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Abstract: The simplified thermal lattice Boltzmann model (STLBM) developed
by Peng, Shu and Chew (2003) is used in this work to simulate low-Rayleigh-
number natural convection in a heated rectangular cavity on a uniform grid. It is
shown how by resorting to the double populations approach both hydrodynamic
and thermal fields can be effectively simulated. Furthermore, a general benchmark
is carried out to account for the effect of different parameters in relatively wide
ranges. Results are compared with previous works available in the literature.
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Nomenclature

a order of accuracy of the model
Ra gβ∆T H3/(νχ) Rayleigh number
b power of the law Nu ∝ (Ra)b

T fluid temperature
c δx/δ t lattice streaming speed
Th,Tc temperatures of hot and cold walls
cs c/

√
3 lattice sound speed

Tr reference temperature
~eα discrete velocity in α direction
~V (u,v) velocity vector
fα ,θα discrete distribution functions for density and internal energy
W width of the enclosure
f eq
α ,θ eq

α equilibrium density and internal energy distribution functions
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U
√

gβ∆T H velocity scale for natural convection
Fα Source term
∆T Th−Tc horizontal temperature difference
~g gravity field
n Number of nodes
p ρc2

s ideal gas pressure
t time
~x (x,y) lattice coordinates
δ t time step
umax,vmax maximum velocity at mid-width and mid-height
δx, δy lattice spacing units
Ar W/H aspect-ratio
C constant of the power relation-ship
D space dimension
E relative error
~G −β (T −Tr)~g buoyancy force per unit mass
H height of the enclosure
Nu 1+ 〈u.T 〉/(χ.∆T/W ) average Nusselt number
Nu0 Nusselt number at the hot wall

Ma
∥∥∥~V
∥∥∥/cs mach number

Pr ν/χ Prandtl number
R gas constant

Greek symbols

ωα weights for the particle equilibrium distribution function
ρ ∑

α

fα fluid density

ρr reference fluid density
δ small parameter (Knudsen number)
υ kinetic viscosity
ε DRT/2 internal energy
χ thermal diffusivity
β thermal coefficient expansion
γ the cavity inclination angle
τυ ,τc relaxation times
∇. divergence operator
∇ gradient operator
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Subscripts Suscripts

eq equilibrium
i index
neq non-equilibrium part
max maximum
CFL Courant-Frediric-Lewy stability condition

1 Introduction

The socalled lattice Boltzmann method (LBM) derives from the lattice Boltzmann
equation and basically relies on a discrete distribution function representing the
probability of finding particles with a certain range of velocities at certain range of
locations at a given time (Succi (2001), Sukop et al. (2005), Mohamad (2007)).
This new alternative approach has proved its ability to simulate large variety of
fluid flows.

In other words, the simulation of the fluid flows by using the lattice Boltzmann
equation (LBE) method is based on kinetic equations and statistical physics, unlike
conventional methods that are based on continuum mechanics.

In practice, the advantage of the LBM relies in its stability (unconditionally stable)
and the linear form of its scheme (algebraic operations), which overcome the well-
known CFL stability condition and the drawback of the non-linear form of the
Navier-Stokes equations (which leads generally to algebraic equations). For its
efficiency and accuracy, the LBM has received recently considerable attention by
fluid dynamic researchers (Zou and He (1997), Chen and Doolen (1998), Guo and
Zheng (2002), Shu and Peng (2002-2005) and Semma, El Ganaoui and Bennacer
(2007-2008)).

It is also worth pointing out that the LBE is the minimal form of the BE and that
it can recover the hydrodynamic and thermal behaviours at the macroscopic level
(mass, momentum and energy conservation) in second order of accuracy in time
and space. The quality of the computational efficiency and accuracy of the LBM
reside on its ability to model complicated flows such as multiphase flows, chemi-
cally reacting flows (Yamamoto, Takada, Misawa (2005)), micro-flows (Chew, Niu
and Shu (2006)) in 2D and 3D isothermal and thermal flows (Bouzidi, D’Humières,
Lallemand (2001), D’Humières, Bouzidi, Lallemand (2001)) on uniform and non
uniform grid. Massaioli, Benzi, and Succi (1993) have developed first the thermal
LB model and now there are three thermal LB models: The multi-speed approach
(Chen and Doolen (1998)), the passive scalar approach (D’Orazio, Corcione and
Cielata (2004)) and the double population approach (He and Luo (1998)). This
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new approach has proved the ability to simulate large variety of fluid flows and to
handle complex geometries (Bouzidi, Firdaouss and Lallemand (2001), Lallemand
and Luo (2003)) and has expressed a flexibility to be coupled with traditional CFD
method (Mezrhab, Bouzidi and Lallemand (2004)).

