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The Impact of Ink-Jet Droplets on a Paper-Like Structure

M. Do-Quang1 A. Carlson1 and G. Amberg1

Abstract: Inkjet technology has been recognized as one of the most successful
and promising micro-system technologies. The wide application areas of printer
heads and the increasing demand of high quality prints are making ink consump-
tion and print see-through important topics in the inkjet technology. In the present
study we investigate numerically the impact of ink droplets onto a porous material
that mimics the paper structure. The mathematical framework is based on a free
energy formulation, coupling the Cahn-Hilliard and Navier Stokes equations, for
the modelling of the two-phase flow. The case studied here consists of a multi-
phase flow of air-liquid along with the interaction between a solid structure and an
interface. In order to characterize the multiphase flow characteristics, we investi-
gate the effects of surface tension and surface wettability on the penetration depth
and spreading into the paper-like structure.
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1 Introduction

Ink-jet technology has been recognized as one of the most successful and promis-
ing micro-system technologies. The wide application areas of print heads and the
increasing demand of high quality prints are making ink consumption and print see-
through important topics in the inkjet technology. In order to advance to a cheaper
production of high quality prints, fundamental issues about the physics concerning
the impact of ink droplets on paper structures needs to be resolved.

Many phenomena with a complex physics takes place from a droplet are ejected
from the print head, until it has obtained its equilibrium form in the paper struc-
ture. In the first stage the droplet shoots out of the print head with a velocity typ-
ically ranging between 1− 20 m · s−1 and it will often, as it travels towards the
paper, form a tail that consist of small satellite droplets (Do-Quang, Geyl, Stemme,
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van der Wijngaart, and Amberg (2010)). It impacts the paper, which has a hetero-
geneous surface of cellulose fibers. These fibers are chemically treated, often with
different degrees of wettability. After the droplet has impacted onto the surface
it can either penetrate or recoil, depending on the papers roughness and wettabil-
ity. Experiments by Kannangara, Zhang, and Shen (2006) showed that the forced
spreading and droplet recoil after impact on commercial paper surfaces depended
on their wettability. The surfaces were found to inherit a dual nature, and behaved
as hydrophobic upon first contact with the impacting droplet allowing no ink to
penetrate. Thereafter, during the droplet recoil process it behaved like a hydrophilic
surface. If the droplet fully recoils or if it is sufficiently large it can make a splash so
that the ink spreads over a larger part of the paper, thus reducing the prints quality.
How to trigger the splash of a droplet has been a matter of intense investigation in
the literature (Yarin (2006)), where the wettability, surface structure (Xu, Barcos,
and Nagel (2007)) and environmental pressure (Xu, Zhang, and Nagel (2005)) have
all been identified as key parameters to trigger or suppress splashing.

After the droplet has impacted onto the paper, wetting will dominate the droplet
infiltration into the paper structure. Since the surface often has a heterogeneous
structure, consisting of fibers with different wetting properties, that also adsorbs
the liquid poses additional challenges to the already complex wetting physics that
one observed on relatively smooth solid surfaces see Blake (2006); Bonn, Eggers,
Indekeu, Meunier, and Rolley (2009). Modaressi and Garnier (2002) found in ex-
periments that the droplet evolve into the paper as a function of two sequential
phenomena. First, the droplet spreads into the material, forming its footprint in the
paper, until it reaches its pseudo-equilibrium contact angle. After the droplet has
reached its pseudo-equilibrium state it starts to adsorb into the bulk of the paper
material.

Numerical simulations of the impact of a droplet on a porous surface were per-
formed by Alam, Toivakka, Backfolk, and Sirvio (2007) with the Volume of Fluid
method, Hyvaluoma, Raiskinmaki, Jasberg, Koponen, Kataja, and Timonen (2006)
with the Lattice Bolzmann method and by Reis, Griffiths, and Santos (2004) with
a marker-cell method. These have both in common that the droplet size was much
larger than the characteristic roughness of the porous media. Alam, Toivakka,
Backfolk, and Sirvio (2007) examined the effect of surface structures and found
that a sustained pressure outside the porous media increased the adsorption depth
as a function of time.

