzmann Method (LBM). A model D2Q9 with a single collision operator is pro-
posed. This method is applied on 2D digital images obtained by a Scanning Elec-
tron Microscope technique (SEM), and followed by a special treatment in order to
obtain an image of synthesis that is finally read by the numerical code. The first re-
sults tested on two-dimensional configurations show the reliability of this strategy
in simulating with a good accuracy phenomena of heat and mass transport. The
numerical study is extended to the prediction of physical parameters that charac-
terize a porous material (in particular, permeability that can be hardly estimated
experimentally).

Keywords: Lattice Boltzmann Method, porous media, permeability, heat and
mass transfers.

1 Introduction

Prediction of physical properties of porous materials is of crucial importance when
dealing with industrial applications in the field of thermal coating processes [Dysh-
lovenko 2006].

It is expensive and time consuming to make direct experimental measurements be-
sides of difficulties due to the thickness of the coatings (few till 100 micrometers)
and the related inhomogeneous porosity.

In these days, thanks to the development in the realm of computer industry and
science (especially in instrumentations and techniques like scanning electronic mi-
croscopy (to obtain 2D pictures) and micro computer tomography (to obtain 3D
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pictures) to scan medium microstructures) a numerical simulation is becoming a
serious alternative to estimate the physical properties of such complex media.

For the case of flow simulations through porous media one can find in the literature
grid-based methods as finite difference finite volumes or finite-element approaches.
These methods suffer sometimes difficulties in the implementation of the boundary
conditions. This is not the case, however, for the Lattice Boltzmann Method (LBM)
proposed in the present work.

In the last few years, this promising mesoscopic method has proven efficient for
the simulation of classical fluid flows including flows through porous media [Succi
2001; Sukop 2006; Mohamad 2007]. The main advantages of this tool are the
efficiency in parallel computing, and using simple expressions to describe boundary
conditions [He and Luo, 1997a; Dupuis 2002; Evgrafov, Pingen and Matue, 2006].
This tool is also considered convenient for the simulation of heat transfer problems
[Chen and Doolen 1998; Zhang and Chen 2003] and also when phase change is
involved [Semma, ElGanaoui and Bennacer 2008].

In this paper, a short description of this technique is presented. A D2Q9 model with
nine velocity vectors in a square lattice is used and validated with respect to the
Poiseuille flow (classical solution). The LBM is applied then to simulate a single
phase flow through a porous structure using binary images. Applying Darcy’s law
for low velocity flows, the permeability of the domain is estimated. Derivation of a
close method to treat thermal problems is under progress.

2 Formulation of lattice Boltzmann methods

Historically, LBM evolved from the Boolean Lattice Gas Automata (LGA). Also it
can be derived from the Boltzmann equation. One can see the works of He and Luo
(1997) for more details.

The essential point in this method is the particle distribution function (PDF) f at-
tributed to every node in the domain to be studied. This function gives the proba-
bility in uniformly spaced lattice to find a fluid particle with a lattice velocity u at a
position x and time t.

In the present development, The LB model comprises two distribution functions,
f and g, for the flow field and the temperature field, respectively. The density and
the temperature distribution functions, f and g, are defined as the probability of
particles at site x and time t moving with the particle velocity cα during the time
step δ t in each lattice direction (link) α . The same model was proposed by [Barrios
et al. 2005, Yu et al. 2002]. The two distribution functions obey to their respective
lattice Boltzmann transport equations to the single relaxation Bhatnagar–Gross–
Krook (BGK) approximation.
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2.1 LBM for hydrodynamic Equation

Without focusing on details which are easily found in the work of Mezrhab, Bouzidi
and Lallemand (2004), the discrete form of the Boltzmann equation for a single
phase flow is produced by the approximation of Bhatnagar-Gross-Krook (BGK)
[Yu, Luo and Girimaji 2002; Succi, 2001; Mohamad, 2007]:

fα (x+eα δ t, t +δ t)− fα (x, t) = Ω (1)

Here eα is the microscopic lattice velocity at lattice node x at time t where the space
and time steps are set to the unity. Ω is the collision operator which represents the
variation of the PDF due to the inter-particles collisions. This operator is given by:

Ω = − 1
τv

[
fα (x, t)− f eq

α (x, t)
]

(2)

τv is defined as the dimensionless relaxation time of the collision, and f eq is the
EquilibriumParticle Distribution Function (EPDF) defined by the Boltzmann-Maxwell
equation:

f eq ≡ ρ
(2πRT)D/2

exp

(
−(e−u)2

2RT

)
(3)

