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A VOF-Based Conservative Method for the Simulation of
Reactive Mass Transfer from Rising Bubbles

D. Bothe1,2, M. Kröger1 and H.-J. Warnecke3

Abstract: In this paper numerical results on reactive mass transfer from sin-
gle gas bubbles to a surrounding liquid are presented. The underlying numerical
method is based on the solution of the incompressible two-phase Navier-Stokes
equations. The Volume-of-Fluid method is applied for the description of the liquid-
gas interface. Within the numerical approach the concentration of the transfer com-
ponent is represented by two separate variables, one for each phase. Numerical
results are in good agreement with experimental data.

1 Introduction

Many chemical reactions are heterogeneous, in which case the reaction partners are
present in different phases, e.g. in a liquid and in a gas. In order to enable a chem-
ical reaction, at least one of these species has to cross the interface separating the
two phases. This process is called reactive mass transfer, if the physical transfer
of a chemical component from one phase to the other is followed by a chemical
reaction in this phase. A common example is the selective oxidation of cyclohex-
ane where the gaseous oxygen is first dissolved and then reacts with the organic
liquid to the desired product. This type of reaction is of high interest, especially for
the chemical process industry. The scale-up from laboratory sized model appara-
tuses to large industrial reactors often turns out to be extremly difficult, in particular
because several of the occurring phenomena in such systems are not fully under-
stood. Direct numerical simulations have proven to be a useful addition to small
scale experiments and theoretical analysis. Accurate simulations can give insight to
local details which are otherwise not achievable. Recently, a lot of work has been
devoted to this topic.

VOF-based simulations of purely physical mass transfer across deforming inter-
faces without chemical reaction have been reported in [Davidson and Rudman
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(2002)] and in [Bothe, Koebe, Wielage, Prüss, and Warnecke (2004)]. In the latter
paper, transfer of oxygen from air bubbles rising in water or aqueous solutions has
been simulated, taking into account the realistic jump discontinuity of the oxygen
profiles at the interface. [Onea, Wörner, and Cacuci (2009)] used a simular ap-
proach as [Bothe, Koebe, Wielage, Prüss, and Warnecke (2004)] to simulate mass
transfer in upward bubble train flow through square and rectangular mini-channels.
[Darmana, Deen, and Kuipers (2006)] performed 3D simulations of mass transfer
at rising fluid particles using the Front Tracking method. There, the transport re-
sistance inside the fluid particle is neglected, i.e. a constant concentration value
inside the bubble is assumed. [Radl, Tryggvason, and Khinast (2007)] performed
2D simulations of deformable bubbles and bubble swarms with mass transfer in
non-Newtonian liquids using a semi-Lagrangian advection scheme. To prevent sta-
bility problems, a reduced density ratio between gas and liquid is used.

Recently, first papers on numerical simulation of reactive mass transfer appeared.
In [Khinast, Koynov, and Tryggvason (2005)], reactive mass transfer at deformable
interfaces is examined using a 2D Front Tracking/Front Capturing hybrid method.
In [Deshpande and Zimmermann (2006a)], a Level Set based method is used to
simulate mass transfer across the interface of a moving deformable droplet. This
method is extended to reactive mass transfer in [Deshpande and Zimmermann
(2006b)], where an instantaneous chemical reaction occurs inside a moving droplet
which leads to a quasi-stationary problem for the mass transfer. In [Radl, Koynov,
Tryggvason, and Khinast (2008)], 2D simulations are performed using a Front
Tracking method to investigate the effect of different Hatta and Schmidt numbers
on the catalytic hydrogenation of nitroarenes for single bubbles and bubble clusters.
Based on the numerical approach in [Bothe, Koebe, Wielage, Prüss, and Warnecke
(2004)], reactive mass transfer with parallel consecutive reactions at rising bubbles
has been analyzed in [Bothe, Kröger, Alke, and Warnecke (2009)] by using local
selectivities. The approach from [Bothe, Koebe, Wielage, Prüss, and Warnecke
(2004)] employs a single scalar field for any transfer component and this scalar
quantity refers to a normalized concentration for which the jump discontinuity can
be removed. This has some disadvantages concerning conservativity of the transfer
component which can lead to artificial mass transfer. The latter is caused by a rel-
ative motion of the interface and the concentration discontinuity due to the use of
different advection algorithms. In [Alke, Bothe, Kroeger, and Warnecke (2009)] a
new VOF-based approach has been introduced which does not posses these draw-
backs. In the present paper, this approach is applied to reactive mass transfer from
single rising bubbles.
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2 Governing Equations

