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Heat Exchange between Film Condensation and Porous
Natural Convection across a Vertical Wall

Rashed Al-Ajmi1 and Mohamed Mosaad1,2

Abstract: Conjugate heat transfer across a vertical solid wall separating natu-
ral convection in a cold fluid-saturated porous medium and film condensation in
a saturated-vapour medium is analyzed. The analysis reveals that this thermal in-
teraction process is mainly controlled by the thermal resistance ratio of wall to
porous-side natural convection and that of condensate film to natural convection.
Asymptotic and numerical results of interest are obtained for the local and mean
overall Nusselt number as functions of these two thermal resistance ratios.

Nomenclature

g gravitational acceleration
lc scale of convection layer thickness
l f scale of condensate film thickness
H wall height
Ja Jacob number, cf., Eq. (7)
k thermal conductivity
K permeability of porous medium
Nu mean overall Nusselt number
Nux local overall Nusselt number
Pr Prandtl number, = ν / α

Rac Rayleigh number of porous-side natural convection, cf., Eq. (22)
Ra f Rayleigh numberof condensate film, cf., Eq... (6)
T temperature
Tc∞ free temperature of cold porous medium
Ts saturation temperature
u,v dimensional velocity components
U,V dimensionless velocity components
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x,y dimensional vertical and horizontal coordinates
X ,Y dimensionless vertical and horizontal coordinates
w wall thickness

Greek letters

∆ f dimensionless thickness of condensate film
α thermal diffusivity
β thermal expansion coefficient
Γ thermal resistance ratio of condensate film to natural convection layer
η inverse Oseen function
ν kinematic viscosity
θ dimensionless temperature
δ f dimensional thickness of condensate film
εw thermal resistance ratio of wall to natural convection

Subscripts

c cold fluid/convection
f condensate film
w wall
wc wall side facing natural convection layer
w f wall side facing condensate film

1 Introduction

Conjugate heat transfer between two fluid media separated by a solid wall is a phe-
nomenon of common occurrence in many engineering applications, such as heat
exchangers, thermal isolations, nuclear reactors, etc. Therefore, this phenomenon
has received a considerable interest in the recent heat transfer research at the funda-
mental and applied level. However, the analysis of such a two-fluid conjugate heat
transfer problem is considered more complicated than that of a one-fluid problem.
The assumption of constant temperature or heat flux frequently applied at the solid
boundary to solve the classical one-fluid problem is not appropriate for this type of
two-fluid problems.

Many studies were reported on thermal interaction between two natural convection
systems separated by a vertical wall (e.g., [Kimura (2003); Anderson and Bejan
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(1980); Cheng and Minkowyez (1977); Bejan and Anderson (1983)]). Other stud-
ies were published on thermal conjugation between forced and natural convection
separated by a vertical wall (e.g., [Shu and Pop (1999); Mosaad and Al-Hajeri
(2006)]).

Regarding thermal coupling between forced convection and film condensation,
only a few studies were published in the literature [Faghri and Sparrow (1985);
Chen and Chang (1996); Méndez and Treviño (1996); Bautista et al. (2000);
Luna and Méndez (2004)]. Faghri and Sparrow [Faghri and Sparrow (1985)]
treated numerically the thermal coupling between forced convection inside a ver-
tical tube and film condensation on the external surface. Later, Chen and Chang
[Chen and Chang (1996)] used the local non-similarity method to solve the same
problem for a vertical plane wall. Few other studies were reported on the ther-
mal interaction between film condensation and natural convection separated by a
vertical wall. Poulikakos [Poulikakos (1986)] treated analytically this problem ap-
plying the Nusselt assumptions for the condensate film. Char and Lin [Char and
Lin (2001)] used the cubic Spline method to study the same problem however for
two porous media.

Recently, the problem of thermal interaction between film condensation in a non
porous medium and natural convection in a porous medium separated by a vertical
wall was treated by Mosaad [Mosaad (1999)], who assumed the separating wall
as an interface of zero thermal resistance. However, to achieve better modeling
for the physical reality of this thermal conjugation phenomenon, the effect of wall
conduction should to be considered in the modeling. Therefore, this problem is
retreated here in another way which allows the modeling of the wall conduction
effect in the conjugate solution. The analytic Oseen technique is employed for the
natural convection layer and the Nusselt-Rohsenow model for the condensate film.
The wall conduction is considered only significant in the crosswise direction. The
main advantage of such an analytical approach is that the parametric dependence
of interactive heat transfer mechanisms are more visible than in a numerical model.
Results of interest are presented for the local and mean Nusselt numbers to high-
light the wall conduction effects.