An extension of the passive-scalar thermal model, where viscous and compressive
heating are neglected, was recently proposed by introducing the internal energy
density distribution function (IEDDF model). So, the omitting of the viscous heat
dissipation and compression work done by pressure in macroscopic energy equa-
tion can be reflected by dropping out the gradient term in the evolution equation for
the new distribution function, since such gradient term is mainly used to recover
these terms through the Chapman-Enskog expansion. Following the work of Peng,
Shu and Chew (2003) a simplified thermal distribution model is proposed. This
model was proved to fully recover the energy equation at the macroscopic level
incorporating future work and heat dissipation correctly.

At this stage, let us notice that natural convection in heated square cavity is not only
an ideal case for testing numerical models intended for the resolution of Navier-
Stokes equations, but it has also extensive background applications in many fields
such as aeronautics and electronics.

For instance the heating-from-below condition provides an important test case for
instable flows occurring in crystal growth (El Ganaoui and Bontoux (1998), El
Ganaoui (2002), El Ganaoui and Prud’homme ( 2004), Lappa (2007)).

The case insulated from below and above with vertical walls maintained at a fixed
temperature is encountered for problems dealing with heat transfer in buildings; it
is also relevant to solar energy collectors and double glazed windows.

These fields were the subject of numerous comprehensive studies using the LB ap-
proach to understand the natural convection phenomena (Jami, Mezrhab, Bouzidi
and Lallemand (2007), Jami, Amraqui, Mezrhab and Abid (2008), Mezrhab, Jami,
Abid, Bouzidi and Lallemand (2006)) and their interaction with radiation (Mezrhab,
Jami, Bouzidi and Lallemand (2007), Mezrhab, Moussaoui and Naji (2008), Bouali,
Mezrhab, Amaoui, Bouzidi (2006)).

It is known that several parameters can influence the dynamic and thermal be-
haviours within a heated cavity. The effect of the Rayleigh number, as a controlling
parameter of convection, was studied by many authors for heated square cavity
case (de Gassowski, Xin and Daube (2003)); a symmetry breaking phenomenon
was underlined under 3D approach by Bennacer et al. (2006). Various numerical
simulations have been performed to study the major effects of the different param-
eters (Prandtl number, the orientation of the cavity and the aspect ratio (Ar=W/H:
width/height)) on the structure of the flow, but few studies have been conducted
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using LBM.

The purpose of this work is to validate such model through its application to the
configuration of differentially heated square cavity (horizontal temperature gradi-
ent, see Fig.1) as well as to establish a general benchmark reproducing existing re-
sults for the effect of each parameter. The present study investigates also the mutual
effects on the heat transfer expressed by the Nusselt number; some correlations will
be therefore established in a wide range of the Rayleigh number (103 ≤ Ra≤ 106),
the Prandtl number(0.025≤ Pr ≤ 6), the inclination of the cavity (0◦ ≤ γ ≤ 270◦)
and the aspect-ratio (1/8 ≤ Ar ≤ 8). The fluid is assumed to be incompressible,
the Boussinesq approximation is assumed to be valid and the radiation effects is
neglected.

The remaining part of the paper is organized as follows. Section 2 introduces the
simplified thermal lattice Boltzmann model in the presence of the buoyancy force.
Dimensionless parameters and implementation of boundary conditions are also pre-
sented. Section 3 presents a validation of the model through its application the
dynamics and thermal behavior in a differentially heated air-filled square cavity.
Order of accuracy of the model is demonstrated. In section 4, the effects of a quite
large number of secondary parameters linked to fluid, configuration and orientation
are studied separately at first and then coupled.

 
Figure 1: Schematic geometry for natural convection in a square cavity.
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2 The 2D incompressible simplified thermal lattice Boltzmann model

This part is devoted to the general ideas of the STLBM whose details can be found
in Peng, Shu and Chew (2003). The considered assumptions are: the BGK approx-
imation (single relaxation time) and incompressible flow (low Mach number).

