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Towards a Numerical Benchmark for MHD Flows of
Upper-Convected Maxwell (UCM) Fluids over a Porous

Stretching Sheet

R. C. Bataller1

Abstract: The present research gathers an accurate numerical study of the lami-
nar flow induced in an incompressible upper-convected Maxwell (UCM) fluid by a
linear stretching of a flat, horizontal and porous sheet in the presence of a transverse
magnetic field. The governing partial differential equations are converted into an
ordinary differential equation by a similarity transformation. The effects on the ve-
locity field over the sheet of the parameters like elasticity number, suction/blowing
velocity, and magnetic parameter are also studied. It has also been attempted to
show capabilities and wide-range applications of the 4th order Runge-Kutta method
in comparison with the homotopy analysis method. Knowing in boundary layer the-
ory that velocity profiles approach the ambient fluid conditions asymptotically, our
numerical solutions were carried out under the simultaneous boundary conditions
at infinity: f ′→ 0 as η → ∞, and f ′′→ 0 as η → ∞ ( f being the non-dimensional
stream function). In this manner, a remarkable accuracy for the missed skin friction
coefficient f ′′(0) can be achieved.
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1 Introduction

Boundary layer behaviour over a moving continuous solid sheet is an important
type of flow occurring in several engineering processes. Specifically these in-
clude production of plastic sheets, drilling operations, glass-fiber and paper produc-
tion, cooling of metallic and plastic sheets, liquid films in condensation processes
and many others. In general, the involved fluid in these cases is treated as non-
Newtonian fluid. Therefore, numerical analysts encounter actually a wide variety
of challenges in obtaining suitable algorithms for computing flow and heat transfer
of viscoelastic fluids. Very recently, boundary layer flow for non-Newtonian fluids
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with or without heat transfer has been studied by Massoudi (2003), Massoudi, Tran
and Wulandana (2009), Cortell (1994), Cortell (2006a), and Bataller (2007a) for
a second grade fluid, by Bhatnagar, Gupta and Rajagopal (1995) for an Oldroyd-
B fluid, by Abbas, Sajid and Hayat (2006) and Hayat, Abbas and Ali (2008) for
an upper-convected Maxwell (UCM) fluid, and also Bataller (2008a) has analyzed
flow and heat transfer in the presence of thermal radiation by modelling viscoelastic
properties with the help of the FENE-P (finitely extensible nonlinear elastic fluids)
constitutive equation.

Flow kinematics can be modified with the help of a sufficiently strong magnetic
field applied to an electrically conducting fluid surrounding a stretching sheet,
Cortell (2005a), (2006b). Specifically, in flows involving heat transfer, Bird, Cur-
tiss, Armstrong and Hassager (1987), it has been shown that might be some advan-
tages if the fluid surrounding the sheet can be made viscoelastic by using polymeric
additives: Dandapat and Gupta (1989), Cortell (2007a). On the other hand, one can
also resort to suction/blowing in order to modify flow kinematics: Cortell (2005b).

In the case of fluids of differential type (see Rajagopal (1995)), the equations of
motion are in general one order higher than the Navier-Stokes equations and, in
general, need additional boundary conditions to determine the solution completely.
These important issues were studied in detail by Rajagopal (1984), Rajagopal and
Gupta (1984) and Rajagopal and Kaloni (1989).

Usually, our proposed problems in the present area are solved by using boundary-
layer theory along with the concept of similarity solution. The obtained ODE still
presents a difficult problem to solve due to the lack of enough physical bound-
ary conditions, as was commented. Nowadays, we currently use for problems of
Sakiadis/Crane type (i.e., f ′ → 0 as η → ∞), the augmented conditions f ′′ → 0
as η → ∞( f being the non-dimensional stream function) for momentum transfer
problems, and θ ′→ 0 as η→∞(θ being dimensionless temperature) for heat trans-
fer problems, respectively. See, for example, Cortell (2006c), (2007b), Bataller
(2007b). It is worth mentioning here that the aforementioned conditions at infinity
have been applied (or obtained) in our studies since early 1990s: Cortell (1994).
The problem under investigation (i.e., MHD flows of an UCM fluid) is highly non-
linear and these classes of problems are not easy to examine. Therefore, many
applied mathematicians and numerical analysts have also recently paid much at-
tention in developing suitable algorithms for solving these problems. In fact, a
systematic analysis of the stagnation-point flow of UCM fluids has been recently
carried out by Sadeghy, Hajibeygi and Taghavi (2006). Moreover, suction/blowing
effects on MHD flows of an Maxwellian fluid were very recently considered by
several researchers (see, for example, Amir, Aliakbar, Farzad and Sadeghy (2009),
Hayat, Abbas, and Sajid (2006) who by means of the powerful and contrasted ho-
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motopy analysis method (HAM) gave an analytical solution for the problem under
investigation. Also, Hayat and his co-workers have considered UCM analyses with
an x dependent free stream velocity far away from the stretching sheet, Hayat, Ab-
bas and Sajid (2009).