2 Analysis

The physical model under consideration is illustrated schematically in Fig. 1. An
impermeable vertical wall of height H, thickness wand constant thermal conduc-
tivity k separates two fluid media at different temperatures. The hot fluid is a dry
vapour at saturation temperature Ts, while the cold medium on the opposite wall
side is a fluid-saturated porous medium at bulk temperature Tc∞<<Ts. As a result
of heat transfer from the hot to cold medium, a thin condensate film flowing down-
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wards forms on the hot wall side and a natural convection layer flowing upwards
is created on the opposite cold wall side. For clarity in presentation, the subscripts
“c”, “ f ” and “w” are used to recognize variables and parameters belong to the con-
vection, condensate film and wall, respectively.
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Fig. 1. Model Illustration 
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Figure 1: Model Illustration

2.1 Film condensation side

For steady, laminar condensate film of constant physical properties, the governing
equations of mass, momentum and energy can be expressed, respectively, in the
dimensionless forms:

∂U f

∂X f
+

∂Vf

∂Yf
= 0 (1)

Ja
Pr f

(
U f

∂U f

∂X f
+ Vf

∂U f

∂Yf

)
= −1 +

∂ 2U f

∂Y 2
f

(2)

Ja
(

U f
∂θ f

∂X f
+Vf

∂θ f

∂Yf

)
=

∂ 2θ f

∂Y 2
f

(3)
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The dimensionless parameters and variables introduced above are defined,

Yf = y f /l f , X f = x f /H, U f = u f /(Ja α f H/l2
f ), Vf = v f /(Jaα f /l f ),

θ f = (Tf −Tc∞)/(Ts −Tc∞), ∆ f = δ f /l f , θw f = (Tw f −Tc∞)/(Ts −Tc∞).
(4)

where θ f is the dimensionless condensate film temperature, θw f is the dimension-
less local temperature of the hot wall side facing the condensate film, and ∆ f is
the dimensionless film thickness. The symbol l f denotes to the film thickness scale
defined by

l f = HRa−1/4
f . (5)

Ra f is the film Rayleigh number defined as a function of wall height and total tem-
perature drop as

Ra f = gH3(ρ f −ρv)h f g/(k f ν (Ts −Tc∞)) (6)

The dimensional parameter Ja is Jacob number defined by

Ja = Cp f (Ts − Tc∞ )/h f g (7)

The similarity solution [Nield and Bejan (2006)] indicated that for the ordinary
fluids of Pr ≥1, encountered in most practical applications, neglecting the inertia
term in the moment equation of condensate film has insignificant effect on the so-
lution. In addition, for most water applications, Ja is in the range: 10−4< Ja <10−2

[Méndez and Treviño (1996)]. For these ranges of Pr and Ja, the terms multi-
plied by Ja in Eqs. (2) & (3) can be neglected. Hence, these two equations reduce,
respectively, to:

∂ 2U f

∂Y 2
f
−1 = 0, (8)

∂ 2θ f

∂Y 2
f

= 0. (9)

The appropriate boundary conditions are:

Yf = 0; U f = Vf = 0 and θ f = θw f ,
Yf = ∆ f ; ∂U f /∂Y f = 0, and θ f = 1,
x f = 0 ∆ f = 0 and θ f = 1.

(10)

Solving Eqs. (8)& (9) subject to boundary conditions (10) gives, respectively,

U f = 0.5Yf (2∆ f −Yf ) (11)
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θ f = θw f + (1− θw f ) Yf /∆ f (12)

Integrating continuity Eq. (1) across the condensate film yields for Yf from 0 to ∆ f ,

Vf
∣∣
Yf =∆ f

=
(

U f
d∆ f

dx f

)
Yf =∆ f

− d
dx f

∆ f∫
0

U f dYf (13)

The continuity of heat flux at the liquid-vapour interface gives

∂θ f

∂Yf

∣∣∣∣
Yf = ∆ f

=
(

U f
d∆ f

dx f
−Vf

)
Y f = ∆ f

(14)

Inserting Eqs. (11)-(13) into Eq. (14) yields,

∂∆4
f

∂X f
= 4(1 − θw f ) (15)