2.1 Lattice Boltzmann hydrodynamics model

Fig.2 presents the nine-velocity LBM model on a 2D square lattice, denoted D2Q9
model. We use this model for the current study. Let δx and δy be the distance a
particle move of grid spacing and c = δx/δ t be the lattice streaming speed.

 

Figure 2: The nine-velocity LBM model on 2D square lattice.

The discrete velocities of the D2Q9 model are defined as follows


~eα = (0,0), α = 0, rest particle

~eα = (±c,0), α = 1,2,3,4

~eα = (±c,±c), α = 5,6,7,8

The governing equation for the density distribution function is

fα(~x+~eαδ t, t +δ t)− fα(~x, t) =− 1
τυ

[ fα(~x, t)− f eq
α (~x, t)] +δ t Fα (1)

where τυ characterizes the relaxation time resulting from the BGK approximation
for the collision operator, and the equilibrium density distribution function is given
as

f eq
α = ωαρ

[
1+3

~eα .~V
c2 +

9
2

(~eα .~V )2

c4 − 3
2

~V 2

c4

]
(2)
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where w0 = 4/9, wα = 1/9 for α = 1,2,3,4 wα = 1/36 for α = 5,6,7,8 and ~V =
(u,v).
The macroscopic density and velocity are calculated by

ρ = ∑
α

fα (3)

ρ~V = ∑
α

~eα fα (4)

The continuity and Navier-Stokes equation can be recovered through the Chapman-
Enskog expansion (He and Luo (1997)) whose the derivation details will not be
shown here. The final results of the continuity and Navier-Stokes equation are

∂tρ +∇.(ρ~V ) = O(δ 2) (5)

∂t(ρ~V )+∇.(ρ~V~V ) =−∇p+υ [∇2(ρ~V )+∇(∇.(ρ~V ))]+O(δ 2) (6)

where δ is a small parameter proportion to the Knudsen number (the ratio of the
mean free path to a characteristic flow length), p = ρc2

s is the pressure from the
equation of the state for the ideal gas, cs = c/

√
3 is the sound speed and the kinetic

viscosity is given by

υ =
(2τυ −1)

6
(δx)2

δ t
(7)

The assumption of low Mach number (Ma =
∥∥∥~V∥∥∥/cs << 1) invoked as the nearly

incompressible limit is approached, and then the continuity and Navier-Stokes
equations will be expressed as

∇.(~V ) = O(δ 2) (8)

∂t~V +~V .∇~V =−∇p
ρ

+υ∇2~V +O(δ 2) (9)

2.2 Lattice Boltzmann thermal model

Following the works of Peng, Shu and Chew (2003) the simplified thermal model
does not include complex gradient terms; accordingly, it keeps the simple form
as the isothermal LBM and allows the use of the bounce back rule of the non-
equilibrium distribution function for the boundary conditions. For these considera-
tions we decide to use this model.
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The governing equation for the simplified energy distribution model is

θα(~x+~eαδ t, t +δ t)−θα(~x, t) =− 1
τc

[θα(~x, t)−θ
eq
α (~x, t)] (10)

The corresponding equilibrium energy distribution function following the work of
He, Chen and Doolen (1998) is

θ
eq
α = ωαρε

[
3(~e2

α −~V 2)
2c2 +3

(
3~e2

α

2c2 −1

)
(~eα .~V )

c2 +
9
2

(~eα .~V )2

c4

]
(11)

where ε = DRT/2, R is the gas constant and D is the space dimension. Then the
macroscopic temperature is calculated by

ρε = ∑
α

θα (12)

This thermal energy distribution function can recover the macroscopic energy equa-
tion by using the Chapman-Enskog expansion technique; the final result is as be-
low:

∂t(ρε)+∇.(ρ~V ε) = χ∇2(ρε)+O(Ma2
δT ) (13)

and the formula of the diffusivity χ is written as

χ =
1
3
(2τc−1)

(δx)2

δ t
(14)

2.3 Buoyancy force and dimensionless parameters

In simulating natural convection problem, the additional body force term,Fα , can
be formulated by the Boussinesq approximation. The Boussinesq approximation
considers that all the properties of the fluid are constant, except the fluid density
given by ρ = ρr(1− β (T − Tr)), where ρr is a reference fluid density, β is the
thermal coefficient expansion of the fluid andTr is a reference fluid temperature,
then the external buoyant force ρr~G = −ρrβ (T −Tr)~g appearing in Navier-stokes
equations will be expressed in equation (1) as