In the present research, numerical and stable results are also obtained at large elas-
ticity and/or magnetic number by using a 4th order Runge-Kutta (RK4) method
along with shooting method and the mechanical characteristics of the flow are an-
alyzed. Also, it will be underlined that the role of the velocity gradient at infinity
(i.e., f ′′(∞)) is of key relevance for our results from which the entrainment velocity
f∞ = f (∞) can also be analyzed for the first time.

RK4 method by applying to an initial value problem (IVP) usually necessitates a
choose for the limited integral region (i.e., the η∞ value) instead of infinity for nu-
merical integration, but our iterative shooting procedure does not need this because
it acts only onto f ′′(0) (the missed skin friction coefficient) controlling, at the same
time, the additional condition at infinity: f ′′(η∞) ∼= 0. In this manner, the f ′(η)
function (velocity profile) tends to zero at infinity (η = η∞) in an asymptotical
fashion as must be required according boundary layer theory.

For each numerical solution in the iterative process the size of the integration do-
main is obtained as a natural part of the solution, and there is no necessity to select
the extent of the integration domain before calculation. Therefore, our governing
momentum transfer equation can be solved (numerically) by marching freely from
the origin as it also is common for boundary layers involving interesting problems
in the area of fluid dynamics, Bataller (2008a,b,c). This innovative way of inte-
gration prevents us from unphysical behaviours of the solution and provides high
accuracy of the results.

2 Flow analysis

Let us suppose a steady, laminar and two-dimensional flow of an incompressible,
electrically conducting and Boussinesq viscoelastic UCM fluid subject to a trans-
verse uniform magnetic field B0 which is applied in the positive y-direction past
a flat, horizontal and porous sheet coinciding with the plane y = 0, the flow being
confined to y >0. The motion of the fluid is generated due to linear stretching of
the sheet with the application of two equal and opposite forces, which are applied
along the x-axis so that the wall is stretched keeping the origin fixed. The magnetic
Reynolds number is considered to be small and so we have a negligible induced
magnetic field. The system of continuity and momentum equations can be written,
in the usual notation, as (see Amir, Aliakbar, Farzad and Sadeghy (2009), Hayat,
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Abbas and Sajid (2006))

∂u
∂x

+
∂v
∂y

= 0, (1)
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]
−

σ0B2
0

ρ
u, (2)

We take x-axis along the surface, the y-axis being normal to it and u and v are the
velocity components in x and y directions, respectively, υ is the kinematic viscosity,
ρ is the density andβ is the relaxation time of the fluid. Further, B0 is the uniform
magnetic field along the y-axis and σ0 is the electric conductivity. The boundary
conditions to the problem are

u = cx, v =±vw at y = 0, c > 0 (3)

u→ 0,
∂u
∂y
→ 0 as y→ ∞. (4)

The second condition (4) is the augmented condition since the flow is in an un-
bounded domain (see Cortell (2006a)). v = vw in the second condition (3) is the
blowing velocity across the stretching sheet, whereas v = -vw is the suction veloc-
ity.

Defining new variables

u = cx f ′(η), v =−(c.υ)1/2 f (η) (5)

where

η =
( c

υ

)1/2
y, (6)

and substituting in (2) gives

( f ′)2− f f ′′+M f ′ = f ′′′−K
[

f ′′′( f )2−2 f f ′ f ′′
]
, (7)

where K = βc is the elasticity parameter and a prime denotes differentiation with
respect to η . Further, M = σ0B2

0
ρc is the magnetic field parameter. The boundary

conditions (3) and (4) becomes

f = R, f ′ = 1 at η = 0,

f ′→ 0, f ′′→ 0 as η → ∞. (8)
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where R = vw
(cυ)1/2 is the suction (>0)/blowing(<0) parameter.

