
Copyright © 2011 Tech Science Press FDMP, vol.7, no.2, pp.153-173, 2011

Magnetohydrodynamic Flow and Heat Transfer of an
Upper-Convected Maxwell Fluid Due to a Stretching Sheet

R. C. Bataller1

Abstract: We present a numerical study of the flow and heat transfer of an in-
compressible upper-convected Maxwell (UCM) fluid in the presence of an uniform
transverse magnetic field over a porous stretching sheet taking into account suction
at the surface as well as viscous dissipation and thermal radiation effects. Selected
similarity analyses have been carried out by means of a numerical implementation.
The effects on the velocity and temperature fields over the sheet of the parameters
like elasticity number, suction velocity, magnetic parameter, radiation parameter,
Prandtl number and Eckert number are also analyzed.

Keywords: MHD flow; UCM fluid; Permeable stretching sheet; Viscous dissipa-
tion; Thermal radiation

1 Introduction

The continuous moving surface heat transfer problem is relevant since it has many
engineering applications such as production of both metal and polymer sheets, ther-
mal and moisture treatment of materials, production of crystalline materials and
glass sheets, paper and textile industries, production of continuous stretched stripes
or filaments by drawing them through a quiescent fluid and many others. The qual-
ity of the final product depends on the skin friction coefficient as well as the rate of
heat transfer at the stretching surface. In order to obtain the desired characteristics
of the final product, the involved fluid in these cases is treated as a non-Newtonian
fluid. Certainly, water is widely utilized as the cooling medium, but the use of
polymeric additives could present some advantages: Rajagopal et al. (1984). This
class of flow was first studied by Sakiadis (1961) for moving and inextensible sur-
faces and later extended by Crane (1970) to the semi-infinite fluid flow driven by a
linearly stretching surface.
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Recently, boundary layer flow for non-Newtonian fluids with or without heat trans-
fer has been studied by Cortell (1994), (2006a), (2007d), for a second grade fluid,
by Bhatnagar et al.(1995) for an Oldroyd-B fluid, by Sadeghy et al.(2005) for an
upper-convected Maxwell (UCM) fluid in a Sakiadis flow configuration, by Ab-
bas et al. (2006) for an UCM fluid flow in a porous channel, and also Cortell
(2008b) has analyzed flow and heat transfer in the presence of thermal radiation by
modelling viscoelastic properties with the help of the FENE-P (finitely extensible
nonlinear elastic fluids) constitutive equation. In addition, very recently, Cortell
(2010) has analyzed the magnetohydrodynamic (MHD) viscous flow influenced by
a shrinking sheet with suction.

Flow kinematics can also be modified with the help of a sufficiently strong mag-
netic field applied to an electrically conducting fluid surrounding a stretching sheet:
Cortell (2005a), (2006b). Specifically, in flows involving heat transfer, Bird et al.
(1987), it has been shown that might be some advantages if the fluid surrounding the
sheet can be made viscoelastic by using polymeric additives: Dandapat and Gupta
(1989), Cortell (2007a). On the other hand, one can also resort to suction/blowing
in order to modify flow kinematics, Cortell (2005b). Furthermore, MHD free con-
vection flow of a non-Newtonian power-law fluid near a stretching sheet has been
investigated by Abo-Eldahad and Salem (2004). MHD mixed convection owing
to the stagnation flow against a heated vertical semi-infinite permeable surface is
analyzed by Abdelkhalek (2006), and, the unsteady boundary-layer flow due to im-
pulsive starting from rest of a stretching surface in a rotating fluid was studied by
Nazar et al. (2004).