And for a D2Q9 model shown in Fig. 1, this function can be written as:

f eq
α = wα ρ

[
1+

(eα .u)
c2

s
+

(eα .u)2

2c2
s

− uu
2c2

s

]
(4)

with wα being the directional weights of the PDF:

w0 =
4
9
, w1,2,3,4 =

1
9
, w5,6,7,8 =

1
36

(5)

which conserve the lattice isotropy [Dupuis, 2002]. cs is calculated as: cs = 1/
√

3

By applying the Chapman-Enskog expansion to the Lattice Boltzmann equation (1)
to recover the steady-state Navier-Stokes equations, density and momentum at each
fluid node are calculated by these relations:

ρ = ∑
α

fα (x, t) = ∑
α

f eq
α (6)

ρu(x, t) = ∑
α

eα fα (x, t) = ∑
α

eα f eq
α (7)
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where ρ is the fluid mass density and u is the fluid macroscopic speed. The internal
energy can also be expressed as:

ρε (x, t) =
1
2 ∑

α
(eα −u(x, t))2 fα (x, t)

=
1
2 ∑

α
(eα −u)2 f eq

α

(8)

where ε (x, t) = D
2 T .
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Figure 1: A D2Q9 LBM model with its 9 lattice velocity vectors

The lattice kinematics viscosity in the flow domain is obtained by:

υ = c2
s (τv −0.5) (9)

Then υ will depend only on the relaxation time. The pressure is obtained through
an equation of state:

p = ρc2
s (10)

while the traditional solvers of Navier-Stokes equations need to solve the Poisson
equation [Al-Zoubi, 2006]
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2.2 LBM for energy equation

The evolution equation for the internal energy is given as follows:

gi(x+ciΔt, t +Δt)−gi(x, t) = − 1
τT

(gi(x, t)−geq
i (x, t)) (11)

Where gα is the energy distribution function, τT is the dimensionless relaxation
time for the temperature field, and the equilibrium temperature distribution function
is given by:

geq
0 = −2

3
ρe

u.u
2c2 (12)

geq
k=1,2,3,4 =

ρe
9

(
3
2

+
3
2

ck.u
c2 +

9
4

(ck.u)2

c4 − 3
2

u.u
c2

)
(13)

geq
k=5,6,7,8 =

ρe
36

(
3+6

ck.u
c2 +

9
2

(ck.u)2

c4 − 3
2

u.u
c2

)
(14)

The macroscopic temperature is calculated from the internal energy as:

ρε = ∑
α

gα (15)

The temperature and internal energy are related through the state equation e = RT .
The Chapman-Enskog expansion for the density distribution function recovers the
macroscopic energy equation. This gives the thermal diffusivity αT in term of the
single relaxation:

αT =
1
3

(
τT − 1

2

)
c2δ t (16)

3 Porous Media

The single-phase steady-state incompressible flow through a porous media is de-
fined by Darcy’s law:

〈
u′
〉

= − k′

μ ′ ∇p′ (17)

where the factor k′ is introduced as the permeability coefficient which determine
the ability of the domain to allow the fluid to pass through it. Here 〈u′〉 is the mean
rate of the fluid flux at the outlet, ∇p′ is the pressure drop along the domain length
and μ ′ = ρ ′υ ′ is the viscosity of the fluid.
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Figure 2: Simple implementation of SBB in a porous media. Hollow circles are
fluid nodes and the others are obstacles (solids)

For small domains, porous media is introduced in the model by defining solid nodes
as obstacles. A Standard Bounce Back condition (SBB) is applied at these obsta-
cles. With such condition, after collision, incident fluid particles are sent back to
lattice nodes they came from. This condition described in Fig. 2 also ensures the
no-slip condition at surface boundaries of the domain.

For large domains (in cm), one can refer to the work of Dardis and McKloskey
(1998) in which they introduce for each lattice node a new parameter ns ranging
between 0 (for the totally fluid node) and 1 (for the totally solid node).

4 Flow Simulations

4.1 Validations

4.1.1 Poiseuille flow

Numerical simulations for the plane Poiseuille flow driven by either a pressure
gradient or a fixed velocity profile at the entrance of channel have been carried out
to test the validity of the incompressible LBM model.

The algorithm used in this work for the simulation is described as follows:

• initialize the problem: setting the lattice size and reading fluid/obstacles
nodes. Apply the initial and boundary conditions to calculate the unknown
variables of the lattice.