Here, we adopt the Phase Field method to numerically investigate the impact of
an ink-droplet onto a paper-like structure. The case studied here consists of a mul-
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tiphase flow of air-liquid along with the interaction between a solid structure and
an interface. We focus on the initial regime, before adsorption of the liquid into the
bulk surface material, and seek to characterize the pseudo-equilibrium regime as
reported by Modaressi and Garnier (2002). A small droplet with the same size as
the characteristic surface roughness is considered as it impacts a web of cellulose
fibers, mimicking the paper structure. By only changing the fibers wettability we
show that the droplet can either penetrate or bounce as it impacts the paper-like
structure.

1.1 Governing equations

Several authors have previously demonstrated the applicability for the diffuse in-
terface method to describe two-phase flows (Anderson, McFadden, and Wheeler
(1998); Jacqmin (1999)). Do-Quang and Amberg (2009) and Do-Quang, Geyl,
Stemme, van der Wijngaart, and Amberg (2010) has demonstrated the capability
of this method for the simulations of liquid-gas systems. Here, we will briefly
describe the main ideas and list the governing equations, for a mixture of two New-
tonian fluids.

In the phase-field model, the order parameter or phase-field φ , is has a distinct equi-
librium value representing the two phases, but it changes rapidly but in a smooth
fashion between the two equilibrium states across the interface. Here takes the
value φ = 1 in liquid phase and φ = −1 in gas phase. The free energy of the sys-
tem is described by a Ginzburg-Landau expansion of the free energy of the system
(Cahn and Hilliard (1958)),

F =
∫

Ω

(
βψ(φ)+

α

2
(∇φ)2

)
dΩ+

∫
Γ

g(φ ,σ)dΓ, (1)

where α and β are constants that are related to the surface tension and interface
thickness. ψ(φ) represents here the bulk energy and takes the form of a double-
well potential function, with two minima φ = ±1 corresponding to the two stable
phases. ψ is here represented by,

ψ =
1
4
(φ +1)2(φ −1)2. (2)

The second term in equation (1) describes the interface energy. This term associates
with variations of the phase field φ and contributes the free-energy of the interfacial
region, which defines the surface tension coefficient,
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The free energy at the solid surface dΓ is formulated by the surface energy con-
tribution from the three interfaces appearing; solid (s), gas (g) and liquid (l), and
g(φ ,σ) is a function varying smoothly between the surface energies σsl and σsg

(Jacqmin (1999)).

By taking the variational derivative of the free energy, F , with respect to the order
parameter φ and perform some algebra transformations, we obtain the Cahn and
Hilliard (1958) equation,

∂φ

∂ t
+(u ·∇)φ = ∇ ·

(
κ∇(βΨ

′(φ)−α∇
2
φ)
)
. (4)

In this equation, the interface is not captured by a sharp interface. It uses, φ , a finite
thickness, smooth transition region to distinguish the different phases. Here, κ is
the constant mobility and η is the chemical potential, defined as

η = β
∂ψ

∂φ
−α∇

2
φ . (5)

Once the phase field is calculated, the physical properties such as the density and
the viscosity are calculated as follows,

ρ = ρl
1+φ

2
+ρg

1−φ

2
, (6)

µ = µl
1+φ

2
+ µg

1−φ

2
, (7)

where ρl , ρg and µl , µg are the densities and viscosities of the liquid and gas phase,
respectively.

The fluid flow is described by the Navier-Stokes equations for an incompressible
flow.

ρ(
∂u
∂ t

+u · (∇u)) = −∇p+∇ · (µ(∇u+∇
T u))+η∇φ , (8)

∇ ·u = 0, (9)

where ρ denotes the density, u the velocity vector, µ the viscosity, and p the pres-
sure. The last term in equation (8) is expressing the potential form of the surface
tension force, proposed by Jacqmin (1999).

1.2 Boundary conditions

In phase field theory, the wetting boundary condition for the interface is set via the
balance of the free energy distribution between the different phases. By making
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the assumption that the interface is at local equilibrium as it wets the surface, the
boundary condition becomes Villanueva and Amberg (2006),