Usually, our proposed problems in the present area are solved by using boundary-
layer theory along with the concept of similarity solution. The obtained ODE still
presents a difficult problem to solve due to the lack of enough physical boundary
conditions. Nowadays, we currently take into account for problems of Sakiadis/Crane
type (i.e., f ′ → 0 as η → ∞), the conditions at infinity f ′′ → 0 as η → ∞( f be-
ing the non-dimensional stream function) for momentum transfer problems, and
θ ′→ 0 as η → ∞(θ being dimensionless temperature) for heat transfer problems,
respectively. See, for example, Cortell (1994), (2006a, c), (2007b, c). It is worth
mentioning here that the aforementioned conditions at infinity have been taken into
consideration in our studies since early 1990s, Cortell (1994). Following the above
cited procedure, Cortell (2005c), (2008a) studied numerically momentum transfer
characteristics as far as Newtonian fluids are concerned, and in Liu (2008) the Lie-
group shooting method is applied on the Blasius and Falkner-Skan equations. The
stability and accuracy of the present procedure are strengthened by several very
recent comparisons of earlier obtained results, Abel et al. (2009), Chen (2009) in
related fluid dynamics problems.
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The problem under investigation (i.e., MHD flow and heat transfer of an UCM
fluid) is highly non-linear and these classes of problems are not easy to examine.
Therefore, many applied mathematicians and numerical analysts have also recently
paid much attention in developing suitable algorithms for solving these problems.
The highly non-linear ordinary differential equation (ODE) appeared from the non-
linear UCM fluid flow problem leads to the need of a numerical treatment. In
fact, a systematic analysis of the stagnation-point flow of UCM fluids has been
carried out by Sadeghy et.al. (2006), and furthermore, heat source and thermal
radiation effects on MHD viscoelastic fluid flow past a stretching sheet were very
recently studied by Singh (2008). Thermal radiation effects on heat transfer of
boundary layer flow may also play an important role in controlling heat transfer in
processes involving high temperatures such as polymer processing industry, nuclear
power plants, thermal energy storage, gas turbines, solar power technology, Cortell
(2008c).

In recent years, MHD flows of UCM fluids above stretching sheets have also been
addressed by some researchers: Amir et al. (2009), Hayat et al. (2006), Aliakbar
et al. (2009). The most recent attempt for the UCM flow with thermal radiation,
but without suction at the plate has been developed by Aliakbar et al. (2009);
however, Cortell (2006d) has already analyzed suction effects on MHD second
grade fluid flow and heat transfer, and also Cortell (2007b) gave numerical results
for momentum and mass transfer characteristics in two viscoelastic fluid flows (i.e.,
second-grade and second order non-Newtonian). Considerable novelty of this work
is achieved due to the fact there have only been a small number of studies in that
classes of flows where, probably first time, suction effects on temperature field have
been assumed.

In order to obtain several realistic solutions where non-isothermal conditions at
the flat sheet are present, in this paper we study UCM flow and heat transfer on
a linearly stretching sheet in the presence of an uniform transverse magnetic field
for two different types of thermal boundary conditions on the sheet with power-
law surface temperature of second degree, that is, prescribed surface temperature
(PST case) and prescribed heat flux at the plate (PHF case).The surface is held at
a temperatureTw(x) higher than the temperature T∞ of the ambient fluid. Another
effect which bears great importance on heat transfer is viscous dissipation. When
the viscosity of the fluid and/or the velocity gradient is high, the dissipation term
becomes important; although it disappears at infinity. Consequently, the effects of
viscous dissipation are also included in the energy equation. For many cases, such
as polymer processing, which is at very high temperature, Winter (1977), viscous
dissipation plays an important role and it has been shown to be highly important.

Very recently, the homotopy analysis method (HAM) has been addressed to solve
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flows of UCM fluids with or without magnetic field, Hayat and Sajid (2007), Alizadeh-
Pahlavan and Sadeghy (2009), Hayat and Abbas (2008), and in our research, nu-
merical and stable results are also obtained at large elasticity and/or magnetic num-
ber by using a 4th order Runge-Kutta method along with shooting method. The
mechanical characteristics of the flow are also analyzed. Furthermore, it will be
underlined that the role of the velocity gradient at infinity (i.e., f ′′(∞)) is of key rel-
evance for our results from which the entrainment velocity f∞ = f (∞) can also be
studied. We extend our own earlier researches for UCM flows, Bataller (2010), and
analyze the effects on both momentum and heat transfer problems of six physical
parameters: i) the elasticity number K of the Maxwellian fluid, ii) the magnetic
parameter M, iii) the suction parameter R, iv) the Prandtl number σ , v) the Eckert
number Ec(Ec’) and vi) the radiation parameter NR ,which will have a positive value
throughout this research. In order to describe the above cited physical features eas-
ily and accurately, the numerical solution of a highly non-linear problem governed
by an ordinary differential equation is, in our opinion, a suitable choice.

