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Abstract: Mixed convection inside a square cavity with inlet and outlet ports is
numerically simulated considering thermal radiation effect. The non dimensional
transfer equations, based on Boussinesq assumption and the radiative heat trans-
fer equation are solved by the finite-volume-method and the TDMA algorithm.
Results, presented for a gray fluid and a wide range of dimensionless numbers;
Reynolds (Re=10-1000), Richardson (Ri=0-0.01), Boltzmann (Bo=0.1-100), radia-
tion to conduction parameter (Rc=0.1-100), and optical thickness (τ =0.1-10) show
that the radiation significantly affects temperature distribution. Streamlines are also
sensitive to radiative parameters (as optical thickness) but less than temperature.
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Nomenclature

Bo Boltzmann number, Bo = ρCpUe/n2σ̃T 3
h

G incident radiation, G =
∫

Ω=4π
IdΩ

Gr Grashof number, Gr = gβ∆T d3
e /ν2

I radiation intensity, W m−2 Sr−1

k thermal conductivity, W m−1 K−1

L enclosure height, m
n refractive index
Nu Nusselt number
N normalized direction cosine
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~n unit normal vector
P pressure, N m−2

Pr Prandtl number, Pr = ν/α

Rc radiation to conduction parameter, RC = den2σ̃T 3
h /k

Re Reynolds number, Re = Uede/ν

Ri Richardson number, Ri = Gr/Re2

r reflectivity
T temperature, K
t time, s
u,v velocity components in x and y directions respectively, m
x,y rectangular coordinate, m

Greek symbols

α thermal diffusivity, m2s−1

β coefficient of thermal expansion, K−1

κa absorption coefficient, m−1

θ dimensionless temperature
µ,η direction cosines
ν kinematic viscosity, m2 s−1

ρ density, kg m−3

σ scattering coefficient, m−1

σ̃ Stefan-Boltzmann constant, 5.67×10−8Wm−2K−4

Φ scattering phase function
τ optical thickness
Ψ stream function, m2 s−1

ω single scattering albedo
ε wall emissivity
θ dimensionless temperature
Ω solid angle, sr

Subscripts

h hot
c cold
b bulk, black body
e inlet
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s outlet