For the sake of brevity we concentrate on latest results of Section 2 of Hayat and
Sajid (2007) regarding Eqs. (7), (8), which govern the problem under consideration.
For a more detailed discussion of the model we refer to Sadeghy, Hajibeygi and
Taghavi (2006); Atalik (2008).

Quantities of relevant physical interest are:

1. The entrainment velocity of the fluid f∞ defined here as f∞ = f (η∞) with
f ′(η∞) ≈ 10−4. The corresponding η∞ values are also given here in tabular
form. Realize that from the second Eq.(5) we obtain v∞ = −(c.υ)1/2 f∞ and
these quantities are related with the amount of fluid dragged by the sheet.

2. The thickness of the boundary layer δ defined as the value of the y coordinate
for which f ′(ηδ ) = f ′(0)

100 holds. The corresponding ηδ values are also given
here in tabular form.

2.1 Numerical method and results

The best approximate for solving Eq. (7) that can be used is RK4 method. It is
often used to solve differential equations systems. To this end, Eq. (7) can easily
be written as the equivalent first-order system

w′1 = w2, w′2 = w3

w′3 =
1

1−Kw2
1

[
w2

2−w1w3−2Kw1w2w3 +Mw2
]

(9)

where the prime indicates differentiation with respect to η , and w1 = f . In accor-
dance with boundary conditions (8) we obtain

w1(0) = R; w2(0) = 1, (10)

w2(∞) = 0; w3(∞) = 0. (11)

Using numerical methods of integration and disregarding temporarily the boundary
conditions (11), a family of solutions of {(9)-(10)}can be obtained for arbitrarily
chosen values of w3(0) = f ′′(0)〈0. Tentatively we assume that a special value of
|w3(0)| yields a solution for which f ′(η), | f ′′(0)| simultaneously vanishes at a
certain η = η∞ (see boundary conditions (11)) and satisfies the additional condition

w2(η∞) = 0; |w3(η∞)|= 0, (12)
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where the solution reach its asymptotic state.

We guessw3(0)and integrate Eq. (9) and boundary conditions (10) as an initial
value problem by employing a RK4 algorithm for high-order initial value problems
(Cortell (1993)) with the additional conditions (12). The iterative procedure is
stopped to give the velocity and velocity-gradient distributions when the boundary
conditions (12) at infinity are simultaneously reached. Those boundary conditions
at infinity correct unphysical behaviours of the solution and seem to play an im-
portant role in this class of boundary problems. Equivalent step sizes ∆η of 0.01
and 0.001 are used throughout the paper. It is worth mentioning that, for each
numerical solution, the η∞ value, namely, the integration domain, depends on the
non-dimensional parameters which govern the momentum boundary layer problem,
and it is obtained (no fixed before calculation as usually is made) as a natural part
of the numerical solution. In other words, our iterative procedure acts only on the
missed skin friction coefficient f ′′(0). For a selected set of parameters entering the
problem, Table 1 gathers some numerical results for the governing Eq. (7) along
with boundary conditions given by Eq. (8).

Table 1: Some numerical results for the momentum transfer solution at K = 2, M =
0.5 and R = 0.3 with ∆η = 0.01.

η f f ’ - f ”
0.0 0.3 1.0 2.9498859

0.02 0.3194196 0.9424382 2.8067710
0.04 0.3377164 0.8877077 2.6668640
0.06 0.3549464 0.8357387 2.5306960
0.08 0.3711639 0.7864522 2.3986820
0.10 0.3864217 0.7397617 2.2711340
0.15 0.4206982 0.6337825 1.9730970
0.20 0.4500355 0.5419378 1.7058460
0.30 0.4964895 0.3945467 1.2612740
0.50 0.5546882 0.2069984 0.6718130
1.00 0.6057701 0.0405178 0.1324193
1.41 0.6149218 0.0106139 0.0346507
1.42 0.6150262 0.0102730 0.0335354
1.43 0.6151273 0.0099431 0.0324559
3.03 0.6181933 0.0001006 0.0001421
3.04 0.6181943 0.0000980 0.0001364
3.45 0.6182285 0.0000761 0.0000031

From this Table it is clear that at K = 2, M = 0.5 and R = 0.3 (suction), we get ηδ =
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1.42, η∞= 3.03 and f∞= 0.6181933.

Table 2: The effect of the elasticity number K on flow characteristics for the case
of suction (R = 0.3 and M = 0.5).