In Sect. 2 we shall consider the analysis of the UCM flow under suction and mag-
netic field effects; in Sect. 3 we shall examine the thermal problem when the vis-
cous dissipation and thermal radiation are included and the influence on the nu-
merical results of these additional effects will also be discussed. Finally, some
conclusions end the paper in Sect. 4.

2 The flow

Let us suppose a steady, laminar and two-dimensional flow of an incompressible,
electrically conducting and Boussinesq viscoelastic UCM fluid subject to a trans-
verse uniform magnetic field B0 which is applied in the positive y-direction past
a flat, horizontal and porous sheet coinciding with the plane y = 0, the flow being
confined to y >0. The motion of the fluid is generated due to linear stretching of
the sheet with the application of two equal and opposite forces, which are applied
along the x-axis so that the wall is stretched keeping the origin fixed. The velocity
of the fluid far away from the plate is equal to zero whereas fluid suction is imposed
at the plate surface. The fluid has constant kinematic viscosity and thermal diffu-
sivity. The magnetic Reynolds number is considered to be small so that the induced
magnetic field is negligible in comparison to the applied magnetic field. The fluid
is considered to be gray; absorbing-emitting radiation but non-scattering medium
and the Rosseland approximation is used to describe the radiative heat flux. The
system of continuity and momentum equations can be written, in the usual notation,
as (see Sadeghy et al. (2006), Aliakbar et al. (2009)):

∂u
∂x

+
∂v
∂y

= 0, (1)
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u
∂u
∂x

+ v
∂u
∂y

= υ
∂ 2u
∂y2 −β

[
u2 ∂ 2u

∂x2 + v2 ∂ 2u
∂y2 +2uv

∂ 2u
∂x∂y

]
−

σ0B2
0

ρ
u, (2)

We take x-axis along the surface, the y-axis being normal to it and u and v are the
velocity components in x and y directions, respectively, υ is the kinematic viscosity,
ρ is the density andβ is the relaxation time of the fluid. Further, B0 is the uniform
magnetic field along the y-axis and σ0 is the electric conductivity. The boundary
conditions to the problem are

u = cx, v =−vw at y = 0,c > 0 (3)

u→ 0 as y→ ∞. (4)

In the second condition (3) v = -vw is the suction velocity.

The equation of continuity (i.e., Eq. (1)) is satisfied if we define the following new
variables

u = cx f ′(η), v =−(c.υ)1/2 f (η) (5)

where

η =
( c

υ

)1/2
y, (6)

and substituting into Eq. (2) gives

( f ′)2− f f ′′+M f ′ = f ′′′−K
[

f ′′′( f )2−2 f f ′ f ′′
]
, (7)

where K = βc is the elasticity parameter, f (η)denotes the dimensionless stream
function and a prime determines differentiation with respect to η . Further, M =
σ0B2

0
ρc is the magnetic field parameter. The boundary conditions (3) and (4) becomes

f = R, f ′ = 1 at η = 0,

f ′→ 0 as η → ∞. (8)

where R = vw
(cυ)1/2 is the suction (>0) parameter.

We guess the missed f ”(0) value and integrate equations (7) along with boundary
conditions (8) as an initial value problem by the fourth-order shooting Runge-Kutta
method as explained in Cortell (2008b). The iterative procedure is stopped to give
the velocity and velocity-gradient distributions when the boundary condition (8)
at infinity is reached. Certainly other schemes are possible, and perhaps to be
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preferred for specific kinds of problems, but ours has proved successful for all the
numerical examples throughout the paper. Equivalent step sizes ∆η of 0.01 and
0.001 are used.

As far as flow kinematics is concerned, quantities of relevant physical interest are:

1. The entrainment velocity of the fluid f∞ defined here as f∞ = f (η∞) with
f ′(η∞) ≈ 10−4.The corresponding η∞ values are also given here in tabular
form. Realize that from the second Eq.(5) we obtain v∞ =−(c.υ)1/2 f∞ and
these quantities are related with the amount of fluid dragged by the sheet.

2. The thickness of the boundary layer δdefined as the value of the y coordinate
for which f ′(ηδ ) = f ′(0)

100 holds. The corresponding ηδ values are also given
here in tabular form.

