
Copyright © 2009 Tech Science Press FDMP, vol.5, no.4, pp.345-372, 2009

3D Numerical Modeling of Soluble Surfactant at Fluidic
Interfaces Based on the Volume-of-Fluid Method

A. Alke1 and D. Bothe1

Abstract: We present a computational approach based on the Volume-of-Fluid
(VOF) method for simulating the influence of a soluble surfactant on the behav-
ior of two-phase systems with deformable interface. Our approach is applicable
to diffusion controlled processes, where the relation between the area-specific ex-
cess surfactant concentration on the interface and the volume-specific concentration
adjacent to the interface is given by an adsorption isotherm. Main issues of the nu-
merical model are an extended surface transport theorem used for describing the
interfacial flux and an iso-surface of the VOF-variable used as a connected approx-
imation for the interface. 3D-simulations of a bubble moving through a surfactant
solution show the formation of a monotone concentration profile along the bubble
surface with a surfactant-rich zone at the bubble’s rear end. This is accompanied
by regions of depleted and increased surfactant concentration in the bulk phase due
to adsorption and desorption, respectively. The rise velocity reflects the retardation
effect known from experiments.

Keywords: Soluble Surfactant, Two-Phase Flow, VOF - Simulation, Surface trans-
port theorem.

1 Introduction

In many two-phase fluid-liquid systems, surface active agents (surfactants for short)
are present either as impurities or as additives. Important examples include emul-
sification processes, where a surfactant is used to prevent droplet coalescence, and
bubbly flows in bubble columns with contaminated water. A surfactant is prefer-
entially adsorbed at the interface and reduces the surface tension, depending on its
area specific excess concentration. The local surface tension is then given by a sur-
face equation of state. The distribution of the adsorbed surfactant at the interface
is determined by the flow conditions near the interface, the molecular transport of
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the surfactant in the bulk phase and on the interface, and additionally by the sorp-
tion kinetics, unless bulk diffusion is the limiting factor. This distribution typically
leads to a surface gradient of the surface tension, which has to be considered in the
interfacial momentum jump condition. This additional Marangoni stress can result
in a pronounced change of the dynamical behavior of fluid particles.

The hydrodynamic effect of surfactants on fluidic interfaces, especially for fluid
particles, has been studied experimentally, analytically and numerically since the
beginning of the second half of the 20th century. Starting point was the purely
hydromechanical stagnant cap model developed by Savic (1953) for a spherical,
steadily rising bubble contaminated with an insoluble surfactant. Later on, this
model was improved concerning the mathematical solution procedure (Davis and
Acrivos, 1966) and extended concerning a detailed mass balance of insoluble and
soluble surfactant and deformability of the fluid particle; see, e.g., (Wasserman and
Slattery, 1969; Harper, 1973; Levan and Newman, 1976; Harper, 1982; He, Mal-
srelli, and Dagan, 1990). Let us note that surfactants do not only alter the surface
tension but also cause interfacial shear as well as dilatational viscosity; see, e.g.,
(Edwards, Brenner, and Wasan, 1991; Slattery, Sagis, and Oh, 2007). In (Khattari,
Steffen, and Fischer, 2002), the influence of a surfactant on the migration of a spher-
ical droplet is described, accounting for these additional interfacial properties. For
the simulation of fluid particle deformation in the Stokes flow, the boundary integral
method, see, e.g., (Pozrikidis, 2001), has been established, in which the flow field is
obtained by solving an integral equation in which the interfacial momentum jump
condition - expressing the pressure jump at a curved interface, and the Marangoni
stresses in case of non-constant surface tension - are incorporated. The simul-
taneous surfactant transport is solved by using a Finite Difference method, e.g.,
(Milliken, Stone, and Leal, 1993; Li and Mao, 2001; Johnson and Borhan, 1996; Li
and Pozrikidis, 1997), or a Finite Volume method, e.g., (Bazhlekov, Anderson, and
Meijer, 2004, 2006), or a Finite Element approach (Feigl, Megias-Alguacil, Fis-
cher, and Windhab, 2007). The latter three papers present 3D simulations whereas
the others are restricted to axisymmetric shapes. In (Liao, Franses, and Barasan,
2003; Kruijt-Stegeman, van de Vosse, and Meijer, 2004; Severino, Campana, and
Giavedoni, 2005) the Finite Element method is also employed for the numerical
computation of the flow field. Except for (Johnson and Borhan, 1996; Severino,
Campana, and Giavedoni, 2005), all the papers mentioned so far consider insoluble
surfactants.

Recently, numerical methods capable of solving the full two-phase Navier-Stokes
equations have been extended to simulate the influence of surfactant on the dynami-
cal behavior of free interfaces. The methods of Yamamoto, Yamauchi, and Uemura
(2006) and Zhang, Eckmann, and Ayyaswamy (2006) for deformable axisymmetric
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particles are based on the front tracking method. The first one is limited to insol-
uble surfactants whereas the latter can also treat soluble surfactants. Muradoglu
and Tryggvason (2008) presented a Finite-Difference/Front-Tracking method for
axisymmetric flow with soluble surfactants. This method has recently been applied
to a droplet cleavage induced by surfactant and to a buoyancy-driven rising bubble
using a linear surface equation of state (Muradoglu and Tryggvason, 2008) as well
as a nonlinear one (Tasoglu, Demirci, and Muradoglu, 2008). The model of Xu,
Li, Lowengrub, and Zhao (2006) for 2D simulation of the influence of an insolu-
ble surfactant on the droplet behavior, accounting for surface diffusion, relies on a
Level-Set method and is applied to situations with a density and a viscosity ratio of
one.