Fα =
~G.(~cα −~V )

c2
s

f eq
α (15)

Following these considerations
∥∥∥~V∥∥∥� cα , f eq

α ≈ wαρ(x, t), and Tr = 0, the final

form of the external body force is

Fα =−3wαρ(~x, t)βT (~x, t)~g.~cα (16)
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Natural convection problems are characterized by a characteristic velocity U =√
gβ∆T H, the kinetic viscosity ν and the thermal diffusivity χ , and then the

Prandtl number is defined as

Pr = ν/χ (17)

using the equation (7) and (14) we obtain

Pr =
1
2

2τυ −1
2τc−1

(18)

The Rayleigh number is defined as

Ra =
gβ∆T H3

νχ
(19)

The average Nusselt number, Nu, is estimated to investigate the enhancement of
the thermal transfer. Nu is defined as

Nu = 1+
〈u.T 〉

χ.∆T/W
(20)

where ∆T = 1 and 〈〉 denotes the average value throughout the domain.

The average Nusselt number at the hot wall, Nu0, is calculated using a second order
finite difference scheme as

Nu0 =
n

∑
j=0

3T0, j−4T1, j +T2, j

2
(21)

2.4 Implementation of the boundary conditions

The bounce-back rule of the non-equilibrium distribution function proposed by Zou
and He (1997) is used for the boundary condition. The density distribution function
at the boundary should satisfy the following condition:

f neq
α = f neq

β
(22)

where ~eα and ~eβ have opposite directions. The energy distribution function at the
boundary satisfies

gneq
α −~e2

α f neq
α =−(gneq

β
−~e2

β
f neq
β

) (23)

The wall temperatures are used for the calculation of the internal energy equilib-
rium functions.



270 Copyright © 2009 Tech Science Press FDMP, vol.5, no.3, pp.261-282, 2009

3 Validation of the LB model using 2D square cavity

3.1 Grid independence

In the simulations, the 2D cavity is mapped using a square lattice, where δx = δy
for the D2Q9 model. The aspect ratio Ar = W/H is equal to the unit. The Prandtl
number is assumed to be constant with a value 0.71 and the Rayleigh number is
chosen to be 104.

Grid independence is examined using several different grid systems quite coarser
than that chosen by Peng, Shu and Chew (2003), i.e. from 332 to 2252.

Tab. 1 shows numerical solutions of the maximum horizontal velocity at the mid-
height and the maximum vertical velocity at the mid-width (umax and vmax respec-
tively) normalized by the reference velocity χ/H and their locations (yu and xv

respectively) normalized by the reference length H. The average Nusselt number
value Nu of the whole of the cavity is also computed.

The relative deviation (error) E of the average Nusselt number from the reference
value is defined as

E =
∣∣∣∣Nu−Nur

Nur

∣∣∣∣ (24)

where Nur indicates reference results of de Vahl Davis (1983).

The convergence criteria adopted here is defined as∣∣∣∣Nu(t)−Nu(t +5000)
Nu(t)

∣∣∣∣≤ 10−6 (25)

In addition, Paolucci and Chennoweth (1989) monitored the oscillations in u, v and
T at the location (x/H,y/H) = (0.1032,0.8036). To show, also, the achievement
of steady state we will use the same monitoring point.

In this study we can see that when the number of nodes in each direction increases,
the calculated magnitude and location quickly approach the benchmark result, and
further more, when the number of nodes increases from 176 to 224, there is not
much effect on the result. Hence the results are taken to be grid independent.

3.2 Convergence rate

We suppose the following relationship E = C.(∆x)a, here C is a constant, a is the
order of accuracy of the model, ∆x = 1/n andn is the number of nodes for each
direction of the square cavity. The results of ln(E) versus ln(∆x) are plotted in Fig.
3. The equation of the obtained fitting curve shows that a≈1.95, then it is obvious
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Table 1: Grid dependence in square cavity at Ra=104

n 32 80 128 176 224 Davis[a]
umax 16.011 16.1344 16.1593 16.1716 16.1725 16.178
yu 0.8125 0.825 0.82031 0.8222 0.8227 0.823

vmax 19.2777 19.5259 19.5945 19.612 19.618 19.617
xv 0.1875 0.125 0.11718 0.11666 0.11732 0.119
Nu 2.1814 2.2255 2.2350 2.240507 2.2417 2.243

that the Nusselt number solution converges at the rate of second order. The slightly
distortion via a=2 is due to the bounce-back scheme used at the boundaries (first
order accurate).