Superscripts
l, l′ inward and outward directions

1 Introduction

The knowledge of flow structure and heat transfer by mixed convection inside open
cavities is of interest in relation to numbers of engineering applications such as
cooling of electronic components, finned heat exchangers, ventilation, evaporative
cooling, fire control in buildings and combustion rooms. Buoyancy forces may aid
or oppose the forced flow depending on their relative directions to the direction of
inertia-driven flow causing an increase or decrease in heat transfer rates. Accary,
Meradji, Morvan, and Fougere (2008) studied mixed convection in a rectangular
channel heated from below in the case of large temperature variations. The Navier-
Stokes equations, obtained under the assumption of a low Mach number flow, were
solved using a finite volume method. The results, corresponding to the steady-state
case of the benchmark, led to the idea of launching a call for contribution in or-
der to set up a reference solution essential for the validation of future numerical
codes. Omri and Ben Nasrallah (1999) studied mixed convection in a rectangular
enclosure with differentially heated vertical side walls having openings for inlet
and outlet. Two different placement configurations of the inlet and outlet openings
on the side walls were investigated. In the first case, the cold air was injected at
the top of the hot wall and exited at the bottom of the cold wall, whereas in the
second configuration the air injection was at the lower edge of the hot wall and the
exit at the top of the cold wall. A control-volume-finite-element method (CVFEM)
using triangular elements is employed to discretize the governing equations. Im-
provement in cooling efficiency was found with the inlet placed at the bottom of
the hot wall. Ben-Arous and Busedram (2008) investigated numerically combined
free and forced convection in horizontal semicircular ducts with radial internal fins.
The wall of the duct was assumed to have a uniform heat input along the axial di-
rection with a uniform peripheral wall temperature. The governing equations were
solved by using a control-volume-based finite-difference approach. The fluid flow
and heat transfer characteristics were found to be dependent on the Grashof num-
ber, the fin length and the number of fins. The most remarkable outcome of the
such study is that, for each number of fins an optimum fin length exists at which
the Nusselt number is maximal. Papanicolaou and Jaluria (1990) studied numeri-
cally the mixed convection transport induced by an isolated heat source providing
a uniform heat flux input within a rectangular enclosure. Their results showed that
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the average Nusselt number increases with an increase of the Richardson number.
Moraga and Lopez (2004) solved the equations of a laminar mixed convection de-
veloped in a parallelepipedic enclosure in which two vertical walls are maintained
at uniform temperatures while the other four walls are adiabatic. An external air
flow enters in the enclosure by a rectangular opening located near the top of one
isothermal vertical wall and exits from another opening located near the bottom of
the opposite isothermal vertical wall. Results show that the global Nusselt number
can be deduced from a 3-D model for Re=500 and Ri<1, Re=30 and Ri<10, Re=80,
for Ri≥1 and Re=50 for Ri≥10. A cell, observed near the vertical cold wall, causes
differences between the global Nusselt numbers calculated from the 2-D and the 3-
D models. For a predominantly natural convection flow (Ri=10 for 10≤ Re≤250),
the velocity profiles must be deduced from a 3-D model. Results show that for Ri
<1 and Re =500, Ri <10 and Re = 30, Ri ≥1 and Re=80 and Ri ≥10 and Re=50,
the global Nusselt number must be determined from a 3-D model. Deng, Zhou,
Mei and Shen (2004) studied the air flow and heat/contaminant transport structures
in indoor air environement. Results highlight the effectiveness of using a visu-
alisation with streamlines, isotherms, and iso-concentrations. The main objective
of their study is an analysis of the two convection modes involved in a ventilated
room by studying the effects of main factors, namely Grashof number, Reynolds
number, buoyancy ratio, as well as the ventilation mode on transfers in this room.
The air flow pattern depends on the relation between the natural and forced con-
vection. In addition, their results show that the contaminant removal efficiencies
depend on the importance of the two convection mechanisms. In order to study
the energy stored in a cylindrical cavity in which a mixed convection is developed,
Bouhjar and Harhad (2002) analysed numerically the effect of entrance cavity and
the Richardson number on the flow. Results showed that the flow pattern for Ri≤1
is stable and the inertial forces are dominant, whereas for Ri>1, there is a transition
phase in which the flow structure becomes unstable. The energy stored increases
as the Ri number increases. Dehghan and Behnia (1996) reported an experimental
study of mixed convection in open cavities formed by vertical strips with an aspect
ratio equal to 0.4. It was shown, that the radiative heat transfer, for solar applica-
tions, is not negligible and that natural convection in open cavities in which walls
are subjected to a uniform and constant heat flux density should be taken into ac-
count. Najam, Amahmid, Hasnaoui, and El Alami (2003) presented a numerical
study on an unsteady mixed convection in a horizontal channel containing heating
blocks periodically mounted on its lower wall while its upper wall is maintained
at a uniform and constant temperature. The flow was assumed to be fully devel-
oped and periodic boundary conditions were used in the longitudinal direction of
the channel. For large Reynolds number, the flow reduces considerably the heat
transfer in the vicinity of the cold plate of the channel. Such a study was extended
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6 years later by El Alami; Semma; Najam; and Boutarfam (2009). The governing
equations were solved using a finite volume method and the SIMPLEC algorithm.
Special emphasis was given to detail the effect of the Rayleigh number and blocks
height on the heat transfer and the mass flow rate generated by natural convec-
tion. Djebali, El Ganaoui, Sammouda and Bennacer (2009) used the thermal lattice
Boltzmann model to study natural convection in a heated rectangular cavity on a
uniform grid. A general benchmark was carried out to account for the effect of
different parameters in relatively wide ranges.

Carlson, Lin, and Chen (1997) studied heat exchanges for a 2D Cartesian geometry
with adiabatic walls. Without obstacles the fluid flows through the cavity without
an exchange of energy. A heating in the zone of recirculation exists but heat is
not transferred to the principal flow. The obstacles increase the fluid velocities and
consequently its temperature.