In the mathematical model it is assumed that the system under consideration con-
sists of two immiscible, incompressible fluids, separated through a moving and de-
formable interface. The interface between the two phases is presented as a mathe-
matical (sharp) surface of zero thickness and is denoted by Σ(t). The local balances
for mass and momentum can then be written as

∇ ·u = 0 (1)

for mass and

ρ
∂u
∂ t

+ρ (u ·∇)u =−∇p+ρg+∇ ·S (2)

for the momentum. In this equation, S denotes the viscous stress tensor given by

S = η(∇u+(∇u)T). (3)

The interface normal unit vector nΣ points into the continuous phase for the re-
mainder of this paper. This set of equations represents the one-field formulation of
the two phase Navier-Stokes equations where the material properties ρ and η re-
fer to the phase dependent density and viscosity. Additionally, the following jump
conditions are satisfied at the interface:

[u] = 0 (4)

and

[pI−S] ·nΣ = σ κ nΣ, (5)

where κ = −∇ ·nΣ is the curvature (more precisely, the sum of the principal cur-
vatures) and expresses the Laplace pressure jump in stationary cases. Note that the
square bracket stands for the interfacial jump according to

[φ ] (xΣ) = lim
h→0+

(φ (xΣ +hnΣ)−φ (xΣ−hnΣ)) (6)

where φ is an arbitrary quantity

It is further assumed that there is at least one transfer component with the volumet-
ric molar concentration ck, being soluble in both phases. In case of ideally diluted
systems with small pressure gradients the components have no influence on the hy-
drodynamics and can therefore be considered as passive scalars, transported by the
velocity field. The local balance for the species thus reads as

∂ck

∂ t
+∇ · (ck u+ jk) = Rk in Ω

c(t)∪Ω
d(t), (7)
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governing the species transport inside the bulk phases. At the interface, the trans-
mission condition

[jk] ·nΣ = 0 (8)

holds and the jump condition

[µk] = 0 (9)

is imposed, where µk denotes the chemical potential of the species k. The diffusive
fluxes are given by Fick’s law, i.e.

jk =−Dk ∇ck (10)

with constant diffusion coefficient Dk > 0, and the continuity of the chemical po-
tential is expressed by Henry’s law, i.e.

cd
k/cc

k = Hk (11)

with Henry coefficient Hk, where usually Hk 6= 1. The source term Rk on the right-
hand side of equation (7) accounts for chemical reactions.

3 Numerical Method

The general approach is to solve the partial differential equations from Section
2 without any additional simplifying assumptions. The governing equations are
solved numerically employing the inhouse code Free Surface 3D (FS3D) [Rieber
and Frohn (1999)]. A Finite Volume (FV) discretization is used for the spatial
discretization and an explicit Eulerian scheme for the time discretization. The
computational domain is discretized with a Cartesian, staggered grid, where scalar
variables like pressure or concentration are stored as cell centered values and the
velocities are stored on the centers of the cell faces. The code employs the Volume-
of-fluid (VOF) method. Here, an additional transport equation is solved to keep
track of the location of the different phases and, thereby, of the interface. This
type of method is a volume tracking scheme, since only the different phases are
transported and the interface is geometrically reconstructed from that information.
In FS3D, the PLIC algorithm [Rider and Kothe (1998)] is employed for interface
reconstruction [Rieber (2004)]. The code uses a one-field formulation of the two-
phase Navier-Stokes equations in which the volumetric surface tension force is in-
corporated via the conservative continuum surface stress (CSS)-model of Lafaurie
[Lafaurie, Nardone, Scardovelli, Zaleski, and Zanetti (1994)]. The volume fraction
transport equation reads as

∂ f
∂ t

+∇ · (u f ) = 0, (12)
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where f is the phase indicator function of the dispersed phase domain Ωd(t). In
the FV discretization scheme employed here, the cell centered value of f corre-
sponds to the dispersed phase fraction inside a computational cell. Within the
VOF-method, the phase related material properties are given by

ρ = f ρ
d +(1− f )ρc (13)

and

η = f η
d +(1− f )ηc. (14)

3.1 Transport of molar species mass

For the computation of the transport of a transfer species k, the concentration is
represented by two separate scalar variables according to

φ
d
k (x, t) =

{
ck(x, t) for x ∈Ωd(t)
0 for x ∈Ωc(t)

(15)

and

φ
c
k (x, t) =

{
0 for x ∈Ωd(t)
ck(x, t) for x ∈Ωc(t).