2.2 Porous-side natural convection

The following assumptions are made for simplifying the analysis of this part: The
flow is steady, laminar, incompressible and two-dimensional; the Boussinesq ap-
proximation and Darcy’s law are applicable; the fluid-saturated porous medium is
isotropic and homogeneous; and the fluid is in local thermal equilibrium with the
porous matrix. Under these simplifications, the two-dimensional equations gov-
erning the conservation of mass, momentum and energy in the porous-side natural
convection layer can be written in the dimensionless forms [Bejan and Anderson
(1983)]:

∂Uc

∂Xc
+

∂Vc

∂Yc
= 0 (16)

1
Rac

∂Vc

∂Xc
− ∂Uc

∂Yc
=− ∂θc

∂Yc
(17)

Uc
∂θc

∂Xc
+Vc

∂θc

∂Yc
=

1
Rac

∂ 2θc

∂X2
c

+
∂ 2θc

∂Y 2
c

(18)

Equations (16)-(18) are subject to the boundary conditions:

Yc = 0 ; Vc = 0 and θc = θwc,
Yc→ ∞; Uc = 0, and θc = 0.
xc = 0 ; θc = 0.

(19)
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The dimensionless parameters introduced above are defined as:

Yc = yc /l, Xc = xc/H Uc = uc/(αcH/l2), Vc = vc/(αc/l),
θc = (Tc−Tc∞)/(Ts −Tc∞), θwc = (Twc −Tc∞)/(Ts −Tc∞).

(20)

where θc is the temperature of cold porous medium, and θwc is the dimensionless
local temperature of the wall side facing the porous medium. The symbol lc is the
thickness scale of convection layer, defined as

l = H/Ra1/2
c . (21)

wherein Rac is a modified Rayleigh number defined by

Rac = gβcKL(Ts −Tc∞)/(νcαc). (22)

The requirement of boundary layer theory that the ratio l / H should be much less
than unity, is according to relation (21) satisfied only for moderate and high Rac.
For this Rac limit, the terms divided by Rac in Eqs. (17) & (18) can be neglected.
Hence, combining the resultant reduced energy and momentum equations gives

∂ 2Uc

∂Y 2
c

+ [Vc]
∂Uc

∂Yc
+
[

∂θc

∂Xc

]
Uc = 0 (23)

The Oseen technique used in previous relevant studies (e.g., [Bejan and Ander-
son (1983); Mosaad and Al-Hajeri (2006)]) can be applied to solve analytically
the above nonlinear differential equation. In this technique, the horizontal veloc-
ity component Vc and temperature gradient (∂θc/∂Xc) in Eq. (23) are assumed
functions of Yc-coordinate only. This assumption converts Eq. (23) to an ordinary
differential equation, which can be solved analytically subject to boundary condi-
tions (19) to yield:

Uc = θwce−Yc/η (24)

θc = θwc(xc)e−Yc/η (25)

The above velocity and temperature solutions involve two unknown parameters,
which are inverse Oseen function η and wall surface temperature θwc . Investigat-
ing the two above profiles indicates that η-parameter plays the role of convection
layer thickness. From the condition that the above velocity and temperature solu-
tions should satisfy the integration of energy equation across the boundary layer,
one gets the relation:

d
dXc

(
ηθ

2
wc
)

=
2θwc

η
. (26)
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2.3 Solid-fluid interface conditions

The heat conduction in the separating vertical wall of H»w is assumed significant
only in the transverse direction. Thus, the continuity of heat flux and temperature
at the solid-fluid interface on both sides can be expressed in the dimensionless
equality:

∂θ f

∂Yf

∣∣∣Yf =0 = −Γ
∂θc

∂Yc

∣∣∣Yc =0 = Γ
(θw f −θwc)

εw
(27)

The dimensionless parameters appeared above are defined,

Yw = yw
/

w, εw =
w kc

H kw
Ra1/2

c , Γ =
kc

k f

Ra1/2
c

Ra1/4
f

. (28)

The wall parameter εw relates the thermal resistance of wall to porous-side convec-
tion layer, and conjugation parameter Γ represents the thermal resistance ratio of
condensate film to natural convection layer. Substituting the temperature deriva-
tives in Eq. (27) by using Eqs. (12)& (25), this gives after variables separation the
two relations:

θw f =
η + εw

η + εw +Γ∆ f .
(29)

θwc =
η

(η + εw + Γ∆ f )
(30)

It is noted that relation (29) for ∆ f =0 gives θw f =1, while relation (30) for η=0 gives
θcw=0. The two above relations verify the initial conditions that θw f = 1 as X f =0
and θcw=0 at Xc= 0.