α∇φ ·n+σ cos(θe)g′(φ) = 0, (10)

where θe is the static equilibrium contact angle. Here the contact angle is related
to the surface tension coefficients σ through the Young’s equation: σ cos(θe) =
σlg−σsl . In Eq.(10), g(φ) is a normalized function varying smoothly from 0 to 1.
It is used to localize the surface energy of each phases on the energy system. In our
simulation g(φ) = 0.5−0.75φ +0.25φ 3.
The assumption of local equilibrium at the solid surface has been a widespread
assumption in phase field wetting simulations, which has proven to be success-
ful in describing numerous physical phenomena involving moving contact lines
(Jacqmin (1999); Villanueva and Amberg (2006); Do-Quang and Amberg (2009);
Do-Quang, Geyl, Stemme, van der Wijngaart, and Amberg (2010)). Recently,
Carlson, Do-Quang, and Amberg (2009) has included the dissipative mechanism
into the boundary condition of the Phase Field framework. It allows for the non-
equilibrium wetting contact angle in rapid wetting. Such dissipative effects are
assumed to be negligible here, thus applying the assumption of local equilibrium
(Villanueva and Amberg (2006); Do-Quang and Amberg (2009)) as the liquid wets
the solid surface using the boundary condition given in eq.(10).

1.3 Non-dimensionalization

The governing equations are made dimensionless based on the characteristic pa-
rameters of the flow, giving the dimensionless variables,

x′ =
x
Lc

, u′ =
u

Uc
, t ′ =

tUc

Lc
, p′ =

p
ρcU2

c
, (11)

where Lc is the characteristic length taken to be the droplet radius, Uc is the charac-
teristic velocity taken to be the initial velocity of the ink droplet. ρc is the character-
istic density defined as the water density. Dropping the primes, the dimensionless
equations are

ρ(φ)
Du
Dt

= −∇p+
1

Re
∇ · (µ(φ)(∇u+∇

T u))+
1

Ca ·Cn ·Re
η∇φ , (12)

∇ ·u = 0, (13)
Dφ

Dt
=

1
Pe

∇ · (κ∇η) , (14)

η =
∂ψ

∂φ
−Cn2

∇
2
φ . (15)
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Note that incompressibility does not imply that the density is constant, only that the
density is independent of pressure, which is a good approximation whenever flow
speeds are small compared to speeds of sound. Also, note that the Peclet number
in eq.(14) is large, due to the small value of the diffusion coefficient. Eq.(14) then
essentially states that φ , and thus density, is constant along a streamline, which is
consistent with the assumption of incompressibility in eq.(13).

The dimensionless parameters are the Capillary number Ca, Reynolds number Re
and Peclet number Pe and Cahn number Cn,

Pe =
UcLc

D
,Cn =

ξ

Lc
, Re =

ρcUcLc

µ
,Ca =

µcUc

σ
, (16)

where µc is the characteristic viscosity taken to be the liquid ink viscosity, D is the
difusivity of liquid vapour in air, ξ =

√
α/β is the interface thickness. The Peclet

(Pe) number expresses the ratio between advection and diffusion. The Cahn (Cn)
number expresses the ratio between the interface width and the characteristic length
scale. The Reynolds (Re) number expresses the ratio between the inertia and the
viscous force. The Capillary (Ca) number expresses the ratio between the viscous
and the surface tension force.

2 Numerical treatment

The numerical simulations were carried out using femLego (Amberg, Tönhardt,
and Winkler, 1999), a symbolic tool to solve partial differential equations with
adaptive finite element methods. The partial differential equations, boundary con-
dition, initial conditions, and the method of solving each equation are all specified
in a Maple worksheet. The Cahn-Hilliard equation is treated as a coupled system
for the chemical potential η and the composition φ . Both the chemical potential and
the composition equations are discretised in space using piecewise linear functions
and discretised in time using an implicit scheme. The coupled nonlinear algebraic
system of η and φ is solved by an exact Newton’s method. Within each Newton
iteration, the sparse linear system is solved by unsymmetric multifrontal method
UMFPACK, Davis (2004).

To ensure mesh resolution along the vicinity of the interface, an adaptively refined
and de-refined mesh is used with an ad-hoc error criterion function,

ε

∫
Ωk

∇
2
φ ≤ tol. (17)

The implementation of the mesh adaptivity can be described as follows. At each
mesh refinement step, an element Ωk is marked for refinement if the element size
is still larger than the minimum mesh size allowed, h > hmin, and it does not meet
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the error criterion (17). ε is an ad hoc parameter. In the case that an element meets
the error criterion, it is marked for de-refinement unless it is an original element.
At the next refinement step, elements containing hanging nodes are marked for re-
finement. The refinement/de-refinement stops if and only if no element is marked
for refirement/de-refinement. More details about this scheme can be found in Vil-
lanueva and Amberg (2006); Do-Quang, Villanueva, Singer-Loginova, and Amberg
(2007); Do-Quang and Amberg (2009).