• compute the hydrodynamic mass density and macroscopic velocity from equa-
tions (6,7).

• Calculation of the EPDF from Eq.(4).
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• Application of collide/stream steps according to Eq.(1).
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Figure 3: The geometry of the studied canal. A lattice of 200×50 pixels is used for
the LBM simulation.

Following these steps we have first tested the code on a simple two-dimensional
Poiseuille configuration, as shown in Fig. 3. The analytic solution for velocity of
this flow is:

ux =
Δp

2μL

(
a2 −y2) (18)

where ux = 0 at y =±a, umax = 3
2uave at y = 0 and the pressure drop Δp = pin− pout

are the boundary conditions.

The solution of equation (18) for a given mean velocity agrees with a parabolic
velocity profile (see Fig. 4).

We carried out LB simulations on 200x50 lattice grid points. For achieving a steady
state regime the following convergence criteria is considered:

∑
i, j

∣∣∣u(n+1)
i j −u(n)

i j

∣∣∣
∑
i, j

∣∣∣u(n+1)
i j

∣∣∣ ≤ 10−6 (19)

where n is the number of time steps, i and j index to the x and y coordinates.

Our simulations show that the velocity profile remains unchanged (as a parabolic
profile) along the channel (fig. 4) and that the pressure distribution is linear along
the channel and uniform across it. All these results are in excellent agreement with
the analytical solutions of the Navier-Stokes equation.

This agreement validates the capacity of this tool to simulate with high precision
flows through porous media.
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Figure 4: The horizontal velocity profile of Poiseuille flow. Comparison between
the analytical solution (continuous) and LBM simulation results (squares), (lu: lat-
tice unit).

Table 1: Present numerical values with uniform mesh 150×150 for Ra = 103 to
105 and 200× 50 for Ra = 106, and underlines reference values (de Vahl Davis,
1983).

Ra umax vmax Nu
103 3.699 3.695 3.650 3.644 1.116 1.117
104 19.620 19.611 16.178 16.172 2.245 2.246
105 68.68 68.62 34.73 34.725 4.521 4.522
106 220.418 219.20 64.763 64.621 8.814 8.814

4.1.2 Natural convection

We verify the applicability of the developed LBM for the calculation of natural
convection. The simulation is restricted to two-dimensional thermal fluid dynamics
in a square cavity with isothermal vertical walls and adiabatic horizontal walls.

The temperature difference between the sidewalls introduces buoyancy (that can be
modeled on the basis of the Boussinesq approximation).

The Prandtl number is fixed to Pr = 0.71 and Rayleigh numbers is varied from
Ra = 103 to Ra = 106.

LB solution produces the expected behaviors for low and high Rayleigh numbers.
Table 1 summarizes representative quantities of the flow field and heat transfer.
Good agreement is found between LB results and classical based Navier Stokes
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Isotherms Streamlines 
Figure 5: Isotherms and Streamlines for Ra = 106.

Figure 6: Binary image of porous media. White zones are fluid domains and black
ones are the solids. A lattice of 552×276 pixels is used for the LBM simulations.

simulations (de Vahl Davis, 1983).

The heat transfer at the hot surface increases with Ra. At Ra > 105, the flow is
characterised by distinct boundary layers adjacent to the vertical heated walls. An
illustration of the temperature and flow patterns LB resulting is given on the figure
5 for Ra = 106.

4.2 Simulation of flow through porous media

For the purpose to simulate the flow through a porous medium, the binary image in
Fig. 6 has been considered. This image was taken by a Scanning Electron Micro-
scope (SEM), considered for a non-destructive investigation, for a pattern in silicon
wafer [see COMSOL Multiphysics Library for the original image] then treated so
that fluid and solid zones could be distinguished. This example was studied nu-
merically by using a a finite element method through the COMSOL Multiphysics
tool. The size of the domain is 552×276pixels with a characteristic length of 640
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micron. This implies a lattice spacing Δx = 1.16 microns leading to a low Knud-
sen number of the order of 10−2 which supports the assumption that the LBM is
approximating the Navier-Stokes equation.

To simulate the flow (water is considered as the work fluid), the initial conditions in
the simulation have been set as u = 0 for the flow velocity, and ρ = 1 for the fluid
density in the whole domain. The relaxation time is set to 1 then the kinematic
viscosity is calculated.

The boundary conditions for the flow are uniform density at the inlet/outlet where
the pressure boundary conditions are maintained by imposing ρin > ρout with zero
velocity within the domain (so that a single phase fluid enters from the inlet (left)
and flows towards the outlet (right)).