(16)

This allows for a representation of the individual one-sided limits of the concentra-
tion at the interface. Within the FV discretization, these scalars are related to the
cell volume, i.e. the cell centered values for a grid cell Vi are given as

φ
d
k (t) =

1
|Vi|

∫
Vi∩Ωd(t)

ck(t)dV (17)

and

φ
c
k (t) =

1
|Vi|

∫
Vi∩Ωc(t)

ck(t)dV. (18)

The computation is carried out with a directional splitting, where for each of the
three dimensions a one dimensional transport step is calculated consecutively. The
order of the directional steps is changed in every time step to reduce systematic
errors. Inside the bulk phases the convective transport of the volume fraction f is
calculated with a simple first-order upwind scheme. Since f has only one discrete
value in the bulk phase, this is accurate.

The concentration of a chemical species, however, can take arbitrary, non negative
values. A first-order upwind scheme applied in that case would lead to unacceptable
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numerical diffusion. Therefore the convective transfer in the bulk phases is based
on the limiter scheme of Van Leer [Van Leer (1979)]. At the interface, the same
reconstruction of the interface geometrie (PLIC) is used for a geometric flux com-
putation, analogously as for the f -field. In this way any relative motion between
the phase boundary and the surface of the concentration discontinuity is avoided.
This ensures that no artificial mass transfer due to convection occurs.

Diffusive fluxes inside the bulk phases are obtained by a standard central differenc-
ing scheme. In interfacial cells, different cases have to be distinguished. Diffusion
between an interfacial cell and a bulk phase cell is calculated for the appropriate
scalar only, using the corresponding diffusion coefficient for that phase. For the
diffusion between two interface cells two diffusive fluxes are calculated, one for
each phase with the respective diffusion coefficients. The effective area in that case
is approximated by the cell face area multiplied by the fraction of the respective
phase. To ensure physically reasonable diffusive fluxes into or from cells with very
small values of f , the fluxes are restricted. Since diffusion can only take place until
the neighboring concentration values coincide, this can be used as a limit for the
diffusion in one time step.

3.2 Mass transfer source term

The mass transfer between the phases takes place in those cells carrying a part of
the interface and is accounted for by means of source terms for the two scalars rep-
resenting the full concentration field. In the following, a brief description of two
possible ways to calculate the interfacial source term is given. For more details
we refer to [Bothe and Kröger (2010)]. The calculation of the source terms is re-
stricted to interfacial cells. Inside those cells, the interface is assumed to be planar.
Furthermore, it can be assumed that inside an interfacial cell, the concentration on
the dispersed phase side is homogeneous due to the large diffusion coefficient. In a
one-dimensional splitted approach, one can then calculate the one-sided interfacial
limit value of the concentration for the dispersed phase by simply extrapolating the
cell centered value onto the interface. The limit value for the continuous phase can
be obtained from Henry’s law (11). Together with one neighboring value from the
continuous phase, a linear approximation for the gradient of the concentration at
the interface can be obtained from this value. Inserting this gradient into Fick’s
law (10) yields the molar flux of the transfer species across the interface for the
continuous phase. Since (8) states that both fluxes have to be equal, this also gives
directly the flux for the dispersed phase, leading to a conservative algorithm. In
a dimensional splitting scheme, the fluxes are calculated for each direction sepa-
rately.

The second method is quite similar to the linear gradient method. Here, instead of a
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linear approximation a different function is used to estimate the gradient. The type
of function used in this subgrid-scale model is obtained from analytical solution
describing the mass transfer for an overflown planar and mobile interface [Bird,
Stewart, and Lightfood (2002)]. It has the form

ck(x,y) = cc
k

(
1− erf

(
x
δy

))
(19)

with δy the local thickness of the concentration boundary layer. Here, the latter is
determined in such a way that the concentration value in the center of the adjacent
continuous phase bulk cell matches the value given by (19). Having adjusted δy,
the local mass transfer rate is then computed using the directional derivative of the
nonlinear profile according to (19), thus performing a nonlinear flux correction. It
has been shown in simulations that in case of very fine grids both methods yield
the same results. In the test case below, a resolution of the boundary layer by at
least three grid cells was sufficient. However, with the subgrid-scale model the
result can already be obtained with a coarser resolution. Therefore this method is
to be preferred. The only drawback here is that in this form it can be only used
in situations, where mass transfer resistance in the dispersed phase is small. All
numerical results in the next sections are obtained employing the subgrid-scale
model.