K - f ”(0) ηδ η∞ f∞

Present Amir et al, Present Amir et al,
2009 2009

0 1.3838958 1.2784 3.32 3.574 6.65 1.0225250
1 2.0863156 1.9959 2.05 2.262 4.16 0.7547567
2 2.9498859 2.8712 1.42 1.509 3.03 0.6181933
3 4.0212689 3.9613 1.04 1.050 2.19 0.5338660
4 5.3857126 5.3171 0.78 0.826 1.59 0.4757220
5 7.1874124 7.1254 0.59 0.614 1.21 0.4327303
6 9.6842483 9.6214 0.445 0.460 0.895 0.3993294
7 13.3850337 13.338 0.325 0.332 0.660 0.3724656
8 19.4525116 19.402 0.227 0.231 0.468 0.3502666
9 31.2523558 31.212 0.144 0.145 0.292 0.3315256
10 64.2650950 64.224 0.070 0.071 0.140 0.3154414

Table 3: The effect of the elasticity number K on flow characteristics for the case
of blowing (R = -0.3 and M = 0.5). Parenthesis indicates results given in Amir,
Aliakbar, Farzad and Sadeghy (2009).

K - f ”(0) ηδ η∞ f∞

0 1.0838959 (0.978163) 4.23 8.88 0.6226065
1 1.0535625 (0.962215) 3.66 7.17 0.5318333
2 1.0110784 (0.930555) 3.27 6.28 0.4710189
3 0.9584569 (0.885648) 3.00 5.94 0.4270273
4 0.8968999 (0.830316) 2.78 5.39 0.3932772
5 0.8270765 (0.76491) 2.61 5.01 0.3664440
6 0.7492927 (0.690684) 2.47 4.69 0.3444547
7 0.6635790 (0.609347) 2.36 4.39 0.3260133
8 0.5697243 (0.519199) 2.24 4.25 0.3103083
9 0.4672438 (0.420646) 2.15 4.08 0.2966856
10 0.3551857 (0.311931) 2.07 3.90 0.2847280

In Tables 2-3 we show the comparisons between our numerical solutions and the
HAM solutions reported by Amir, Aliakbar, Farzad and Sadeghy (2009), and we
can see that the general trends earlier reported are maintained.



344 Copyright © 2010 Tech Science Press FDMP, vol.6, no.3, pp.337-350, 2010

Although the solution for the velocity gradient at the wall f ”(0)has already been
obtained by several investigators (see Hayat, Abbas, Sajid (2006), Amir, Aliak-
bar, Farzad and Sadeghy (2009)), the corresponding results for the heat transfer
characteristics of engineering interest have been reported very scarcely: Aliakbar,
Alizadeh-Pahlavan, and Sadeghy (2009). It is found that our approach provides nu-
merical results for f∞, too. It is further clear from Tables 2-3 that blowing broadens
the values of η∞ and an opposite trend can be seen for the case of suction. More-
over, for fixed K, the effect of increasing blowing is to diminish the entrainment
velocity f∞. The latter augments for stronger suction. The effect of increasing val-
ues of the elasticity number K is to decrease the magnitude of f∞ largely in the
boundary-layer, and this is true for both suction and injection situations.

In order to more fully characterize the behaviour of the numerical solutions with
respect to the involving parameters, that is, K (elastic parameter), M (magnetic field
parameter) and R (suction/blowing parameter) which govern this highly non-linear
problem, representative dimensionless velocity and velocity gradient profiles at se-
lected values of the elastic parameter K are shown in Fig.1. This Figure shows that,
for M = 0.5 and R = 0.3 (suction), the effects of the fluid’s elasticity are to decrease
the dimensionless velocity f ’(η). In other words, the momentum boundary-layer
thickness becomes thinner as the elastic parameter K increases.

 
Figure 1: Velocity and velocity gradient profiles for selected values of K when M
= 0.5 and R = 0.3 (suction).
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Moreover, Fig. 2 depicts the changes in the f ’(η) and f ”(η) profiles at M = 0.5
with changes in K in the case of blowing (i.e., R = -0.3). Note the effect’s change
of K in this case. It is observed that the velocity at any point near the surface
slightly increases with increase in K; but further away from the surface, the velocity
decreases with increase in K. This new trend was nearly indistinguishable from
graphical results obtained in Amir, Aliakbar, Farzad and Sadeghy (2009), and has
already had detected for some non-Newtonian fluid flows (Cortell (2005a), Cortell
(2006c)).