Renardy, Renardy, and Cristini (2002) and Drumright-Clarke and Renardy (2004)
developed a VOF-based method to investigate the influence of an insoluble surfac-
tant on the dynamical behavior in a 2D shear field. In this method the adsorbed
surfactant is present only inside a layer enclosing the interface which is defined by
two additional phase indicator functions. James and Lowengrub (2004) introduced
a further VOF-based 2D method for insoluble surfactant in which the evolution
of interfacial area and of the extensive quantity of surfactant mass are computed
separately. Davidson and Harvie (2007) incorporated the method of James and
Lowengrub into the VOF algorithm of Rudman (1998) and investigated transient
axisymmetric deformations of a drop rising in a liquid. Yang and James (2007)
developed an additional variant coupling the Level-Set and VOF techniques and
taking advantage of the strengths of both parent methods. By directly tracking the
surfactant mass, such hybrid method was shown to conserve surfactant mass and
prevent surfactant from diffusing off the interface. The surfactant concentration,
which determines the local surface tension through an equation of state, was com-
puted as surfactant mass per interfacial area.

In the present paper, a VOF-based method for simulating the influence of a sol-
uble surfactant on the behavior of two-phase systems with deformable interface
due to Marangoni stresses is introduced. This approach is applicable to diffusion
controlled processes, where the relation between the area-specific excess surfactant
concentration on the interface and the volume-specific concentration adjacent to the
interface is given by an adsorption isotherm. Our aim here is to show the principal
feasibility of the method. The remainder of this paper is organized as follows. In
Section 2, the governing equations based on continuum mechanics are given. In
Section 3, the numerical model based on the VOF-method is described in detail. In
Section 4, first numerical results for a bubble rising in a surfactant solution are pre-
sented. Section 5 gives final conclusions. This paper is based on (Alke and Bothe,
2007) and (Alke, 2008).
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2 The governing equations

We consider a two-phase system consisting of a surfactant solution (phase domain
Ω+(t)) and a fluid phase in which the surfactant is insoluble (phase domain Ω−(t)).
The deformable interface between the two phases is presented as a (sharp) surface
of zero thickness and is denoted by Σ(t). Furthermore, the following assumptions
are imposed:

• a dilute surfactant solution (bulk concentration below critical micelle con-
centration) without interaction between adsorbed surfactant molecules,

• chemically inert surfactant,

• no phase change,

• isothermal conditions,

• incompressible bulk phases.

The present paper employs a continuum mechanical model in which the governing
equations are based on the conservation of surfactant (molar) mass, mass and mo-
mentum. Since no chemical reaction and no surfactant flux across the boundary of
the domain occur, the total surfactant mass - that is the surfactant mass which is
either adsorbed on the interface or dissolved in the bulk phase Ω+(t) - is constant.
In the local formulation, the balance equations for surfactant mass read as

Dc
Dt

+∇ · j = 0 in Ω
+(t), c = 0 in Ω

−(t) (1)

inside the bulk phases, and (Edwards, Brenner, and Wasan, 1991)

DΓ

Dt
+Γ ∇Σ · u+∇Σ · jΣ = rad− rde on Σ(t) (2)

where D
Dt is the Lagrangian derivative. Here c is the volume specific molar concen-

tration of the dissolved surfactant, Γ denotes the area specific molar excess con-
centration of the adsorbed surfactant, j and jΣ are the volumetric and interfacial
diffusive fluxes, respectively, and rad and rde are the rate functions for adsorption
and desorption, respectively. Common rate laws which are applicable to most sur-
factants are, according to Langmuir, rad = kad (1−Θ)c and rde = kdeΘ with the
adsorption rate constant kad and the desorption rate constant kde. For the molecular
fluxes j and jΣ suitable constitutive model equations have to be chosen. In case of
dilute systems and negligible interactions between adsorbed molecules, Fick’s law

j =−D ∇c, (3)
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and

jΣ =−DΣ
∇ΣΓ, (4)

with diffusion coefficients D and DΣ and the surface gradient ∇ΣΓ are appropriate.
Note that for bulk concentrations larger than the critical micelle concentration, a
source term accounting for the micellar composition and decomposition would be
required in (1). The two balance equations (1) and (2) are coupled via the interfacial
transmission condition

rad− rde + j|Σ ·nΣ = 0, (5)

where j|Σ is the one-sided limit of the molecular bulk flux. In (5), as in the remain-
der of the present paper, the interfacial normal unit vector nΣ is always directed into
Ω+(t). Because of (5), knowledge about the sorption kinetics is required for the
correct interfacial transmission condition of the surfactant bulk transport equation.
For the further treatment the following two additional assumptions are imposed

• local thermodynamical equilibrium at the interface,

• no surface viscosities.

The first of these two assumptions limits the applicability of the model to the impor-
tant class of diffusion controlled adsorption processes. In this case of fast sorption
compared to diffusion local thermodynamical equilibrium holds at the interface.
Hence a sorption isotherm, given as Γ = g(c|Σ ), holds on the interface, where
c|Σ is the bulk concentration adjacent to the interface. The assumption of quasi-
instantaneous sorption is valid for a large number of surfactants (Ravera, Ferrari,
and Liggieri, 2000), mainly for those with a low molecular weight. For such low
weight surfactants surface viscosity effects can be neglected, in general. The most
commonly used equilibrium relation is the Langmuir isotherm (resulting from the
Langmuir rate laws mentioned above), given by

Γ

Γ∞

=
c|Σ

c|Σ +b
; (6)

here b is the Langmuir coefficient representing the ratio kde/kad of the rate constants
for desorption and adsorption, and Γ∞ is the maximum interfacial concentration of
surfactant.