The Navier-Stokes equations are solved using a projection method for variable den-
sity that was introduced by Guermond and Quartapelle (2000). The Navier-Stokes
equations are also discretized in space using piecewise linear functions with the
convective term treated as a semi-implicit term which allows a longer time step in
the computations. The linear system is solved by the generalized minimal residual
method (GMRES).

3 Numerical results and discussion

The performance and convergence of the method was tested on different problems
where the motion was driven by surface tension. The gravitational forces are sup-
posed to be small in our future applications. The gravity was therefore set to zero
in all the computations presented here.

3.1 The Laplace law

Table 1: Deviation between the numerical and analytical pressure for different
Cn numbers and mesh resolutions. ∆x is the mesh spacing and Perror is defined as
the relative error between the analytically and the numerically predicted pressure
jump, Perror = 100 · (1− (∆P)numerical

(∆P)analytical
).

Cn 0.015 0.04 0.04 0.06 0.08
∆x 0.003 0.013 0.02 0.02 0.027

Perror 0.06% 0.6% 2.0% 0.6% 0.9%

We have measured the pressure jump for different mesh spacing and Cn numbers.
The Cn number gives the ratio between the width of the diffuse interface and the
characteristic length scale in the flow, here being the droplet diameter d. The re-
sults are summarized in table(1), where we have kept the Ca = 1, Pe = 3 ·10−3 and
Re = 1 fixed. These dimensionless numbers gives an analytical pressure difference
(∆P)analytical = 8

√
2/3. The numerical domain has an extension of [2d× 2d× 2d]
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and an equidistant mesh has been applied. Table(1) is summarizing the relative er-
ror between the computed and analytical pressure prediction for different Cn num-
bers and mesh spacings, after eight time steps. It is noted that the correct pressure is
immediately obtained with good agreement between the numerical and analytical
solution. One trend in table(1) is that the error in pressure depends on the numerical
resolution of the interface. Another observation is that the correct pressure jump is
obtained even with wide interfaces.

3.2 Droplet oscillations

The dynamic behavior of the surface tension model has been verified by validating
the numerical simulations against an analytical expression for droplet oscillations
in the absent of gravity. The droplet has a density ρ1 and viscosity µ1 submerged
in an external fluid with a density ρ2 and viscosity µ2. In cylindrical coordinates
the droplet radius is given by

r = R0 (1−ξ/4+ξ Pn(cosθ)) (18)

where R0 is the initial droplet radius, Pn is the Legendre polynomial of order n, and
ξ� 1. Fyfe, Oran, and Fritts (1988) extended the linear Rayleigh’s theory for small
amplitude oscillations on cylindrical jets and introduce an analytical expression for
infinitesimal amplitude oscillations of an incompressible, inviscid droplet. The
frequency ω for the droplet oscillation is given by

ω =

√
n3−n

ρ1 +ρ2

σ

R0
. (19)

Several simulation were performed with different density ratios, where the non-
dimension parameters have been kept constant as; Re = 200, Ca = 0.01, R0 = 1, n =
2, ξ = 0.01. The evolution of the radius in time is shown in fig. 1. Table 2 shows
the analytical result for the oscillation frequency (eq.(19)), numerical solution and
their relative error for different density ratios.

Table 2: The analytical and numerical oscillation frequency (ω) and their relative
error for different density ratios ρ1/ρ2.

ρ1/ρ2 Analytical ω Numerical ω Error %
1 1.1892 1.1758 1.13
0.1 1.6035 1.5921 0.71
0.01 1.6734 1.6644 0.54
0.001 1.6810 1.6790 0.12
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Figure 1: Evolution of the droplet radius.

It should be noted that the conservation of mass m =
∫

Ω
ρdV is recorded in time,

with only a 6.339×10−6 % mass variation from the initial to the final time.

3.3 The impact of the ink-jet droplets

Figure 2: Impact droplet on a paper-like structure with the wetting contact angle
θ = 30o. (A) at time reference t = 0 µs, (B) t = 17 µs, (C) t = 34 µs and (D)
t = 85 µs
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Figure 3: Impact droplet on a paper-like structure with the wetting contact angle
θ = 180o. At time reference t = 0 µs (A), 17 µs (B), 34 µs (C) and t = 85 µs (D).