Islam et al. (2008) studied mixed convection inside an open cavity on the bot-
tom of a channel. Three different cases were considered by applying uniform heat
flux. The Galerkin weighted residual method of finite element formulation was
used to discretize the governing equations. For mixed convection, the influential
parameters are the Grashof number, Richardson number and Reynolds number.
They studied velocity vectors, streamlines, isotherms, non-dimensional vertical ve-
locities, maximum non-dimensional heated wall temperature and average Nusselt
number of the heated wall. It was observed that the higher heat transfer occurs
for opposing forced flow situation at low Richardson number. For higher Richard-
son number, a better thermal performance was achieved for the transverse flow
case. Borjini, Cheikh, and Daguenet (1999) investigated numerically combined ra-
diation and natural convection in a participating medium between two horizontal
co-focal elliptical cylinders. The equations for steady, laminar, two-dimensional,
natural convection flow were written by using an elliptic-cylinder coordinates sys-
tem, and the stream function vorticity formulation. The finite volume radiation
solution method and the control volume technique were used to discretize transfer
equations. Numerical solutions were obtained for Rayleigh numbers in the range of
104 to 2.105 and the radiation-conduction parameter ranging from 0 to infinity. The
special case corresponding to the convective flow within the annulus formed by an
elliptical cylinder surrounding a flat plate was also considered. Effect of medium
optical thickness, wall emissivity, scattering albedo, on fluid flow were studied.

The above literature review shows that most of these studies although encountered
frequently in applications, focused on natural, forced convection or mixed convec-
tion. Combined mixed convection and radiation in open cavities has received little
attention. So, in the present work, combined mixed convection and radiation in an
open room model is investigated. This study is focused on the effect of radiation-
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conduction parameter, the effect of optical thickness, and the effect of Boltzmann
number on the thermofluid dynamics behaviour in an open enclosure model.

2 Mathematical Model

The schematic diagram of the square open enclosure physical model and the co-
ordinates are shown in Figure 1. The height of the enclosure is L and the length
W (W = L). The fluid (hot fumes, for example) enters the cavity through an inlet
port of width de = |y2− y1| located at the left vertical wall. An exit port (towards
the chimney) of width ds = |x2− x1| is located on the middle of the top wall. The
top and bottom walls are adiabatic and the other walls are maintained to different
uniform temperatures. 
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Figure 1: Open room physical model and coordinates system.

2.1 Hypothesis

Major assumptions adopted in this study are summarized below:

• No reactive phenomena are considered in this study,

• The flow is laminar and heat transfers are two-dimensional,

• The fluid is Newtonian and incompressible,

• The thermophysical properties of the fluids are constant

• The Boussinesq approximation is valid,
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• The viscous dissipation is negligible,

• The walls are assumed to be gray and diffusely emitting and reflecting.

The governing equations in the Boussinesq approximation for laminar convection
are given in dimensionless form as

∂U
∂X

+
∂V
∂Y

= 0 (1)

∂U
∂ t

+
∂ (UU)

∂X
+

∂ (UV )
∂Y

=− ∂P
∂X

+
1

Re

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)
(2)

∂V
∂ t

+
∂ (UV )

∂X
+

∂ (VV )
∂Y

=−∂P
∂Y

+
1

Re

(
∂ 2V
∂X2 +

∂ 2V
∂Y 2

)
+Riθ (3)

∂θ

∂ t
+

∂ (Uθ)
∂X

+
∂ (V θ)

∂Y

=
1

RePr

(
∂ 2θ

∂X2 +
∂ 2θ

∂Y 2

)
+

R
R−1

τ

Bo

{
G−4

[
θ (R−1)+1

R

]4
}

(4)

µ
∂ I
∂X

+ξ
∂ I
∂Y

=−τI +(1−ω)τθ
4 +

ωτ

4π

∫
Ω′=4π

IΦ(~Ω′,~Ω)dΩ
′ (5)

The stream function is calculated from;

U =
∂Ψ

∂Y
, V =−∂Ψ

∂X
(6)

So the equation (6) is written as:

∂ 2Ψ

∂X2 +
∂ 2Ψ

∂Y 2 =
∂U
∂Y
− ∂V

∂X
(7)