A listing of the velocity gradient wall f ′′(0) values at R = 0.3 (suction) and M =
0.5 is given in Table 1. The effect of increasing values of the elasticity number
K is to decrease the magnitude of f∞largely in the boundary-layer. One can then
see the strong effect of the elasticity level of the fluid on the flow kinematics. One
further can detect that the values of | f ′′(0)|increase with K. Hence the elasticity
level of the Maxwell fluid increases the skin friction and this leads to a decrease in
the boundary layer thickness as well as a diminution of the amount of fluid dragged
by the sheet.

Table 1: The effect of the elasticity number Kon flow characteristics for the case of
suction (R = 0.3 and M = 0.5).

K − f ′′(0) ηδ η∞ f∞

0 1.3838958 3.32 6.65 1.0225250
1 2.0863156 2.05 4.16 0.7547567
2 2.9498858 1.42 3.03 0.6181933
3 4.0212689 1.04 2.19 0.5338660
4 5.3857126 0.78 1.59 0.4757220
5 7.1874124 0.59 1.21 0.4327303
6 9.6842483 0.445 0.895 0.3993294
7 13.3850337 0.325 0.660 0.3724656
8 19.4525116 0.227 0.468 0.3502666
9 31.2523558 0.144 0.292 0.3315256
10 64.2650950 0.070 0.140 0.3154414

From the numerical calculations, it is observed that the sensitivity of ηδ , η∞ and
f∞with respect to the dimensionless velocity gradient f ”(0) at the wall is pro-
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nounced and we also see that the parameter K affects the flow characteristics signif-
icantly. On the other hand, it can be found from Table 2 that | f ′′(0)| increases with
M for a given Maxwell fluid in the case of suction. However, one also sees that the
effect of the parameter M is to decrease ηδ , η∞ and f∞. The effect of increasing
values of the suction parameter R is to increase the magnitude of f∞ largely in the
boundary-layer, whereas parameter M decreases it. As far as the amount of fluid
dragged by the sheet is concerned, one can conclude that, for fixed K, parameters
M and R act in an opposite fashion. It is obvious from Table 2 that the entrainment
velocity f∞ increases with the increasing suction parameter R, while it decreases
with the increasing magnetic field parameter M.

Table 2: The effect of the magnetic field parameter M and suction parameter Ron
flow characteristics of a Maxwellian fluid with K = 0.3.

K R M − f ′′(0) ηδ η∞ f∞

0.3 0 1 1.4680536 3.03 6.65 0.664904
0.3 1.7586223 2.55 5.46 0.858017
0.6 2.1893104 2.06 4.16 1.050276

0.3 0.3 0.2 1.4586547 3.03 6.26 0.966269
0.5 1.5789008 2.82 5.96 0.918409

In order to more fully characterize the behaviour of the numerical solutions with
respect to the involving parameters, that is, K (elastic parameter), M (magnetic field
parameter) and R (suction parameter) which govern this highly non-linear momen-
tum transfer problem, representative dimensionless velocity and velocity gradient
profiles at selected values of the elastic parameter K are shown in Fig.1. This Fig-
ure shows that, for M = 0.5 and R = 0.3 (suction), the effects of the fluid’s elasticity
are to decrease the dimensionless velocity f ’(η) at any given point above the sheet.
In other words, the momentum boundary-layer thickness becomes thinner as the
elastic parameter K increases.

Moreover, Fig. 2 depicts the changes in the f ’(η) and f ”(η) profiles at R = 0.3
with changes in K and M.

Furthermore, the influences of the magnetic parameter M on velocity profiles have
also been investigated. In the case of suction (i.e., R = 0.3), Figure 2 demonstrates
graphically that, for fixed K, the momentum boundary-layer becomes thinner as the
magnetic field parameter M increases. This effect diminishes with increase in K. In
other words, by an increase in the elasticity of the fluid, the effect of magnetic field
on the velocity of fluid elements on the sheet appears to become less pronounced. It
is further obvious that large elasticity and magnetic field numbers provide a lower
influence of the magnetic parameter M onto velocity profiles. For a fixed value of
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Figure 1: Velocity and velocity gradient profiles for selected values of K when M
= 0.5 and R = 0.3 (suction).

Figure 2: Velocity and velocity gradient profiles for selected values of K and
Mwhen R = 0.3 (suction). [M= 0.5 (solid line); M = 2 (broken line)].
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R, the boundary layer thickness varies as K, which is characteristic of such flows.
On the other hand, as was noted in the Introduction, one immediately sees from
Figs. 1-2 how both f ’ and f ” tend simultaneously to zero at infinity as must be
required from boundary-layer theory.