The underlying velocity field is governed by the two-phase Navier-Stokes equa-
tions expressing conservation of mass and momentum. Assuming continuity of
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the velocity at the interface for viscous (Newtonian) fluids of constant density, the
one-field formulation reads as

∇ ·u = 0 (7)

and

ρ
Du
Dt

=−∇p+∇ ·S+ρg+(σ κ nΣ +∇Σσ)δΣ, (8)

where S denotes the viscous stress tensor, i.e.

S = η

(
∇u+(∇u)T

)
. (9)

Here the material properties ρ and η refer to the phase dependent values, i.e.

ρ = f ρ
+ +(1− f )ρ− (10)

and

η = f η
+ +(1− f )η−, (11)

where f is the phase indicator function of the phase domain Ω+(t). In (8), the
momentum jump conditions are incorporated via the interfacial Delta distribution
δΣ. The first term in brackets on the right-hand side of (8) contains the curvature
κ =−∇ ·nΣ (more precisely, the sum of the principal curvatures) and expresses the
Laplace pressure jump. The surface gradient of the surface tension corresponds to
the Marangoni stress. Under isothermal conditions, this surface gradient is due
to local variations of Γ. For a given surface equation of state, σ = σ(Γ), the
Marangoni stress is determined by the distribution of adsorbed surfactant according
to

∇Σσ(Γ) =
dσ

dΓ
∇ΣΓ. (12)

For more details on continuum mechanical modelling of two-phase fluidic systems
see, e.g., (Edwards, Brenner, and Wasan, 1991; Slattery, Sagis, and Oh, 2007). For
first results on the mathematical analysis concerning wellposedness of the above
model for two-phase flow with soluble surfactant see (Bothe, Prüss, and Simonett,
2005).
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3 Numerical model for transport of soluble surfactant

3.1 Finite Volume approach

To solve the equations given above numerically, we use the commercial CFD-
solver FLUENT employing the Finite Volume discretization and especially a VOF-
method to solve the two-phase Navier-Stokes system. Within the VOF-method, the
interface is implicitly captured by solving the transport equation

∂ f
∂ t

+∇ · ( f u) = 0 (13)

for the phase indicator function. In the context of the Finite Volume discretiza-
tion, the volume averaged value of f corresponds to the volume fraction of phase
Ω+ within a computational cell. For the discretization of the convective term of
(13), several schemes are available in FLUENT. To minimize artificial smearing
of the VOF-variable f , the tracking algorithm as described in (Youngs, 1982) em-
ploying geometrical calculation of the fluxes is chosen. Here, for each interface
carrying cell, the interface is locally approximated by a plane, so that a conser-
vative transport of the phase volume without numerical diffusion is ensured. The
surface tension force is incorporated as a volume force according to the Continuum
Surface Force (CSF) model (Brackbill, Kothe, and Zemach, 1992).

Based on this VOF-method, a numerical scheme for the surfactant transport is de-
veloped. Here especially those computational cells containing a part of the interface
are of interest. The total surfactant (molar) mass N in a cell at time tn+1 is computed
in an explicit manner as

N(tn+1,V ∩Ω
+(tn+1)) = N(tn,V ∩Ω

+(tn))+∆tṄ(tn), (14)

with tn+1 = tn +∆t. The rate of change of total surfactant (molar) mass Ṅ inside a
fixed control volume is (see Appendix B, equation (46))

Ṅ =
d
dt

[∫
V∩Ω+(t)

c dV +
∫

Σ(t)∩V
Γ dA

]
=−

∫
∂V∩Ω+(t)

(c u+ j) ·n dA

−
∫

∂ (Σ(t)∩V )
jΣ ·N ds−

∫
∂ (Σ(t)∩V )

Γ
u ·n√

1− (nΣ ·n)2
ds. (15)

The first term on the right-hand side of equation (15) describes the convective and
molecular bulk transport of the dissolved surfactant across the cell faces which lie
inside the bulk phase Ω+. The second term accounts for the surface diffusion of
the adsorbed surfactant across the intersection curve between the interface and the
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cell boundary. The last term describes the transported adsorbed surfactant into or
out of the control volume due to interface movement.

To calculate the rate (15) numerically, we employ a kind of operator splitting. A
special feature within the VOF method of FLUENT is the possibility to solve trans-
port equations for user defined scalars within one of the phases, but without transfer
across the interface, i.e. with the homogeneous Neumann boundary condition

j ·nΣ = 0 on Σ(t). (16)

This is used to solve equation (1), i.e. for the pure bulk transport of dissolved sur-
factant inside Ω+. Note that condition (16) does not reflect the physics of adsorp-
tion since it does not allow diffusive transport of dissolved surfactant to or from
the interface. Let c̃ denote the resulting bulk concentration. Then, since quasi-
instantaneous sorption is assumed, relation (6) is used to compute the surface con-
centration as g(c̃) inside the interfacial cells. This leads to an intermediate value
Ñn+1 := Ñ(tn+1,V ∩Ω+(tn+1)) given by

Ñn+1 =
[∫

V∩Ω+(tn+1)
c̃ dV +

∫
Σ(tn+1)∩V

g(c̃) dA
]

j ·nΣ=0
. (17)

Here the notation [. . .]j·nΣ=0 is used to indicate that the quantity inside the brackets is
computed using the boundary condition (16) instead of the true boundary condition

−j ·nΣ =
DΓ

Dt
+Γ ∇Σ · u+∇Σ · jΣ on Σ(t) (18)

which results from (2) and (5). To compute the correct value Nn+1 from Ñn+1, we
use the fact that