With U and V are the velocity components in the X and Y directions respectively,
Ψ is the dimensionless stream function. At solid boundaries Ψ is set equal to a
constant, but at the inlet and the outlet the stream function is calculated as shown by
equation (8) and (12.b) respectively. P is the pressure, and θ is the temperature. ~Ω is
the unit vector describing the radiation direction. Re = Uede/ν : Reynolds number,
Pr = ν/α: Prandtl number, and Gr = gβ∆T d3

e /ν2: Grashof number where ν is the
kinematic viscosity, α the thermal diffusivity, β the thermal expansion coefficient
of the fluid, and g is the gravitational acceleration. Ri = Gr/Re2 : the Richardson
number, R: ratio between the inlet temperature and the ambient temperature; R =
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Th/TC, RC: radiation-conduction parameter defined as RC = den2σ̃T 3
h /k, Bo is the

Boltzmann number Bo = ρCpUe/n2σ̃T 3
h which gives the ratio between convection

and radiation forces.

The left side of the equation (5) represents the gradient of the intensity in the di-
rection of the radiation propagation, and the right hand side represents respectively,
the attenuation of the intensity due to the absorption and the out scattering and the
contribution to the directional intensity due to emission by the medium. The last
term is the in-scattering of the radiative intensity. Φ(~Ω′,~Ω) is a probability density
function; it determines the distribution of the scattered intensity. The lengths, ve-
locities and pressure are dimensionlessed respectively by the inlet diameter de, the
inlet velocity Ue, and by ρU2

e , where ρ is the density of the fluid. θ = (T−TC)/∆T ,
with Th and TC are the temperatures of hot and cold wall, respectively. Time is di-
mensionlessed by Ue/de. The radiative intensity I is dimensionlessed by n2σ̃T 4

h ,
the total intensity G by n2σ̃T 4

h . To these equations we associated the following
boundary conditions:

2.2 Boundary conditions

2.2.1 Left wall

• X = 0, (y1/de < Y < y2/de) with (y1=0.15 m and y2=0.4 m)

U =
∂Ψ

∂Y
= 1, V =−∂Ψ

∂X
= 0,θ = 1, P = 1. (8)

• X = 0; (0 < Y < y1/de) and (y2/de < Y < L/de)

U = V = 0, Ψ = Cte, −∂θ

∂Y
+qrRc = 0 (9)

2.2.2 Right wall

X = L, 0 < Y < L/de

U = V = 0, Ψ = Cte, −∂θ

∂Y
+qrRc = 0 (10)

2.2.3 Bottom wall

Y = 0, 0 < X < W/de

U = V = 0, Ψ = Cte, −∂θ

∂X
+qrRc = 0 (11)
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2.2.4 Top wall

• Y = H, (0 < X < x1/de) and (x2/de < X <W/de) with x1=0.4 m and x2=0.6m

U = V = 0, Ψ = Cte, −∂θ

∂X
+qrRc = 0 (12a)

• Y = H, x1/de < X < x2/de

∂U
∂Y

= 0,
∂V
∂Y

= 0,
∂Ψ

∂Y
= 0,

∂P
∂Y

= 0 (12b)

The radiation intensity is discretized as the following:

Il = εIb +
r
π

∑
~n1.~Ω′<0

Il′Nl′
cx (13)

with Nl
cx > 0.

Where Nl
cx is the normalized direction cosine, and ε is the wall emissivity, r is the

reflectivity. The divergence of the radiative heat flux, which is the source term in
the energy equation, is given by:

div(~qr) = κa(4σ̃T 4−G) (14)

Where G is the dimensionless total incident radiation written as follows:

G =
∫

Ω′=4π

I(x,y,~Ω)dΩ (15)

The radiative heat flux ~qr is given by

~qr =
∫

Ω′=4π

~ΩI(x,y,~Ω)dΩ (16)

The bulk temperature is calculated as

θb =
∫

A
~V~nθdA∫

A
~V~ndA

(17)

Where θb is the bulk temperature, ~V and ~n are the velocity vector and the inward
normal vector, respectively. θ is the non dimensional temperature, A is the area
perpendicular to the flow direction.
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The local and average nusselt numbers are calculated by equations (18) and (19)
respectively:

Nuy =
hy
k

(18a)

h(Tp−Tf ) =−k
∂T
∂y

∣∣∣∣
x=0

(18b)

Numean =
1
L

∫ L

0
Nu(y)dy (19)

3 Numerical Procedure

The equations (1-4) and the boundary conditions (8-12) are discretized by the finite-
volume method. The discretized equations were solved by using the tri-diagonal
matrix algorithm (TDMA) and an iterative process with a relaxation coefficient
equal to 0.4 for velocity components and 0.8 for pressure and temperature. A two
dimensional uniformly spaced staggered grid and a hybrid scheme was used for
the convective terms, whereas a central difference scheme was used for the diffu-
sive terms. The linkage between pressure and velocity variables is handled by the
SIMPLE algorithm developed by Pantakar (1980).