3 Heat transfer analyses

By using usual boundary layer approximations, the equation of the energy for tem-
perature T in the presence of radiation and viscous dissipation is given by

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T
∂y2 +

ν

cP

(
∂u
∂y

)2

− 1
ρcP

∂qr

∂y
, (9)

where α = k
ρcP

is the thermal diffusivity (k being the thermal conductivity), cP is
the specific heat of a fluid at constant pressure and qr is the radiative heat flux.

Using the Rosseland approximation for radiation, Cortell (2008b), the radiative
heat flux is simplified as

qr =−4σ∗

3k∗
∂T 4

∂y
, (10)

where σ∗ and k∗ are the Stefan-Boltzmann constant and the mean absorption co-
efficient, respectively. We assume that the temperature differences within the flow
such as that the term T 4 may be expressed as a linear function of temperature.
Hence, expanding T 4 in a Taylor series about T∞ and neglecting higher-order terms
we get

T 4 ∼= 4T 3
∞T −3T 4

∞ , (11)

In view to Equations (10) and (11), Equation (9) reduces to

u
∂T
∂x

+ v
∂T
∂y

= (α +
16σ∗T 3

∞

3ρcPk∗
)
∂ 2T
∂y2 +

ν

cP

(
∂u
∂y

)2

. (12)

From the above equation it is seen that the effect of radiation is to enhance the
thermal diffusivity.

3.1 Prescribed surface temperature (PST case)

In this circumstance, the boundary conditions are

T = Tw(= T∞ +A.
(x

l

)2
) at y = 0,

T → T∞ as y→ ∞,
(13)
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where Tw is the temperature at the wall, T
∞
(〈Tw) is the free stream temperature and

the constant lis chosen as a characteristic length.

On the other hand, we define the non-dimensional temperature θ(η) as

θ(η) =
T −T∞

Tw−T∞

. (14)

Realize that in order to obtain similarity solutions for temperature θ(η) we consider
stretched boundary surface with prescribed power law temperature of second grade
only (see Abdelkhalek (2006)).

Using Eqs.(5), (6), (13) and (14) we find from Eq. (12)

θ
′′+

3σNR

3NR +4
f θ
′− 6σNR

3NR +4
f ′θ =− 3σNR

3NR +4
Ec f ′′2. (15)

Here, σ = υ

α
is the Prandtl number, Ec = c2l2

AcP
is the Eckert number and NR = kk∗

4σ∗T 3
∞

is the radiation parameter.

The boundary conditions (13) become

θ(0) = 1, θ(∞)→ 0. (16)

The local surface heat flux can be expressed as

qw =−k
(

∂T
∂y

)
w

+(qr)w =−Ak(4+3NR)
3NR

.
(x

l

)2
.
( c

υ

) 1
2
.θ ′(0). (17)

By setting k0 = 3NR
3NR+4 ,Eq. (17) becomes

qw =−k
(

∂T
∂y

)
w

+(qr)w =−Ak
k0

.
(x

l

)2
.
( c

υ

) 1
2
.θ ′(0). (18)

One can see from Eq. (18) that in the limiting case NR→∞(i.e.,k0→ 1) the thermal
radiation effects can be neglected.

3.2 Prescribed heat flux (PHF case)

In this case, the power-law heat flux on the wall is considered in the form

at y = 0: qw =−k
(

∂T
∂y

)
w

= D
( x

l

)2
,

as y→ ∞ : T → T∞. (19)
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where D is a constant whose value depends on the fluid.

On the other hand, we define a non-dimensional temperature g(η) as

g(η) =
T −T∞

D
k

( x
l

)2 (
υ

c

)1/2 . (20)

Using Eqs.(5), (6), (19) and (20), we find from the energy equation, Eq. (12)

g′′+
3σNR

3NR +4
f g′− 6σNR

3NR +4
f ′g =− 3σNR

3NR +4
E ′c f ′′2. (21)

where E ′c = EcAk
D

( c
υ

)1/2 is the scaled Eckert number. It is worth citing that we have
obtained the same ODE as in PST case (see Eq. (15)).