4 Validation

In this section, comparisons between theoretical and numerical as well as between
experimental and numerical result are used to validate the described numerical
approach. The first comparison employs the flow field obtained by [Hadamard
(1911)] and [Rybczynski (1911)] which is valid for Reynolds numbers below around
Rep = 0.3, where

Rep =
ρLUdp

ηL
(20)

with the particle diameter dp, the density ρL and the viscosity ηL of the liquid phase
and the terminal rise velocity of the particle U . In Fig. 1 a comparison between the
theoretical and simulated concentration profile at the equator of a rising bubble is
shown. In the numerical setup the bubble equivalent diameter is set to dp= 4 mm.
The computational domain for this 3D simulation has the dimension of 4x2x2 dp

and is discretized with 64 cells per bubble diameter. To save computation time in
3D simulation runs, only a quater of a bubble is simulated using two symmetry
planes. Furthermore, the computational domain moves with the bubble; e.g., when
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Figure 1: Comparison of exact (lines) and with the VOF-method obtained concen-
tration profiles at the equator of a rising fluid particle with Re = 0.284, Sc = 1000
(top)

the bubble’s barycenter has been displaced by one grid width h in one basis direc-
tion e j, the whole domain is shifted in that direction. Concerning the boundary
conditions, the free slip condition is applied at the lateral and the bottom domain
boundaries and homogeneous Neumann condition at the upper domain boundary
for the velocity, and for the species concentration at all domain boundaries homo-
geneous Neumann conditions are used. The viscosity of the continuous phase is
set to 460 mPa s. The diffusion coefficient of the transfer component is 0.2 cm2/s
inside the dispersed phase and 3.7×10−3 cm2/s inside the continuous phase. Due
to the rather large liquid viscosity, the Schmidt number is quite large. The Reynolds
number corresponding to the terminal rise velocity is 0.284 for this setting. The the-
oretical profile shown in Fig. 1 is obtained from a solution of the species equation
outside the spherical bubble in polar coordinates with the given analytical velocity
field. Since the problem is stationary in the co-moving frame, the polar angle can
be used as the independent (time-like) variable. Hence the profiles on radial rays
can be obtained successively for increasing polar angles. The remaining problem
is the computation of the concentration profiles in one space dimension, namely on
the rays pointing radially outward and starting at the bubble surface. This is also
done numerically (with Mathematica), but here the possible resolution is so high
that a grid independent solution is easily obtained which approximates the exact
solution as close as requested. The profile shows very good agreement in this case.
As a measure for the overall mass transfer, the integral Sherwood number

Sh =
βL
D

(21)
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Table 1: Comparison of integral Sherwood numbers

Re = 0.284
Sc = 1000

Numerical Result 18.5
Eq. (22) 12.0
Eq. (23) 13.0

can be used. Here β is the mass transfer coefficient, L is the particle diameter,
and D the diffusion coefficient of the liquid phase. There are different theoretical
correlations for the Sherwood number for certain special cases:

Sh = 1+
(

1+0.546Pe2/3
)3/4

, (22)

which is assumed to be valid for Re→ 0 and arbitrary Peclet numbers Pe = ReSc
[Clift, Grace, and Weber (1978)],

Sh = 2+0.651
Pe1.72

1+Pe1.22 , (23)

which is assumed to be valid for Re→ 0 and Sc→∞ [Oellrich, Schmidt-Traub, and
Brauer (1973)]. For the test case described above, the results of the comparison can
be seen in Table 1. The agreement for the integral mass transfer is not as good as
in for the local profiles. The simulation yields about 50% higher mass transfer
than the theoretical correlations. Additional simulations with a finer grid or smaller
Schmidt number are needed to clarify this point.