The iterative procedure is repeated when the following test is verified:

max
(∣∣Φn−Φ

n−1∣∣/Φ
n)≤ ε (20)

where n is the number of iteration, ε the precision criteria equal to 10−5 for the
radiative intensity and 10−8 for the source term of the pressure equation.

4 Resolution of the Radiative Heat Transfer Equation

The equation (5) associated with the boundary conditions (13) are solved using the
finite volume method (FVM) for radiation, Raithby and Chui (1990), Chai, Lee,
and Patankar (1994). The total solid angle is subdivided in an arbitrary number
of control angles. The angular space is subdivided in a certain number of control
volumes. The final discretization equation for a general control volume and control
angle can be written as

al
PIl

P = al
wIl

W +al
eIl

E +al
sI

l
S +al

nIl
N +bl (21)

where

al
i = max

[
−∆AiDl

ci,0
]

i = w,e,s, and n (22a)
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al
P =

nb

∑
i

max
[
∆AiDl

ci,0
]
+
(

β
l
m

)
P

∆v∆Ω
l nb = all neighbor (22b)

bl =
(

Sl
m

)
P

∆V ∆Ω
l (22c)

Dl
ci =

∫
∆Ωl

(ŝ• n̂i)dΩ (22d)

∆Ω
l =

∫
φ l+

φ l−

∫
θ l+

θ l−
sinθdθdφ (22e)

β
l
m = κa +σ − σ

4π
Φ̄

ll
∆Ω

l (22f)

Sl
m = κaIb +

σ

4π

L

∑
l′=1,l′ 6=l

Φ̄
l′l

∆Ω
l′Il′ (22g)

ŝ = (sinθ cosφ) êx +(sinθ sinφ) êy +(cosθ) êz (22h)

Φ̄
l′l =

∫
∆Ωl

∫
∆Ωl′ Φ

(
ŝ′, ŝ
)

dΩ′dΩ

∆Ωl∆Ωl′ (22i)

The step scheme is used in the present work, although other spatial differencing
schemes (Positive, Hybrid, and CLAM) can also be used with the proposed proce-
dure.
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Figure 2: Dimensionless bottom wall heat flux.
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Figure 3: (a) Dimensionless bottom inner wall and top inner wall radiative heat
flux; (b) Temperature distribution inside the studied configuration (pure radiation).

5 Validation

5.1 Radiative transfer

In order to validate our radiative numerical method, we propose to compare our
results with the most closely related numerical solutions. Figure 2 shows the di-
mensionless bottom wall heat flux obtained with our radiative numerical code ap-
plied to a 2D enclosure filled with a gray, absorbing, emitting, and non-scattering
semi-transparent medium and the results deduced from the solution of Chai, Lee,
and Patankar (1994). Three optical thicknesses τ=0.1, 1 and 10 are considered.
The used spatial and angular grid meshes are respectively (Nx×Ny) = (21×21) and
(Nθ ×Nϕ ) = (4×24). The dimensionless heat flux is defined as the heat flux divided
by the gas blackbody emissive power. We notice that the FVM (STEP scheme) re-
sults are in good agreement with the exact solution Chai, Lee, and Patankar (1994).
Figure 3.a shows, for pure radiation, the dimensionless bottom inner wall radiative
heat flux and top inner wall radiative heat flux and the isotherm inside a cavity with
inlet and outlet ports. We observe that at the bottom wall, the dimensionless radia-
tive heat flux is important at x=0.15 whereas between x=0 and x=0.1 the radiative
heat flux is minimal. Between x=0.2 and x=1 the radiative heat flux is decreasing
versus x coordinate. The dimensionless top inner wall radiative heat flux is plotted
also on Figure 3.a. It can be divided into three zones. The zone 1, located between
x=0 and x=0.4, is influenced by the heating coming from the inlet. Zone 2 is lo-
cated between x=0.4 and x=0.6. This is the cavity outlet where we can see that the
radiative heat flux is approximately null. The third zone is situated between x=0.6
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and x=1 where we notice that the radiative heat flux is also decreasing versus x co-
ordinate. Figure 3.b gives the temperature pattern in the medium obtained from a
radiation code. One can see that in the vicinity of the inlet the temperature is higher
whereas the temperature decreases far from the inlet. Even the edges of the cavity
are heated which can not be seen in a pure conduction problem.
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Figure 4: Isotherm distributions τ=0.1. Effect of Reynolds number; (a) Re=50;
Re=100; (b) Re= 500; Re=1000.
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Figure 5: Isotherm distributions τ=1. Effect of Reynolds number; (a) Re=50;
Re=100; (b) Re= 500; Re=1000.