 

Figure 3: Numerical error versus lattice spacing for square cavity.

3.3 Comparison

Fig. 4 shows the contour maps of the streamlines which shows the flow pattern, the
horizontal velocity component, the vertical velocity component and the temperature
field for different value of Ra (Ra = 103, 104, 105 and 106).

These plots agree well with results obtained by Shu and Xue (1998). In addition it
is visibly that the property of symmetry which was well studied by de Gassowski,
Xin and Daube (2003) is highly shown through the layouts of the streamlines and
of temperatures proving that the LBM is able to represent the convection problems
with high order of accuracy.
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Tab. 2 shows the quantitative comparison. Through these results one can say that
the LB results have a very good agreement with those of other methods in both
qualitative and quantitative senses. The underlined data indicate the percentage
deviation of the current results for Nu from de Vahl Davis’s results (1983), so the
results obtained using the current LB model are consistent. Using a grid size of
128x128 or 176x176, for Ra=106, the discrepancy between the two sets of results
is less than 0.25% for the four fields umax, vmax, Nu and Nu0. Note that in these
simulations, we are satisfied by the coarser grid that gives a deviation less than 1%.
The maximum relative error is 1.06% obtained for vmax at Ra=106.

Furthermore, we can observe that the Nusselt number obtained by this model is
slightly smaller than the Navier-Stokes result, this is due to the truncated equi-
librium distribution function by the so-called low-Mach number approximation
(O(Ma)2).

In confined space many phenomena can be encountered such as plumes, wall jet,
thermal boundary layers and viscous boundary layers etc. In the present configura-
tion and for Rayleigh number ranging from 103 to 104, a circular cellular structure
dominates the stream-function field as illustrated in figure Fig.4 (a-d). For higher
values of the Rayleigh number, a temperature undershoots and a stationary wave-
like structure form, at the up-left and low-right corners where the flow discharges
from the thin vertical boundary layer into the core flow. This is due to the fact
that high Rayleigh numbers enhance the fluid motion. In addition, the thermal and
dynamic boundary layer thicknesses decrease with increasing the Rayleigh num-
ber. One can also see the establishing lamellate thermal structure when increasing
the Rayleigh number, thus we say that the flow presents a stratified structure. The
overshoot and undershoot of the flow patterns between the vertical boundary layers
and the core region become more pronounced when Ra increases and will induce
a large core region and a divergence of the horizontal wall boundary layers. The
main flow is moving along the hot and cold wall and leaves the adiabatic side walls
before it reaches isotherm walls.

3.4 Relationship between Nusselt number and Rayleigh number

Previous numerical and experimental investigations of Nusselt number in square
cavity showed that the Nusselt number and the Rayleigh number are related by
the power law Nu ∝ (Ra)b in which “b” is generally close to 0.3. In the present
study, the plots of the best-fitted curves of Nusselt numbers Nu and Nu0 versus the
Rayleigh number in the range 103 ≤ Ra≤ 106 were found to lie along straight lines
when plotted as log(Nu) versus log(Ra) and then, the power relationships Nu =
0.1429Ra0.2982 and Nu0 = 0.1478Ra0.2965 are obtained. The present correlations
are in good agreement with these established by Berkovsky and Polevikov (see
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Bennacer et al. (1993-2000)). One can also observe that (for Ar=1) Nu≈ Nu0, this
is can be explained by the fact that, in steady state, the heat flux given at the hot
wall is transferred within the domain and is received at the cold wall. In other hand
the exponent of the power law is generally taken between 1/4 and 1/3. In this case,
we obtain Nu0 = 0.0906Ra1/3 which agrees well with the experimental results of
Ozoe and Sayama (1998) where Nu = 0.109Ra1/3, with a deviation of 0.43% in
Nu0for Ra=106.