The boundary conditions can be obtained from Equations (19) and (20) as

g′(0) =−1; g(∞) = 0. (22)

and in view of Eq. (20), we get

Tw = T∞ +
D
k

(x
l

)2 (
υ

c

)1/2
g(0). (23)

Taking into account all above, one can analyze thermal boundary layer results for
both PST and PHF cases by using an only governing equation as

h′′+σk0E f ′′2 = σk0(2h f ′− f h′) (24)

where k0 = 3NR
3NR+4 , and h(0) = 1;h(∞)→ 0;E = Ec for PST case, whereas h′(0) =

−1;h(∞)→ 0;E = Ec’ for PHF case. Note that by setting k0 = 1into Eq. (24), the
thermal radiation’s effect is then neglected. Realize the one-way coupling, that is,
the function f influences the function h, but not vice-versa.

At this stage, it is worth citing that, for each numerical solution, either h′(0)(PST
case) or h(0)(PHF case) are iteratively obtained under the simultaneous assump-
tions

h(∞)→ 0; h′(∞)→ 0. (25)

These boundary conditions at infinity correct unphysical behaviours of the solution
because, in this manner, temperature profiles approach the ambient conditions in
an asymptotical fashion, Cortell (2008a). It should be mentioned here that two dif-
ferent expressions in PST/PHF cases for the Eckert number in the energy equation



164 Copyright © 2011 Tech Science Press FDMP, vol.7, no.2, pp.153-173, 2011

have been obtained. The same Eckert number Ec for both PST and PHF cases was
assumed by Aliakbar et al. (2009), and this is not correct. Also, in their PHF energy
equation, Eq. (14) in its right hand side, one must replace the factorg′′2 by f ′′2.

Without a break, we begin now the development of the procedure for completing the
solution forθ(η) and g(η).In general, an analytical solution for the flow problem
given by Eqs.(7)-(8) does not exist and, consequently, one has to use numerical
techniques. It is clear that the missed velocity gradient at the wall f ”(0) in that
problem depends on M, K and R. Since the flow problem is uncoupled from the
thermal problems, changes in the values of σ , NR and Ec (Ec’) will not affect the
fluid velocity. For this reason, both the function f and its derivatives are identical
in the complete problem (flow and heat transfer) when M, K and R are given. In
view of the above discussions, we have solved numerically, first, the problem {(7)-
(8)}, and we have obtained f ”(0). Secondly, with these results, we shall solve
numerically the complete problem (i.e., momentum and heat transfers) as explained
below. This procedure has already been applied to discuss some flow and heat
transfer problems, Cortell (1994), (2006a, b), (2008b).

We run now to explain how to obtain a temperature profile in PST case (θ −
pro f iles).Equations (7) and (24) can easily be written as the equivalent first-order
system

w′1 = w2

w′2 = w3

w′3 =
2Kw1w2w3−w2

2 +w1w3−Mw2

Kw2
1−1

w′4 = w5

w′5 = σk0(2w2w4−w1w5)−σk0Ecw2
3 (26)

where the prime indicates differentiation with respect to η , w1 = f , w4 = θ and the
values of w3(0) = f ”(0) are known either accordingly Table 1 or solving previously
the decoupled Eq. (7) along with the boundary conditions given by Eq. (8).

In accordance with conditions (8) and (16) we obtain

w1(0) = R; w2(0) = 1; w4(0) = 1, (27)

w2(∞) = 0; w4(∞) = 0. (28)

Using numerical methods of integration and disregarding temporarily the condi-
tions (28), a family of solutions of {(26)-(27)} can be obtained for arbitrarily cho-
sen values of
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w5(0) =
(

dθ

dη

)
η=0

. Tentatively we assume that a special value of |θ ′(0)| yields a

solution for which θ(η), θ ′(η) vanishes at a certain η = η∞ (see second condition
(28)) and satisfies the following conditions

w2(η◦∞) = 0; w4(η∞) = w5(η∞) = 0, (29)

where the solution reaches its asymptotic state.

Taking w3(0) from Table 1, we guessw5(0) and integrate equations (26) and con-
ditions (27) as an initial value problem by employing a Runge-Kutta algorithm for
high-order initial value problems with the additional conditions (29).