6 Combined Mixed Convection and Radiation

6.1 Effect of optical thickness

Figures 4, 5, 6 show isotherms distribution for ε = 1,ω = 0, Bo=1, Rc=1, R=2,
Re=50, 100, 500, and 1000, and Ri=0.01, and for different values of the optical
thickness ranging from thin to thick optical mediums τ = 0.1, 1 and 10. As il-
lustrated in Figure 4 the participation of the medium for thin optical thickness
(τ < 1) to the radiative transfers is small and the energy is easily transferred from
the hot region (inlet) to the other cold ones. For large optical thickness (τ = 10),
the isotherms are clustered near the inlet, the radiative heat transfer at the right-
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Figure 6: Isotherm distributions τ=10. Effect of Reynolds number; (a) Re=50;
Re=100; (b) Re= 500; Re=1000.

hand wall becomes small enough to be neglected; this can be seen from isotherm
0.3(Figure 6). In fact for τ = 0.1, the maximum distance for the isotherm 0.3 in
the entry direction is equal to x=0.6, and the maximum distance in the outlet direc-
tion is y=0.95. The bulk temperature at the right-hand wall is also getting higher.
The participating medium gives lower values of the bulk temperature than the non-
participating one because the radiative heat fluxes at the cold wall decrease as the
optical thickness increases (Figure 7). The average Nusselt number at the wall
containing the entry increases as the optical thickness increases (Figure 8).

The temperature evolutions plotted in Figures 9 and 10 versus the x and y direc-
tions respectively for different optical thicknesses show that the temperature in-
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creases when the optical thickness decreases. In fact, when the optical thickness
of the medium increases it becomes more participant to the radiative exchanges.
Therefore radiative intensity can’t easily move to the other adiabatic walls of the
cavity because it is absorbed or scattered by the medium; this explains that the in-
ertia of the medium increases with increasing optical thickness and consequently
the medium temperature increases.

6.2 Effect of Radiation-Conduction Parameter

In this section, the calculations have been carried out to investigate the effects of
radiation-conduction parameter which characterizes the relative importance of radi-
ation with respect to conduction. The effect of radiation is getting strong as the Rc
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Figure 11: Isotherm distributions Rc=0.1. Effect of Reynolds number; (a) Re=50;
Re=100; (b) Re= 500; Re=1000.

increases. Physically, an increase in Rc induces an increase of the radiation effect
toward conduction. Mathematically, in the equations giving the boundary condi-
tions, an increase in Rc means that the radiative heat flux on the walls becomes
more significant than the conductive heat flux. Accordingly, the medium temper-
ature in the enclosure is shown to be higher for high Rc numbers. The results are
obtained for τ = 1, ε = 1, ω = 0, R=2, Bo=1, Re=1000, and Ri=0.001. Figures
11, 12 and 13 show temperature profile for Rc=0.1, 1 and 100. When Rc<1, the
isotherms are very tight close to the cold walls (Figure 11). As Rc increases, a
steeper temperature gradient is formed at both y=0 and y=L walls and the tempera-
ture medium far from the inlet (hot surface) increases. In fact, the radiative energy
emitted from the hot wall can penetrate more deeply into the medium and is therein
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Figure 12: Isotherm distributions Rc=1. Effect of Reynolds number; (a) Re=50;
Re=100; (b) Re= 500; Re=1000.