 
Figure 2: Velocity and velocity gradient profiles for selected values of K when
M = 0.5 and R = -0.3 (blowing). [K= 0 (solid line); K = 3 (broken line); K= 6
(dashed-dotted line)].

Furthermore, the influences of the magnetic parameter M on velocity profiles have
also been investigated. In the case of suction (i.e., R = 0.3), Figure 3 demonstrates
graphically that, for fixed K, the momentum boundary-layer becomes thinner as the
magnetic field parameter M increases. This effect diminishes with increase in K. It
is further obvious that large elasticity and magnetic field numbers provide a lower
influence of M on velocity profiles.

In the case of blowing (i.e., R =-0.3), Figure 4 illustrates graphically that the same
M influences on velocity profiles are reached. It is concluded that our numerical
results confirm the general conclusion made in Hayat, Abbas and Sajid (2006),
Amir, Aliakbar, Farzad and Sadeghy (2009). That is, for all of the calculations,
we have observed that the elasticity or magnetic field parameter influences are to
decrease the boundary-layer thickness with its increases.
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Figure 3: Velocity profiles for two selected values of K and M in the case of suction
(R = 0.3) [M= 0.5 (solid line); M = 2 (broken line)].

 
Figure 4: Velocity profiles for two selected values of K and M in the case of injec-
tion (R =- 0.3) [M= 0.5 (solid line); M = 2 (broken line)].

3 Discussions and conclusions

In this note we analyze magnetohydrodynamic boundary-layer flow in an electri-
cally conducting viscoelastic UCM fluid over a sheet, which is stretched in a linear
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fashion under the effects of suction and blowing at the surface. The fluid is at rest
and the motion is created by the sheet.

The numerical values of the skin-friction parameter f ”(0), the characteristic non-
dimensional quantities ηδ and η∞, as well as the entrainment velocity of the fluid f∞

(from which the amount of fluid dragged by the stretching sheet can be analyzed)
are shown in tabular form. It seems that no investigation has been made which
provides the appropriate results for parameters as f∞. Thus, it seems appropriate
to communicate such results and, at the same time, to compare with the existing
analytical HAM results in the literature for the problem under investigation. Our
numerical results confirm the existing general trends in the open literature which is
very scarce as far as numerical/HAM comparisons are concerned.

To this end, the governing partial momentum equation is transformed to ordinary
one by exploiting the similarity procedure and the resulting equation system is
solved numerically using a 4th order Runge-Kutta algorithm along with a shoot-
ing method from which we are capable to encounter, for each set of parameters
entering the problem, the corresponding η∞ and f∞results along with the additional
condition at infinity f ′′(∞)→ 0. The latter has been accounted throughout our nu-
merical procedure. It is also worth wile to underline that our iterative procedure
provides, for each numerical solution, the integration domain (i.e., η∞) as a natural
part of the approach, and there is no necessity to select the η∞ value before calcula-
tions. If one enforces the far field conditions by using an inadequate (small) finite
value η = η∞ the accuracy of the numerical results could be severely contaminated
(see also Cortell. (2008), El-Mistikawy (2009)). Our straightforward approach
finds best values of the missed velocity gradient at the wall f ′′(0), and the results
for related problems have already been used for comparison in the development of
several later investigations: Ishak, Nazar, Pop (2009). Graphs and tables show the
influences of the parameters entering into the problem. From our numerical results
the following conclusion may be drawn:

1. An augment of the fluid’s elasticity yields a diminution of the amount of fluid
dragged by the stretching surface (the increase of the parameter K leads to
the decrease of f∞), and this is true for both the suction and blowing cases.

2. The blowing broadens the values of ηδ and η∞, whereas an opposite trend
can be seen for the case of suction.

3. The momentum boundary-layer thickness becomes thinner as the elastic pa-
rameter K increases.

4. A larger elasticity and magnetic field numbers provides a lower influence of
the magnetic parameter M on velocity profiles.
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In summary, the article underlines that accurate numerical solutions to strongly
nonlinear problems can be achieved and we can apply our approach to a variety
of nonlinear problems in the science and engineering. In this manner, a suitable
helpfulness for researchers to analyze highly nonlinear problems can be reached
(Cortell (2005c), Bataller (2008b), (2008c)).

Acknowledgement: The author wishes to express his sincere thanks to the anony-
mous reviewers and Editor for their valuable comments and suggestions.
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