       
(a)  

       
(b)  

       
(c)  

       
(d)  

 
Figure 4: The contour maps of (from left to right) streamlines, temperature, hor-
izontal and vertical velocity components for Ra=103 (a), Ra=104 (b), Ra=105 (c)
and Ra=106 (d).

4 Effects of the secondary parameters

Several parameters can influence the dynamic and thermal behavior in a differen-
tially heated cavity. We study in this part the effects of the geometry of the cavity,
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of its configuration and the effect of the nature of the fluid modeled respectively
by the aspect ratio Ar, the angle of inclination of the cavity γ and the Prandtl num-
ber Pr. In this section, first we study the effects of these parameters separately, on
the left Nusselt number Nu0, and then we treat the mutual (coupled) effects. The
Rayleigh number is chosen to be103, 104 and 105 for all the simulations since the
convection mode is preponderant and to be far from instabilities phenomena.

4.1 Effect of the aspect ratio Ar

The effect of the aspect ratio on flow and heat in air-filled cavity has been exten-
sively treated in earlier works (this geometry finds its application in many melting
phenomena). When the vertical solid front starts to melt, the aspect ratio W/H
increases and one has a tall/slender cavity, on the contrary (solidification), one
will have a shallow cavity. The change of geometry induces the change of critical
points, such as the critical Rayleigh, Rac, of transitions to time-dependence and
chaotic flow.

These transitions occur at broadly different values of Ra, indicating a strong influ-
ence of the aspect ratio.

For Ra=103 and Ar=0.5 the plot of the temperature field shows a vertical line, then
the heat transfer is purely conductive. This can be concluded also from the value
of average Nusselt number Nu which is close to 1, but Nu0 = 2.026 and increases
too with the decrease of Ar. On the contrary when Ar increases (upper to 1) Nu0

decreases and Nu increases excessively, the heat transfer is obviously purely con-
vective. The same behaviour is observed for Ra=104 and 105. These remarks are
in conformity with the results obtained by Ismail and Scalon (2000) or Mohamad
et al. (2004).

The plots of Nu0versus Ra for each aspect ratio are shown in Fig. 5.

The main driving idea of this discussion is to show that there is an aspect ratio
(≈0.25) where the Nusselt number is almost independent from the Rayleigh num-
ber in this range. Likewise the dependence is strict.

4.2 Effect of the Prandtl number Pr

As discussed above, the heat transfer depends clearly on the aspect ratio. We show
here that the nature of the fluid can also affect the heat and the fluid flow. Fig. 6
presents the evolution of the left Nusselt number versus the Prandtl number in the
range 0.025 ≤ Pr ≤ 6 for different values of the Rayleigh number. One can see
that heat transfer decreases when the Prandtl number decreases to reach the value
0.025, which corresponds to the case of liquid metals, such as gallium and mercury.
For moderately large values of the Pr (up to 1), the heat transfer pattern remains
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Figure 5: The effect of aspect ratio on
heat transfer for 103 ≤ Ra≤ 105.

 

Figure 6: The effect of Prandtl num-
ber on heat transfer at various Rayleigh
numbers.

relatively unchanged for the three considered values of the Rayleigh number.

4.3 Effect of the angle of inclination γ

The present section illustrates typical results of numerical simulations for various
orientations.

Let us recall that only the momentum equation is affected by the change of the
angle of inclination (the Boussinesq term). The configuration of an inclined cavity
is presented in Fig. 7. The Rayleigh number is chosen to be 105. The results show
good agreements with previous work in quantitative sense.
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Figure 7: The configuration of the inclined heated cavity.

The results for Ar=1 are plotted in Fig. 8 and are found to reproduce the same
profile obtained by Ozoe and Sayama (1975). One can observe that heat transfer
increases when the angle γincreases to value close to 15˚, the corresponding Nusselt
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number being equal to 4.7. With further increasing γ , the value of Nu decreases
considerably to achieve a minimum at a critical angle between 90˚ and 100˚. The
corresponding Nusselt number for the Rayleigh-Bénard of configurationation (90˚)
is 3.85. When γ increases more, Nu increases to exceed the value obtained at γ = 0◦

and certainly to reach again the value 4.7 at γ = 165◦. When γ exceeds 180˚, Nu
decreases clearely to be close to 1 in a configuration of enclosure heated from above
(γ = 270◦). This value implies pure diffusive heat transfer. In this configuration,
the density of the particle heated at the top wall of the cavity decreases, but the
tendency of the particles is to ascend again, thus the agitation will be located at the
top, so the whole convective heat decreases.