Fig.(2, 3) shows two events as the ink droplet impacts the paper-like structure.
The cellulose fibers are mimicked in the simulation by a set of solid circular rods.
A non-evaporating droplet with a diameter of R = 27 µm impacts onto the two
surfaces and it has an initial speed, u0 = 6 m · s−1. The droplet has a density
ρ = 880 kg m−3, viscosity µ = 0.01 Ns m−2 and surface tension coefficient σ =
0.032 N m−1. Those physical parameters are relevant to a critical case of dispens-
ing small droplets through a thin liquid film, Do-Quang, Geyl, Stemme, van der
Wijngaart, and Amberg (2010). In this study the impact velocity was varied be-
tween u = 4 and 11 m.s−1 by varying the dispensing power of the printhead.
Fig.(2) shows the temporal evolution of the droplet shape as it impacts a surface of
cellulose fibers with an equilibrium contact angle θ = 30◦. As the droplet interacts
with the fibers a thin air layer separates the solid surface and the droplet interface.
The air layer diffuses into the droplet, and the interface wets the solid, see Fig.(2b).
A liquid jet propagates into the paper structure, which finally touches the second
layer of fibers (Fig.(2c)). Immediately, the interface forms a contact line with a
large apparent contact angle, and the liquid spreads across the fiber. The liquid that
penetrates through the two fibers continues to spread onto the papers top fiber layer.
This along with the spreading on the second layer, as the droplet relaxes toward its
equilibrium shape, squeezes the liquid through the film formed in between the two
layers (fig.(2c)) resulting in a film breakup Fig.(2d). A small secondary drop is de-
posited on the fiber in the second layer and the rest of the droplet forms a footprint
on the top layer covering the gap formed between the two horizontally adjacent
fibers, see Fig.(2d).
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By changing the surface chemistry of the fibers they might become less wettable,
resulting in a very different droplet characteristics. Fig.(3) shows the droplet shape
at four snapshots in time, as it impacts a paper consisting of fibers with an equilib-
rium contact angle θ = 180◦. First the droplet takes a similar shape in the structure,
as observed on a more wettable surface Fig.(2b). However, the air layer separating
the solid the interface is retained as it is favored by the surface. As a consequence,
the liquid will not wet the second layer in the structure and surface tension contracts
the liquid film into a energy minimizing shape, see Fig.(3c). On the top layer the
droplet spreads in a similar fashion as observed on a flat surface, where a liquid rim
is formed. A second phase in the impact dynamics takes then place as the droplet
has decelerated on the surface, as its initial inertial energy is converted into surface
energy. The capillary force then contracts the droplet into its energy minimizing
shape, so that the droplet bounces back leaving no ink on the paper surface, see
Fig(3d).
Fig.(4) shows a snapshots of the droplet shapes of a liquid ink impact into three dif-
ferent paper substrate at t = 90µs. At that moment, the maximum velocity of the
droplet is much smaller than its initial velocity. The initial speed and radius of this
droplet and its physical parameters are same as 2D case above. In this figure, we
observed the volume of liquid ink that penetrates into the porous medium depend
on its chemical energy. For the hydrophilic fibers, case (A) and (B) the liquid ink
wets the solid fibers and penetrates into the medium. But in case (C) the liquid ink
tends to bounce off the surface as similar in 2D case.

Figure 4: Numerical simulation of a droplet impact and spreading on the different
wettable porous medium: (A) the wetting contact angle θ = 10◦; (B) θ = 90◦ and
(C) θ = 150◦.

4 Conclusions

In the present paper we have presented two and three -dimensional simulations of
ink droplets impacting on a paper-like surface. By only changing the wettability of
the cellulose fibers droplets were either deposited on the paper or could bounce off.
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This identifies the wettability to be key parameter in order to obtain high quality
prints.

The droplet spreading on a highly wettable surface (θ = 30◦) shows that secondary
droplets can be deposited on the second fiber layer. The droplet was found to signif-
icantly decelerate as it penetrated the web of fibers, in compare with the results on a
hydrophobic surface (θ = 180◦). This points out that energy is stored at the contact
line, indicating that the presence of contact lines could even influence macroscopic
parameters like the friction coefficient in porous media.
The three-dimensional simulations shows a similar behaviors as two-dimensional
simulations. Even though, the impact position of the droplet relative to the upper
layer of the rods has been changed.
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