Ñn+1=̇ Nn + ∆t

(
d
dt

[∫
V∩Ω+(t)

c̃ dV +
∫

Σ(t)∩V
g(c̃) dA

]
j ·nΣ=0

)
. (19)

An appropriate reformulation of the rate term in (19) (cf. Appendix C, equation
(51)) yields

d
dt

[∫
V∩Ω+(t)

c̃ dV +
∫

Σ(t)∩V
g(c̃) dA

]
j ·nΣ=0

=−
∫

∂V∩Ω+(t)

(
c̃ u+ j̃

)
·n dA

+
∫

Σ(t)∩V

(
D
Dt

g(c̃)+g(c̃)∇Σ ·u
)

dA−
∫

∂ (Σ(t)∩V )
g(c̃)

u ·n√
1− (nΣ ·n)2

ds. (20)

To calculate the total molar surfactant mass Nn+1 with the help of (20), the differ-
ences between the right-hand sides of equations (15) and (20) have to be accounted



3D Numerical Modeling of Soluble Surfactant 353

for by an additional source term Ṡ. An elementary calculation (cf. Appendix C)
yields

d
dt

[∫
V∩Ω+(t)

c dV +
∫

Σ(t)∩V
Γ dA

]
=

d
dt

[∫
V∩Ω+(t)

c̃ dV +
∫

Σ(t)∩V
g(c̃) dA

]
j·nΣ=0

+ Ṡ(c̃) (21)

with

Ṡ(c̃) =−
∫

∂ (Σ(t)∩V )
jΣ ·N ds−

∫
Σ(t)∩V

(
D
Dt

g(c̃)+g(c̃)∇Σ ·u
)

dA. (22)

This finally yields Nn+1 according to

Nn+1 = Ñn+1 + ∆t Ṡ(c̃). (23)

In the Finite Volume discretization, (17) corresponds to

Ñn+1
i = c̃n+1

i

∣∣Vi∩Ω
+(tn+1)

∣∣+g(c̃n+1
i )

∣∣AΣ,i(tn+1)
∣∣ , (24)

where Vi is a grid cell and c̃n+1
i the cell centered value of c̃,

∣∣Vi∩Ω+(tn+1)
∣∣ denotes

the part of Vi lying inside Ω+ and
∣∣ AΣ,i(tn+1)

∣∣ the area of the interface inside the
computational cell Vi at time tn+1. Next, the value Nn+1

i is computed according to
(23). Finally, the values cn+1

i and Γ
n+1
i are obtained from the relations

Nn+1
i = cn+1

i

∣∣Vi∩Ω
+(tn+1)

∣∣+Γ
n+1
i

∣∣AΣ,i(tn+1)
∣∣ (25)

and

Γ
n+1
i = g(cn+1

i ). (26)

With this approach no separate area concentrations of the adsorbed surfactant are
required and only bulk values need to be stored.

It remains to provide a reformulation of Ṡ from (22) which is feasible for subsequent
discretization. Applying the balance equation (1) to the Lagrangian derivative of
the function g(c̃), the source term (22) takes the form

Ṡ =−
∫

∂ (Σ(t)∩V )
jΣ ·N ds+

∫
Σ(t)∩V

g′(c̃)∇ · j dA−
∫

Σ(t)∩V
g(c̃) ∇Σ ·u dA. (27)

With the homogeneous Neumann boundary condition (16), the divergence in the
second term of (27) reduces to the surface divergence. Employing (3) with con-
stant diffusivity for the molecular flux, the Langmuir isotherm (6) for the function
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g and some mathematical rearrangements using especially the surface divergence
theorem, it follows that

Ṡ = −
∫

∂ (Σ(t)∩V )
jΣ ·N ds−

∫
∂ (Σ(t)∩V )

D ∇Σg(c̃) ·N ds

−
∫

Σ(t)∩V

2(b+ c̃)
Γ∞ b

D‖∇Σg(c̃)‖2 dA+
∫

Σ(t)∩V
uτ ·∇Σg(c̃) dA

−
∫

∂ (Σ(t)∩V )
g(c̃) uτ ·N ds+

∫
Σ(t)∩V

g(c̃) κ u ·nΣ dA. (28)

Here, the first term accounts for the surface diffusion. The second and third term
subtract the unphysical flux induced by the bulk transport. The remaining terms re-
sult from the dilation or compression of the interface due to movement in tangential
(fourth, resp. fifth term) and normal (sixth term) direction. Figure 1 summarizes
the main steps of the computations in every time step. The numerical discretization
of (28) requires a connected approximation of the interface. The standard PLIC
scheme does not fulfill this requirement, but a connected interface approximation
can be obtained as described in the next section as an f -iso-surface.

3.2 Construction of an iso-surface for the VOF-variable

The discretization of the terms in (28) is based on an iso-surface Σiso concerning
the VOF-variable f as an approximation of the true interface Σ(t). Figure 2 shows
the steps of the construction of this iso-surface. Figure 3 shows the possible con-
figurations of the iso-surface inside a cubic cell. In the first step, VOF-values fnode
at all grid nodes are determined by volume averaging over the cell center values of
the adjoining cells. Next, the coordinates of the intersection points xs ∈ Σiso with
the edges of the grid are calculated for a given VOF-value fiso. This is done by
linear interpolation of the f -values along the edges. For the case of more than three
edge/iso-surface intersections, the latter are, in general, not in a plane. Therefore,
the part Σiso,i of the iso-surface lying inside the cell Vi is triangulated by connecting
each edge/iso-surface-intersection point with the center point (given as the arith-
metic mean of all associated intersection points). The phase volume fraction in
a grid cell resulting from the phase partitioning by the iso-surface does not coin-
cide with the cell centered value of the VOF-variable, so that this process does
not conserve phase volume. However, these deviations cannot accumulate since
the PLIC-algorithm is still used for the f -transport while the iso-surface is used in
each time step as the basis for the interfacial surfactant transport.
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Here, the first term accounts for the surface diffusion. The second and third term
subtract the unphysical flux induced by the bulk transport. The remainingterms re-
sult from the dilation or compression of the interface due to movement in tangential
(fourth, resp. fifth term) and normal (sixth term) direction. Figure 1 summarizes
the main steps of the computations in every time step. The numerical discretization