The unknown variables at the inlet/outlet boundaries are calculated from the rela-
tions in Tab. 2 depending on equations (6, 7) for the density and velocity and on
figure 1 to determine directions and values of the unknown PDFs. Besides, the no-
slip boundary conditions are implemented at the top and bottom surfaces. We can
refer here to the book of Sukop and Thorne (2006) for additional details.

Table 2: inlet/outlet pressure boundary conditions

inlet
known unknown
ρin, f0, f3, f2

f4, f6, f7

ux = ρin−( f0 + f2 + f4 +2( f3 +
f6 + f7))
f1 = f3 + 2

3 ux

f5 = f7 + 1
2 ( f4− f2)+ 1

6ux

f8 = f6 + 1
2 ( f2− f4)+ 1

6ux

outlet
known unknown
ρin, f0, f1, f2

f4, f5, f8

ux = −ρout + ( f0 + f2 + f4 +
2( f1 + f5 + f8))
f3 = f1 − 2

3 ux

f7 = f5 + 1
2 ( f2− f4)− 1

6ux

f6 = f8 + 1
2 ( f4− f2)− 1

6ux

The dimensionless permeability, which characterizes the porous media, is calcu-
lated from Eq.(17) by replacing each variable with its corresponding relation from
Tab. 3. This gives:

k =
k′

L2 =
ρu2

ReΔp
(20)
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Here u is the dimensionless mean velocity over all the fluid nodes.

Figure 7 presents contours of velocity field for three different grids. We note that
the behavior of the fluid does not change much and that a grid of 276×138 makes
it possible to deal with this problem with an acceptable accuracy.

Table 3: definition of the non dimensional variables
Δx = L/N υ ′ = υ(Δx2/Δt)
Δt = (cs/c′s)Δx ρ ′ = (ρΔm)/Δx3

u′ = u(Δx/Δt) Δp′ = (ΔpΔm)/(ΔxΔt2)

(a) 

(b)

(c)

Figure 7: Contours of horizontal velocity field (a) COMSOL Multiphysics com-
putations, (b) LBM-D2Q9 model for 552×276 pixels lattice and (c) LBM-D2Q9
model for 276×138 pixels lattice.
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Figure 8: Variation of the permeability versus the lattice pressure drop and lattice
viscosity.

In figure 8, the permeability variations have been plotted versus the pressure (den-
sity) gradient and the lattice viscosity. We can see from this figure that the perme-
ability varies around a mean value (k = 2,35×10−5) which can be considered as
the dimensionless value of the permeability for this geometry. This value is prac-
tically independent of the viscosity of the fluid saturating the pores of the porous
medium and then k is viscosity independent.

5 Conclusion

In this work, flow in porous media has been simulated by using a Lattice Boltzmann
method (LBM). A D2Q9 model with a single collision operator has been proposed.

This method has been applied on 2D digital images obtained by a Scanning Elec-
tron Microscope (SEM), and further treated to obtain a synthesis image to be read
(pixel by pixel) by a numerical code.

The first results for a two-dimensional configuration have shown the aptitude of
this method to simulate with very good accuracy the phenomena of interest.

The numerical study has been also extended to the simulation of physical parame-
ters that characterize porous materials, like relative permeability (which is difficult
to investigate experimentally). Remarkably, the permeability has been deducted
directly from the picture.
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Nomenclature

D dimension of the model
T temperature, K
P pressure Pa
f (x, t) particle distribution function

(LBM)
feq(x, t) equilibrium particle distribution

function (LBM)
g(x, t) thermal particle distribution function

(LBM)
geq(x, t) Thermal equilibrium particle distribution

function (LBM)
t time
R constant of ideal gas
u fluid macroscopic velocity (LBM)
e lattice velocity vector
cs “pseudo” speed of sound in the lattice

system (LBM)
L lattice size (LBM)
k Permeability m2

Greek Symbols

μ dynamic viscosity, Pa.s
ρ mass density, kg/m3

τ relaxation time (LBM)
w weight associated with lattice vector

direction
υ kinematics viscosity
ε internal energy
αT thermal diffusivity m2/s
δ time/space step
α lattice index
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Exponents

n time steps number (LBM)

‘ dimensioned variable

Non-dimensional Numbers

Ra Rayleigh number
Re Reynolds number
Pr Prandtl number
Kn Knudsen number
Nu Nusselt number
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