transformed into thermal energy. These results are in agreement with those of Kim
and Baek (1991). One can note the temperature increasing at the right top of the
enclosure when Rc rises (Figures 12, 13). The Rc number does not occur explic-
itly in the momentum equation; its effect on the velocity field is indirect. Hence
the velocity field is weakly dependent on Rc. Therefore, the results are not shown
here (streamlines). It is seen that streamlines are not apparently influenced by Rc
in the entrance region, since the forced convection is predominant knowing that the
velocity gradient is small in this region. This may be explained by the fact that
the temperature field is flattened with the presence of radiation causing a reduction
of buoyancy effect, which in turns leads to the reduction of velocity values at the
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Figure 13: Isotherm distributions Rc=100. Effect of Reynolds number; (a) Re=50;
Re=100; (b) Re= 500; Re=1000.
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Figure 14: Average Nusselt number versus the radiation conduction parameter
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Figure 15: Isotherm distributions. Bo=0.1. Effect of Reynolds number; (a) Re=50;
Re=100; (b) Re= 500; Re=1000.

upstream. Figure 14 gives the evolution of the average Nusselt number versus the
Rc number; we found that the average Nusselt number increases with an increasing
of the Rc number. In fact, when the Rc number increases the transfers by radiation
becomes more important than those by conduction on the walls, therefore the heat
rate transferred to the medium increases which explains the augmentation of the
Nusselt number.

6.3 Effect of Boltzmann Number

The Boltzmann number characterizes the relative importance of convection transfer
with respect to radiation transfer. The effect of convection transfer is getting strong
as Bo increases. Physically, a decrease in Bo results in an increase in the source
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Figure 16: Isotherm distributions. Bo=1. Effect of Reynolds number; (a) Re=50;
Re=100; (b) Re= 500; Re=1000.

term in the energy equation (4); so that, more radiant energy is absorbed and trans-
formed into thermal energy. Figures 15, 16 and 17 show isotherm distributions
for τ = 1, ε = 1, ω = 0, R=2, Rc=1, Re=50, 100, 500, 1000, and Ri=0.01, and
for different values of the Boltzmann number ranging from convection dominating
mode to radiation dominating mode, Bo=0.1, 1, and 100. As shown in Figure 15,
for small Bo numbers, the temperature distribution is clustered near the inlet of the
cavity and directed toward the outlet. Whereas, if Bo increases the radiation mode
becomes more important and more energy is transferred by convection to the other
cold walls. For Re=500, if Bo=0.01, the isotherm 0.3 (dashed lines) is clustered to
the inlet, then for Bo=0.1 the isotherm 0.3 attains the location (x=0.2, y=0.63) and
for Bo=100, the isotherm attains the right wall in the x-direction and the top wall in
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Figure 17: Isotherm distributions. Bo=100. Effect of Reynolds number; (a) Re=50;
Re=100; (b) Re= 500; Re=1000.

the y-direction. The bulk temperature at the right-hand wall is also getting higher
(Figure 18). Consequently, the average Nusselt number is shown to increase as the
Boltzmann number increases (Figure 19).

7 Conclusion

A numerical study about combined thermal radiation and laminar mixed convection
for a gray fluid inside an open square cavity with inlet and outlet ports is investi-
gated. The non dimensional transfer equations and the radiative transfer equation
are solved by the finite-volume-method. Results are presented for a wide range of
Reynolds number, Richardson number, Boltzmann number, conduction radiation
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number and the optical thickness. The effects are emphasized on radiative transfer
for a gray fluid development of streamlines and temperature fields. In the presence
of radiation, the thermal development develops at a more rapid rate relative to that
without radiation. The average Nusselt number is increased by increasing optical
thickness of the gray medium, and the radiation to conduction parameter Rc. The
average Nusselt number decreases as the Boltzmann number increases. The bulk
temperature increases as the Boltzmann number increases and decreases as the op-
tical thickness increases. Finally, this work can be improved by taking into account
the non-gray gas behaviour and extending the code to a 3D model.
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