Figure 2: Distribution of oxygen in the wake of a rising bubble. LiF experiment
(left) dp = 1.6 mm with marked bubble and original, numerical 3D Simulation
(right) dp = 1.8 mm.
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For physical mass transfer, a high resolution numerical result obtained with the
subgrid-scale model is compared with experimental result (Laser-induced fluo-
rescence (LIF) measurement technique) from Schlüter, Hamburg (Germany) and
Räbiger, Bremen (Germany). In this method a fluorescence marker is added to
the liquid. Fluorescence is induced by a laser pulse and the resulting signal is
recorded. In the presence of oxygen the fluorescence is quenched and the intensity
of the recorded signal can be related to the concentration of oxygen in the liquid.
The dark area on the left is the shadow of the bubble, and the bright area is the
reflection of laser light from the surface. Details on this method can be found in
[Bork, Schlüter, Scheid, and Räbiger (2001); Kück, Schlüter, and Räbiger (2009)].
An aqueous CMC solution is chosen for the liquid, having a viscosity of η = 3 m
Pas at 288 K. According to the Wilke-Chang equation [Neue (1997)] the diffusion
coefficient of oxygen in this solution at 288 K is Dk = 6.9×10−6cm2/s leading to
a Schmidt number of about Sc = 4000. The Reynolds number is about Re = 160.
Again, only a quater of a bubble is simulated using two symmetry planes. The vol-
ume equivalent bubble diameter is 1.5 mm and the cubic computational domain has
an edge length of 1.2 cm and is resolved by a cartesian grid with cubic cells with
an edge length of about 23 µm. Fig. 2 shows the numerically and experimentally
obtained concentration profiles which compare reasonably well. Since the setup
for the experiment differs slightly from that of the simulation, the results are only
qualitatively compared.

5 Results

The method described above can be applied to simulate reactive mass transfer with
simple and complex reactions inside the phases. As an example, the simulation of
the metal catalyzed oxidation of sulfite is considered in this section. The overall
reaction scheme for this reaction is given as

HSO−3 + 1
2 O2

k∗−→ HSO−4 (24)

with k∗ given as the gross reaction rate assumed constant for this reaction. Note
that the complete reaction scheme is far more complex, with radical reaction mech-
anisms involved. For simplification, here the gross reaction is taken into account.
In a more abstract notation this results in a reaction scheme of the type

A+B k∗−→ P. (25)

In this scheme A denotes the transfer component (oxygen), B is the dissolved com-
ponent in the liquid phase (the hydrogen sulfite ion) and P is the desired product
(the hydrogen sulfate ion).
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Figure 3: Concentration distribution of oxygen

Figure 4: Series of simulations for reactive mass transfer at increasing temper-
atures. Reaction rate constant from left to right: 0, 100, 1000, 2000, 10000
[cm3/mol s]

In the left part of Fig. 3, a snapshot of a LIF-experiment for the sulfite oxidation
is shown. It can be seen that the oxygen is depleted in the center of the wake
because of the chemical reaction, thus creating a concentration gap inside the wake.
The numerical result obtained from a 2D simulation reproduces this gap very well,
where so far only a qualitative comparison is possible. The concentration gradient
in the surrounding liquid depends on the amount of oxygen that is removed through
the reaction. This in turn is influenced by the reaction rate.

In order to simulate the influence of the reaction on mass transfer, a series of sim-
ulations with different reaction rate constants is carried out. The equivalent bubble
diameter in this case is 1 mm. The viscosity of the liquid phase is 3 mPas, and
the Henry coefficient 34.5. This corresponds to a system of oxygen/water at 25◦C.
In this simulations, only k∗ is varied, while all other parameters are kept constant.
Fig. 4 shows the obtained concentration profiles for reactive mass transfer with in-
creasing reaction rate constant. With increasing k∗, the amount of oxygen in the
wake is decreasing, indicating that the reaction is faster than the transport of oxygen
inside the bubbles wake. In Fig. 5, the total decrease of species inside the bubble is
plotted against time. As expected, these curves get steeper with increasing k∗ and
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Figure 5: The evolution of species mass for reactive mass transfer at different reac-
tion rate constants

the steepness is proportional to the mass transfer coefficient.

6 Conclusions and Outlook

A numerical approach for the simulation of reactive mass transfer is introduced
in this contribution. It is validated for the case of physical mass transfer. The
method is then applied to the case of a simple reaction and the numerical results are
compared with experimental data. Variation of the gross reaction rate constant can
be used to simulate the effect of rising temperature on this reaction, which we are
currently doing. Since it is quite difficult to measure the velocity at high resolution
in experiments, it is also planned to combine the simulated velocity fields with
measured concentration fields in order to obtain integral Sherwood numbers from
the experiments.
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