Figure 1: Sequence of calculations in a single time step

of (28) requires a connected approximation of the interface. The standard PLIC
scheme does not fulfill this requirement, but a connected interface approximation

Figure 1: Sequence of calculations in a single time step
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Figure 2: Algorithm for constructing the iso-surface fiso = const. from cell center
values of the VOF-variable f

3.3 Interfacial source term

The first term in (28) describes the change of adsorbed surfactant inside a con-
trol volume due to surface diffusion along the interface Σ(t). The cell specific
value for Γi is calculated from the sorption isotherm Γi = g(c̃i), where c̃ is the bulk
concentration of surfactant after bulk transport as explained in section 3.1. With
Fick’s law for surface diffusion (4) and the outward oriented tangential unit vector
Nnb = xc,nb−xc,i/‖xc,nb−xc,i‖, the discrete form of this term is given as

−
∫

∂ (Σ(t)∩Vi)
jΣ ·Nds =

∫
∂ (Σ(t)∩Vi)

DΣ
∇ΣΓ ·Nds≈∑

nb
DΣ g(c̃nb)−g(c̃i)
‖xc,nb−xc,i‖

|si,nb| (29)
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a) b) c) d)

xc
xc

xc

xc

Figure 3: Possible locations of the iso-surface in a computational cell: a) three, b)
four, c) five and d) six edge/iso-surface intersections

1sx

s

2s
x

3s
x4s

x

c
x

h

Figure 4: Geometrical quantities of the iso-surface

where ∑nb denotes the sum over all neighboring cells which are cut by iso-surface
and si,nb the line of intersection between the face Ai,nb (belonging to cell Vi and Vnb)
and the iso-surface Σiso. Here we assume a constant surface diffusion coefficient
DΣ. The discrete form of the second term in (28) has the same structure and, there-
fore, can be calculated together with (29). Furthermore, the tangential velocity uτ

in the fourth and fifth term of (28) can be replaced by the full velocity u. The latter
as well as the concentration c and the equilibrium value g(c) are given as cell spe-
cific values. However, for the fifth term the velocity u is needed at the intersection
lines si,nb which is obtained by linear interpolation. The unit vector N is calculated
according to N =−h/‖h‖, where h is the hight vector of the corresponding trian-
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gle; cf. Figure 4 for an example with vortices xs,1,xs,2 and xc. In addition, for the
third and fourth term the surface gradient ∇Σg(c̃) is needed as a cell specific value.
In section 3.4 it is described in detail how to approximate this value. Furthermore,
to be able to discretize the sixth term which contains the curvature, the relation∫

N ds =
∫

ds×nΣ =
∫

κ nΣ dA is employed. To achieve a certain smoothing of the
curvature term in this expression, the tangential unit vector N is calculated in the
same manner as in the surface diffusion term, i.e. from the distance vector between
two iso-surface centers xc. Altogether, the discrete Finite Volume version of the
interfacial source term becomes

Ṡdiscrete
i =

(
DΣ−D

)
∑
nb

g(c̃i)−g(c̃nb)
‖xc,i−xc,nb‖

|si,nb|

− 2(b+ c̃i)
Γ∞ b

D‖∇Σg(c̃)‖2
i |AΣ,i|+ ui · (∇Σg(c̃))i |AΣ,i|

− g(c̃i)∑
nb

ui,nb ·
(
−

hi,nb

‖hi,nb‖

)
|si,nb|

+ g(c̃i) ui ·∑
nb

xc,nb−xc,i

‖xc,nb−xc,i‖
|si,nb| . (30)

3.4 Cell specific surface gradient

In this subsection the calculation of the surface gradient of g(c̃) appearing in (30)
as well as in the discrete version of the Marangoni stress term (12) is described. In
local coordinates, the surface gradient of a surface quantity φ Σ is defined as

∇Σφ
Σ =

∂φ Σ

∂τ1τ1τ1
τττ1 +

∂φ Σ

∂τ2τ2τ2
τττ2, (31)

where τ1τ1τ1 and τ2τ2τ2 are two orthogonal tangential unit vectors. To compute the di-
rectional derivatives ∂φ Σ

∂τiτiτi
, we proceed as follows. First, two linear independent

approximately tangential vectors ti are determined in a way which depends on the
number of edge/iso-surface intersections (cf. Figure 5): If the computational cell
contains three edge/iso-surface intersections, two spanning vectors of the triangle
are used as tangential vectors (Figure 5a). In the case of four edge/iso-surface in-
tersections, the diagonal vectors are used (Figure 5b). If the computational cell is
cut by the iso-surface at five intersection points, the two end points of the shortest
intersection line between a cell face and the iso-surface are replaced by one mid-
dle point. Then, the diagonal vectors obtained from the remaining four points are
used as the tangential vectors ti (Figure 5c). An analogous procedure is applied in
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a) b) c) d)

Figure 5: Determination of two linear independent vectors, which are approxi-
mately tangential at the interface; a) three, b) four, c) five, and d) six cell intersec-
tions

case of six edge/iso-surface intersections (Figure 5d). This yields (approximately)
tangential orthogonal unit vectors