θ ′(0)〈0 implies that heat flows from the surface to the ambient fluid (i. e., Tw〉T∞)
and in accordance with Equation (14) a negative θ is not realistic. Consequently,
for a physically consistent numerical result, the corresponding θ is everywhere
finite and non negative. In PHF case we proceed analogously by setting boundary
conditions (22) and guessing g(0) in our shooting procedure.

Figure 3a has been obtained for the case of R = 0.3 (suction); M= 0.5; σ = 3; Ec

= 0.1 and NR = 1 in PST case. As shown in this figure, the elasticity level of the
Maxwellian fluid has a strong effect on the temperature profiles. For Maxwell flu-
ids, and for the case of non-zero magnetic field, namely M = 0.5, one immediately
observes that an increase in the fluid’s elasticity appears to increase the temperature
profiles at any given point above the sheet. This leads to a lower temperature gra-
dient at the wall with a subsequent drop in the rate of cooling. Thus, it is expected
that an increase in the elasticity level of the fluid decreases the total amount of heat
transfer from the sheet to the fluid. As expected, a similar trend occurs in PHF case
(see Fig. 3b).

On the other hand, from Fig.3a it is found that, irrespective of K, all the curves
θ ′(η) pass the same point. In other words, for each fixed Prandtl number σ and
for a selected set of parameters R, M, Ec and NR, our procedure is able to en-
counter two relevant results which are K-independent, that is, ηK−independent and
θ ′(ηK−independent.). Specifically, from Fig. 3a (PST case) we find ηK−independent =
2.08 and θ ′(ηK−independent) = −0.146. The latter is not affected by the elasticity
level of the Maxwell fluid. On the other hand, Figs. 3a and 3b reveal that, at se-
lected values of R, M, σ Ec(Ec’) and NR, the dimensionless surface temperature
θ(η) of the fluid in PST case is larger than that of the PHF case.

Also, a selected set of numerical solutions for both PST/PHF cases are plotted in
Figs. 4-7. We can observe from these figures that the effect of increasing σ is to
decrease the temperature distribution, whereas an opposite behaviour can be seen
for the Eckert number Ec(Ec’). Also, the effect of viscous dissipation becomes
more important with the increase of σ .
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(a) (b)

Figure 3: a) Temperature and temperature-gradient profiles in PST case for K = 0,
2 with suction (R = 0.3) and magnetic field (M = 0.5) when σ = 3, Ec = 0.1 and NR

= 1. b) The same, but in PHF case.

Figures 4a and 4b show the effect of the magnetic field parameter, M, on the tem-
perature profiles above the sheet in both PST/PHF cases in the presence of viscous
dissipation, suction and thermal radiation. One can see from these two figures that
the magnetic field has a relevant effect on the temperature distributions above the
sheet. In fact, for both PST/PHF cases, an increase in the strength of the magnetic
field appears to increase the temperature distributions. This means a lower temper-
ature gradient at the wall with a subsequent drop in both the heat flux and the rate
of cooling. Further, these commented effects become slightly more significant with
the decrease of σ .

(a) (b)

Figure 4: a) Plot of temperature distributions in PST case for two values of M and
σ whenK = 0.3, R = 0.3, Ec = 0.1 and NR = 1. [M = 1 (solid line); M = 3 (broken
line)]. b) The same, but in PHF case.

Suction is applied to chemical processes to remove reactants and, consequently,
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we also present in Figs. 5a-b its effects for a Maxwellian fluid in the presence of
magnetic field, viscous dissipation and thermal radiation. Our results indicate that
a rise in suction parameter R depresses temperature profiles in both PST and PHF
cases.

(a) (b)

Figure 5: a) Plot of temperature distributions in PST case for two values of R and
σ whenK = 0.3, M = 1, Ec = 0.1 and NR = 1. [R = 0.6 (solid line); R =0.3 (broken
line)]. b) The same, but in PHF case.

On the other hand, Figs. 6a-b depict the effect of the Eckert number Ec(Ec’) for
two selected values of σ on temperature profiles. It is evident from these figures
that for given values of K, R, M and NR higher temperatures of fluid elements near
the wall are observed at a larger values of Ec(Ec’), but this trend is slightly reversed
far away from the edge.