Rotating the cavity to an angle γ = 90◦leads to the Rayleigh-Bénard configuration.
In such case the core region is occupied by one clockwise rotating cell, and the
boundary layers are more stretched at the middle of the hot and cold walls. A
counter-clockwise cell appears where cold cell starts the hot wall and where hot
cell starts the cold one, inducing an increase in Nu and probably reveals the way to
three-dimensional flow effects and we underline the oscillatory flow obtained for
higher Ra values.

 

Figure 8: The coupled effects of aspect ratio and inclination on the Nusselt number
for Pr=0.71 and Ra = 105.

4.4 The coupled effects

Previous researches using standard Navier-Stokes solvers tried to establish correla-
tions for Nusselt number as a function of the different parameters cited above (Kerr
and Herring (1999)). In this part we are interested in studying the coupled effects
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of the inclination and the aspect ratio at the same time on heat transfer. Two aspect
ratios 0.5 and 2 are investigated. The results obtained are gathered in Fig. 8 for
purpose of comparison.

For Ar=0.5 no change observed in the thermal behavior of flow, the same profile
is obtained but quantitatively the Nusselt number increases and the profile is trans-
lated due to the conductive effect. However, for Ar=2 the flow becomes periodic
at γ = 90◦. The dynamic flow structure changes many times at one period and
the dimensionless frequency is close to 15.81. The corresponding time-averaged
Nusselt number at the isotherm wall is close to 3.16. The flow is also periodic
for γ = 100◦, the dimensionless frequency is 21.93 and the time-averaged Nusselt
number is 2.06; the streamlines show a small cell near the hot wall and a great cell
near the cold wall, which is three times the small one. At γ = 105◦ the flow is found
to be chaotic, however, for γ = 110◦ the flow becomes steady and it remains steady
for γ ≥ 110◦. The behavior will certainly change if the Rayleigh number values
change (see for instance bennacer et al. (2001)).

The effect of the angle of inclination comes to be perceptible with the increase of
the aspect ratio. As it is shown in Fig. 8, the heat transfer depends strongly on the
aspect ratio. The Nusselt number decreases with the increase of aspect ratio. In the
other hand, the coupled effect coming from the increase of the aspect ratio (upper
to unit) and the increase of the angle of inclination (upper to 90˚) is expressed by
the displacement of angle at minimum and maximum Nusselt number towards the
limit 180˚. Note that the best outcome of this part is that for Ar=0.5 (or slightly
different), the heat transfer is quasi-independent from the angle of inclination from
15˚ to 90˚.

5 Conclusions and future developments

The problem of natural convection of an incompressible, Boussinesq fluid in a rect-
angular cavity with differentially heated walls has been investigated numerically.
The LBM has been found to be an effective and convenient alternative to simulate
laminar flows in confined spaces.

The study has been conducted in three steps.

First, we have presented the LBM as a new tool having good properties such as
algebraic operations and accuracy.

Second, we have conducted a comparative study of heat and fluid flow in heated
square cavities. The present grid sizes have proven to yield the same order of ac-
curacy as the other solvers. It has been shown that high values of the characteristic
number need high grid resolution to get accurate solutions.

Third, the effect of the secondary parameters (geometry, configuration and fluid
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properties) on the heat and fluid flows has been considered. The results of the LBM
have been found to be in good agreement with earlier works.

We would like to mention that the advantage of the local collision step in LBM is
to allow relatively simple implementation on parallel computers.

As shown by Succi (2001), Huidan Yu (2005) and C. Shu 2006), turbulent flows
occur at high values of the characteristic number, so boundary layers need grid
refinement to be well captured. Here it has been shown that TLLBM recently de-
veloped by C. Shu can be used as an efficient tool to handle arbitrary meshes and
turbulent regime and to be combined with various models of turbulence.

The next step in our works will be to introduce, first, a grid refinement using the
TLLBM approach and, second, a large-eddy modeling of turbulence. The turbulent
dissipative effects will be modeled by a new term associated to the molecular vis-
cosity. This term is generally regarded as a turbulent or eddy viscosity appearing in
the relaxation time computed from the filtered strain rate tensor in the Smagorinsky
model (see Yu, Luo, and Girimaji (2006)).
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