τττ1 =
t1

‖t1‖
and τττ2 =

t1× (t2× t1)
‖t1× (t2× t1)‖

. (32)

Next, the directional derivatives ∂φ Σ

∂τ1τ1τ1
and ∂φ Σ

∂τ2τ2τ2
are approximated according to a least

square method. On the discrete level, on each face of an interfacial cell the di-
rectional derivative ∂φ Σ

∂τττnb
in direction of the connecting line between the two points

xc,nb and xc,i can be approximated by

∂φ Σ

∂τττnb
≈

φ Σ
nb−φ Σ

i

‖xc,nb−xc,i‖
, (33)

where the tangential unit vector is given as τττnb = xc,nb−xc

‖xc,nb−xc‖ . Therefore, an approxi-

mate cell specific surface gradient ∇Σφ Σ has to fulfill the requirement

∑
nb

((
∇Σφ

Σ)
)

i ·τττnb−
φ Σ

nb−φ Σ
i

‖xc,nb−xc,i‖

)2

→min! (34)

This minimization problem has a unique solution, given by

∂φ Σ

∂τ1τ1τ1
=

∑nb a2
2,nb ∑nb a1,nb bnb−∑nb a1,nba2,nb ∑nb a2,nb bnb

∑nb a2
1,nb ∑nb a2

2,nb− (∑nb a1,nba2,nb)
2 .

∂φ Σ

∂τ2τ2τ2
=

∑nb a2,nb bnb− ∂φ Σ

∂τ1τ1τ1
∑nb a1,nb a2,nb

∑nb a2
2,nb

(35)
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where a1,nb = τττ1 ·
xc,nb−xc,i

‖xc,nb−xc,i‖ , a2,nb = τττ2 ·
xc,nb−xc,i

‖xc,nb−xc,i‖ , and bnb = φ Σ
nb−φ Σ

i

‖xc,nb−xc,i‖ .

This procedure has been successfully tested and verified for prototype cases, and is
used to compute the surface gradient of g(c̃).

4 Application to a rising bubble

4.1 Computational domain and physical parameters

In this section a qualitative study of the effect of a soluble surfactant on the rise be-
havior of a bubble is presented. We consider a bubble of 2 mm volume-equivalent
diameter rising in a 6 mm tube filled with a water/glycerol mixture (density: ρ =
998.2 kg/m3, viscosity: η = 10 mPa s). According to Schlüter (2002), the trajec-
tory of a gas bubble rising in a fluid with a viscosity of at least 7 mPa s is recti-
linear. Hence the simulation of a quarter of the bubble is sufficient. To realize a
rotationally symmetric flow field a cylinder is chosen as the computational domain
as shown in Figure 6. Since the present implementation of our numerical method
requires rectangular computational cells, the computational domain is divided into
a rectangular core zone which is discretized with cubic cells and a peripheral zone
which is discretized with an unstructured grid as shown in Figure 7. The current re-
striction to rectangular cells is not a principle one and the approach can be adopted
to tetrahedra, say, in a straightforward manner. The length of the computational
domain is L = 10 mm and the radius is R = 3 mm.

Concerning the momentum transport, the zero shear stress (slip) condition is ap-
plied at all domain boundaries to minimize the wall influence, i.e. the boundary
conditions are

u ·n = 0 and (Sn) ·τττ = 0 on ∂Ω. (36)

Concerning the boundary condition for the surfactant transport equation, the ho-
mogeneous Neumann-boundary condition

∇c ·n = 0 on ∂Ω (37)

is imposed at the whole domain boundary. The surfactant parameters used in our
simulations are listed in Table 1. Since no reliable experimental data concerning
the interfacial diffusion coefficient is available, we have chosen DΣ = 10−5m2s−1

as a reasonable value. The values of the other coefficients in Table 1 correspond to
the non ionic surfactant Triton X 100 for which diffusion in the bulk phase is the
rate determining step (Bel Fdhila and Duineveld, 1996). All simulations have been
performed with a standard PC (AMD Athlon XP3000 processor, 2.17 GHz with 1
GB RAM).



3D Numerical Modeling of Soluble Surfactant 361

Figure 6: Computational domain with hybrid grid (85080 computational cells)

Table 1: Parameter of used surfactant

initial volume concentration c0 = 4,443 ·10−4mol m−3

bulk diffusion coefficient D = 2,7 ·10−10m2s−1

surface diffusion coefficient DΣ = 10−9m2s−1,

maximum surface excess concentration Γ∞ = 2,91 ·10−6mol2m−2

Langmuir coefficient b = 6,63 ·10−4mol m−3

4.2 Simulation results

With the numerical method introduced above, the surfactant distribution in the bulk
phase and on the interface and the induced Marangoni stresses have been sim-
ulated. Figure 8 shows the surfactant distribution on the bubble surface. The
equilibrium value corresponding to the initial bulk concentration c0 is Γeq(c0) =
1.17 · 10−6mol/m2. In accordance with the literature, the surfactant accumulates
at the rear pole where the maximum surface excess concentration Γ∞ is reached.
Inside a large region at the front side of the bubble the surface excess concentra-
tion is much less than Γeq(c0). Between these two regions, a small transition zone
is formed. Figure 9a shows the distribution of the bulk concentration of the dis-
solved surfactant; here the bubble moves from the left to the right. During its rise,
the bulk concentration becomes significantly higher (with 1.79 ·10−1mol/m3 about
400 times of the initial concentration) behind the rear pole of the bubble due to
desorption of surfactant. In Figure 9b, the region with a surfactant concentration
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bubble surface