(a) (b)

Figure 6: a) Plot of temperature distributions in PST case for two values of Ec and
σ whenK = 0.3, R = 0.3, M= 1 and NR = 1. [Ec = 0.1 (solid line); Ec =0.5 (broken
line)]. b) The same, but in PHF case.
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In addition, from Figs. 7a-b one can see that the effect of radiation becomes more
important for a smaller Prandtl number σ by comparing the curves with σ = 3 and
σ = 5. This implies that sensibility to thermal radiation in Maxwellian flows is
enhanced at smaller Prandtl number σ . It is further obvious that the temperature is
decreased with an increase in NR, and as expected, (see for example Abbasi et al.
(2011)) the thermal radiation significantly affects temperature distributions.

(a) (b)

Figure 7: a) Plot of temperature distributions in PST case for two values of NR and
σ whenK = 0.3, R = 0.3, M= 1 and Ec = 0.1. [NR = 1 (solid line); NR =5 (broken
line)]. b) The same, but in PHF case.

At this stage, it is worth citing that, flow kinematics modifications have already
been studied by means of K, M and R flow parameters. Finally, in order to more
fully characterize the behaviour of the quantities of relevant physical interest like
θ ′(0) and g(0)with changes in K, M and R for specified values of σ , Ec(Ec’) and
NR, Table 3 is constructed. One can then see from Table 3 that, for both PST/PHF
cases, the combined effect of increasing values of K and M is to boost temperature
distributions, while the effect of increasing values of R is to depress it.

4 Concluding Remarks

Effects of suction, viscous dissipation and radiation on heat transfer behaviour for
an upper-convected Maxwell fluid over a non-isothermal moving flat surface which
is linearly stretched (i.e., Crane flow) in the presence of a transverse magnetic field
are studied.

The problem under investigation is of the type of one-way coupled problem. This is
because due to the fact all properties are considered constant, the velocity bound-
ary value problem (the f -problem) is decoupled from the temperature problems
(the θ -g problems), but not vice-versa. Unlike in Sadeghy et al. (2005) occurs, it



Magnetohydrodynamic Flow and Heat Transfer 169

Table 3: Kinematic influences on heat transfer characteristics.
R K M σ Ec(Ec’) NR −θ ′(0) g(0)
0 0.3 1 3 0.1 1 1.338413 0.760088

0.3 1.493146 0.688990
0.6 1.651849 0.632545
0.3 0.3 1 3 0.1 1 1.493146 0.688990

0.6 1.423968 0.723115
0.3 0.3 0 3 0.1 1 1.613278 0.635143

0.5 1.548661 0.663334
1 1.493146 0.688990

admits similarity solutions which are governed by an only ODE (Eq.24), describing
fundamental physically significances and we obtain accurate numerical results via
the 4th order Runge-Kutta method along with shooting procedure. We found that
there was always a marked influence on temperature profiles due to change in the
parameters entering the problem. As here it clearly brings out, one can analyze the
effects that strength of magnetic field have on the flow (through the parameter M)
as well as to directly asses how the suction parameter R affects the non-dimensional
velocity and temperature distributions due to its changes. With the help of tables
and graphs, a variety of different effects due to change in any other one parameter
for fixed values of the remaining parameters is also presented. We saw throughout
this original research interesting trends which are in agreement with the researches
of the field (see Aliakbar et al. (2009)). From the computational results and for
both PST/PHF cases, the following conclusions may be drawn:

1. Effects on non-dimensional velocity:

(a) An increase in suction (through the parameter R) decreases the velocity
field.

(b) An increase in magnetic field (through the parameter M) decreases the
velocity field.

(c) An increase in the elasticity level of the UCM fluid (through the param-
eter K) decreases the velocity field.

One can then conclude that the combined effect of increasing values of R, M
and K is to decrease the velocity distribution in the flow region.

2. Effects on temperature distributions:
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(a) An increase in suction parameter yields a decrease in the fluid’s tem-
perature

(b) An increase in magnetic field increases the temperature field

(c) An increase in the elasticity level of the fluid provides an augment in
the fluid’s temperature

(d) The increase of the Prandtl number σ leads to the decrease of dimen-
sionless surface temperature

(e) An augment in the Eckert number Ec(Ec’) boosts temperature profiles

(f) An increase in radiation parameter NR depresses temperature distribu-
tions.

One can also then conclude that the combined effect of increasing values
of R, σ and NR is to reduce temperature distributions, while the combined
effect of increasing values of M, K and Ec(Ec’) is to boost temperature dis-
tributions.
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