Domain discretizised with
cubic computational cells

Domain discretizised with non cubic
hexagonal computational cells

Figure 7: Discretization of the pipe cross section
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Figure 8: Distribution of the adsorbed surfactant on a bubble surface

below the initial concentration c0 is depicted. In front of the bubble, the bulk con-
centration of the surfactant is nearly zero. With larger distance from the bubble
surface, the concentration increases. Due to this concentration gradient normal to
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the bubble surface, the dissolved surfactant is transported to the interface via molec-
ular diffusion. Due to the surface gradient of the surface excess concentration and

Figure 9: Concentration of dissolved surfactant

the surface equation of state, a surface tension gradient is formed according to (12).
This Marangoni stress affects the mobility of the interface and, thereby, the velocity
field inside and outside the particle. This is shown in Figure 10, where the relative
velocity fields (with respect to the bubble’s barycenter) are presented for a bubble
rising in a pure liquid (left) and in a surfactant solution (right), respectively. In
both cases the terminal velocity has already been reached. In the pure system only
one toroidal vortex is formed inside the bubble whereas two vortices are formed
if surfactant is present. In the latter case the interfacial velocity at the rear pole
is oriented against the direction of the bubble’s movement. Tasoglu, Demirci, and
Muradoglu (2008) also obtained two vortices inside the bubble in the simulations
using a nonlinear surface equation of state derived from the Langmuir adsorption
isotherm if the surface elasticity number and the Peclet number based on the bulk
surfactant diffusivity are sufficient high. The conditions under which a secondary
vortex is formed inside the fluid particle will be examined in further studies. Fur-
thermore, the bubble is more flattened than in the surfactant solution because of
the different rise velocities. Due to the "reverse flow" at the rear pole, the veloc-
ity gradient and therewith the viscous friction force is increased in the surfactant
solution. Figure 11 shows a plot of the rise velocities versus time, calculated with-
out and with the Marangoni stress term, respectively. The simulation results reflect
the known retardation induced by surfactants. Without any hydromechanical back-
coupling, i.e. for constant surface tension σ ≡ σ0 = 30 mN/m, a terminal velocity
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Figure 10: Velocity field inside and outside the bubble rising a pure system (left)
and in a diluted surfactant solution (right)

of about 12 cm/s is reached (upper curve in Figure 11). The Marangoni stress term
∇Σσ , obtained with a linear surface equation of state according to

σ(Γ) = σ0−a
Γ

Γ∞

for Γ≤ Γ∞ with a = 0.01N/m (38)

alone, reduces already the terminal velocity to 8,5 cm/s. Here, in the curvature
term, the surface tension is kept constant to σ ≡ σ0. Note that the back-coupling is
switched on only after a rise velocity of 10 cm/s is reached. This is necessary with
the used solver because so-called parasitic currents prevent the correct simulation
of the interfacial surfactant transport at the beginning of the simulation. The lower
curve in Figure 11 is obtained using (38) both in the capillary and the Marangoni
stress term. In this case the retardation is even more pronounced because the lower
surface tension leads to a stronger deformation of the bubble. To reduce compu-
tational time, each simulation was stopped when the rise velocity became stable.
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Figure 11: Effect of hydrodynamical back-coupling on the rising velocity of the
bubble

5 Conclusion

A new VOF-based approach for simulating the influence of a soluble surfactant
on the dynamical behavior of a fluid particle in 3D is introduced. The numerical
method yields both the surfactant distribution in the bulk phase and on the interface
and accounts for the induced Marangoni stress acting on the interface. It applies to
systems with fast sorption where the interfacial surfactant concentration is related
to the adjacent bulk concentration via an adsorption isotherm. In this case only bulk
values for the surfactant concentrations are required, provided that the discretized
interfacial transport terms are appropriately corrected to compensate induced arti-
ficial fluxes. First numerical results concerning an air bubble rising in a quiescent
surfactant solution reflect the known retardation of the bubble. Since the approach
is based on the Volume of Fluid method, the simulation of two-phase flows with
changes in phase topology like disintegration processes or bubble and droplet for-
mation at nozzles is possible.
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Appendix A: Transport theorem for a moving surface cut by a fixed volume

The transport theorem for the rate of change of an extensive surface quantity ΦΣ on
a material surface Σm(t) states that

dΦΣ

dt
=

d
dt

∫
Σm(t)

φ
Σ dA =

∫
Σm(t)

(
Dφ Σ

Dt
+φ

Σ
∇Σ ·u

)
dA, (39)

where D
Dt is the Lagrangian derivative and φ Σ the area density of ΦΣ. For the rate

of change of a surface quantity on the part of a moving surface lying inside a fixed
volume V the change due to the surface movement has to be taken into account.
During a time interval of length dt, the moving surface - and with it the surface
quantity - partly enters and partly leaves the cell. Therefore, the ingoing amount of
ΦΣ has to be added to and the outgoing part has to be subtracted from the right-hand
side of (39). This additional kinematic term can be derived from simple geomet-
ric considerations illustrated by Figure 12 where the bold part of the surface with
length
u ·n
sinα

∆t =
u ·n√

1− cos2α
∆t =

u ·n√
1− (n ·nΣ)2

∆t (40)

leaves the cell across the right cell boundary during the time interval ∆t. The re-
sulting rate at which surface leaves the volume V is obtained by integration of the

above rate u ·n/

√
1− (n ·nΣ)2 along the curve of intersection between the surface

and the boundary of V . This leads to an extended version of the transport theorem,
given as

d
dt

∫
Σ(t)∩V

φ
Σ dA =

∫
Σ(t)∩V

(
Dφ Σ

Dt
+φ

Σ
∇Σ ·u

)
dA

−
∫

∂ (Σ(t)∩V )
φ

Σ u ·n√
1− (n ·nΣ)2

ds. (41)
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Figure 12: Illustration of the extended surface transport theorem

Equation (41) is very close to the formula given in Remark 3 in (Gurtin, Struthers,
and Williams, 1989) but the latter is flawed by a misprint. Note that (41) is consis-
tent with the recent general form of surface transport relations given in (Cermelli,
Fried, and Gurtin, 2005).

Appendix B: Total surfactant mass balance for a fixed control volume cut by
a moving interface

The total (molar) mass balance for a soluble surfactant within a material volume
V (t) is given by

d
dt

[∫
V (t)

c dV +
∫

Σ(t)∩V (t)
Γ dA

]
=−

∫
∂V (t)

j ·n dA−
∫

∂ (Σ(t)∩V (t))
jΣ ·N ds. (42)

For a fixed control volume V , as used for the Finite Volume discretization, the
convective fluxes have to be accounted for. In the following, surfactant is assumed
to be soluble only inside phase Ω+. Application of the Reynolds transport theorem
to the concentration c and use of the local surfactant balance (1) yields the rate of
change of dissolved surfactant inside a fixed volume V , containing a part of the
interface, as

d
dt

∫
V∩Ω+(t)

c dV =−
∫

∂V∩Ω+(t)
(c u+ j) ·n dA+

∫
Σ(t)∩V

j ·nΣ dA. (43)
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According to the extended version of the surface transport theorem (41), the rate of
change of the adsorbed surfactant inside V is

d
dt

∫
Σ(t)∩V

Γ dA =
∫

Σ(t)∩V

(
DΓ

Dt
+Γ ∇Σ ·u

)
dA

−
∫

∂ (Σ(t)∩V )
Γ

u ·n√
1− (n ·nΣ)2

ds. (44)

The integrand of the first term on the right-hand side of (44) can be expressed by
the local balance of adsorbed surfactant (2). Application of the surface divergence
theorem to the molecular interfacial flux jΣ and use of the interfacial sorption con-
dition (5) gives

d
dt

∫
Σ(t)∩V

Γ dA = −
∫

Σ(t)∩V
j ·nΣ dA−

∫
∂ (Σ(t)∩V )

jΣ ·N ds

−
∫

∂ (Σ(t)∩V )
Γ

u ·n√
1− (nΣ ·n)2

ds. (45)

Addition of (43) and (45) finally yields

d
dt

[∫
V∩Ω+(t)

c dV +
∫

Σ(t)∩V
Γ dA

]
=−

∫
∂V∩Ω+(t)

(c u+ j) ·n dA

−
∫

∂ (Σ(t)∩V )
jΣ ·N ds−

∫
∂ (Σ(t)∩V )

Γ
u ·n√

1− (nΣ ·n)2
ds. (46)

Appendix C: Derivation of the source term Ṡ

According to the Reynolds transport theorem, the rate of change of the amount of
surfactant, dissolved in Ω+, in a fixed control volume V is

d
dt

∫
V∩Ω+(t)

c̃ dV =
∫

V∩Ω+(t)

∂ c̃
∂ t

dV −
∫

V∩Σ(t)
c̃ u ·nΣ dA. (47)

Use of the local balance equation (1) and the divergence theorem yields

d
dt

∫
V∩Ω+(t)

c̃ dV = −
∫

∂V∩Ω+(t)

(
c̃u+ j̃

)
·n dA+

∫
Σ(t)∩V

(
c̃u+ j̃

)
·nΣ dA

−
∫

Σ(t)∩V
c̃u ·nΣ dA, (48)
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hence, with the homogeneous Neumann condition j̃ ·nΣ = 0 on Σ(t),

d
dt

∫
V∩Ω+(t)

c̃ dV = −
∫

∂V∩Ω+(t)

(
c̃u+ j̃

)
·n dA. (49)

Further, the extended surface transport theorem (41) applied to g(c̃) yields

d
dt

∫
Σ(t)∩V

g(c̃) dA =
∫

Σ(t)∩V

(
D
Dt

g(c̃)+g(c̃) ∇Σ · u
)

dA

−
∫

∂ (Σ(t)∩V )
g(c̃)

u ·n√
1− (nΣ ·n)2

ds. (50)

Addition of (49) and (50) gives

d
dt

[∫
V∩Ω+(t)

c̃ dV +
∫

Σ(t)∩V
g(c̃) dA

]
j·nΣ=0

=−
∫

∂V∩Ω+(t)

(
c̃ u+ j̃

)
·n dA

+
∫

Σ(t)∩V

(
D
Dt

g(c̃)+g(c̃)∇Σ ·u
)

dA−
∫

∂ (Σ(t)∩V )
g(c̃)

u ·n√
1− (nΣ ·n)2

ds. (51)

The first and the third term on the right-hand side of (51) also appear in the balance
equation (15). Therefore, the rate of change of the total amount of surfactant in a
computational cell can be calculated as

d
dt

[∫
V∩Ω+(t)

c dV +
∫

Σ(t)∩V
Γ dA

]
=

d
dt

[∫
V∩Ω+(t)

c̃ dV +
∫

Σ(t)∩V
g(c̃) dA

]
j ·nΣ=0

+ Ṡ, (52)

where

Ṡ =−
∫

∂ (Σ(t)∩V )
jΣ ·N ds−

∫
Σ(t)∩V

(
D
Dt

g(c̃)+g(c̃)∇Σ ·u
)

dA. (53)

This source term corrects the "ghost flux" along the interface induced by the bulk
transport of dissolved surfactant via the local equilibrium relation Γ = g(c̃).