Now, inserting θcw& θw f from Eqs. (29) & (30) into Eqs. (15) & (26) with substi-
tuting X f = 1 - Xc gives

d∆3
f

dXc
=

−3Γ

(η + εw +Γ∆ f )
(31)

dη3

dXc
=

6(η + εw +Γ∆ f )3∆2
f - 6η3Γ2

∆2
f (η +3εw +3Γ∆ f )(η + εw +Γ∆ f ).

(32)

Relations (29)-(32) are considered the more important analysis results, which in-
volve four unknown parameters: ∆ f , η , θwc and θw f , all are functions of x-coordinate
only.
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However, it is also considered of practical and theoretical importance to calculate
local and mean Nusselt numbers. The local Nusselt number of porous convection
side Nux(hx x/kc), defined based on the local heat flux at the convection wall side,
is determined by

Nux

Ra1/2
cx

=
√

Xc

η
θwc (33)

Similarly, the local Nusselt number of film condensation side is found by

Nux

Ra f 0.25
x

=
4
√

X f

∆ f
(1−θw f ) (34)

The overall Nusselt number averaged over the entire wall height and based on the
average heat flux across the wall and total temperature difference(Ts −Tc∞), is cal-
culated by

Nu
Ra0.25

f x
=

1∫
0

∂θ f

∂Yf

∣∣∣∣
Y f =0

dX f (35)

3 Solution

3.1 Asymptotic results

In this context, asymptotic results are deduced for the simple problem case of
εw →0, wherein the separating wall is considered very thin with negligible ther-
mal resistance. In this thin-wall case, the wall acts as a partition of zero resistance
between the two media. Hence, the wall assumes a uniform temperature θw func-
tion of x-coordinate only. For this thin-wall limit εw →0, Eqs. (27), (29) & (30)
show that for Γ→ ∞, θwh = θwc→ 0 and the fluid temperature gradient at the wall
side facing the porous medium goes to zero. This means that the convection layer
will disappear, and the conjugate problem will reduce to the classical one of film
condensation on an isothermal vertical surface. Solving the result (15) of film con-
densation analysis for θwh= 0 yields ∆ f = 4

√
4X f . Substituting this outcome in Eq.

(34) gives the local Nusselt number by

Nux/Ra0.25
f x = 0.707 (36)

and, consequently, the mean Nusselt number by

Nu/Ra0.25
f = 0.943 (37)
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The above results are the same known Nusselt solution of film condensation on an
isothermal vertical surface.

On the opposite limit Γ→ 0, the same Eqs. (27), (29) & (30) indicate also that
fluid temperature gradient at the wall side facing the condensate film goes to zero,
and θwh = θwc→1. This means that on this Γ→0 limit, the thin wall will assume
the high extreme value 1 of condensation side temperature, and the condensate
film will disappear. Hence, the two-fluid problem collapses to the classical one-
fluid problem of natural convection on an isothermal vertical surface embedded in
a porous-fluid medium. Solving the result (26) of natural convection analysis for
θwc = 1 yields η= 2

√
Xc. Substituting this outcome in Eq. (33) gives the local

Nusselt number by

Nux/Ra1/2
x = 0.5 (38)

and, consequently, the mean Nusselt number by

Nu/Ra1/2 = 1 (39)

The similarity solution [Nield and Bejan (2006)] of natural convection on an
isothermal vertical surface embedded in a fluid-saturated porous medium yields
the same result (39), however with a constant coefficient of 0.888 instead of 1, i.e.,
the error is less than 12%. This error may be attributed to the approximations of the
Oseen technique applied to model this free convection part of the treated conjugate
problem. The asymptotic results (36)-(39) confirm validity of the present model.

3.2 Numerical results

The two main differential equations (30-31) should be solved numerically to de-
termine the distributions of ∆ f and η along the wall as functions of Γ andεw pa-
rameters. The symbol ∆ f is the dimensionless thickness of condensate film, and
η represents the dimensionless thickness of natural convection layer. The fourth-
order Runge-Kutta numerical technique was employed to integrate simultaneously
these two equations. The integration starts at X f =0, where ∆ f = 0 while η is un-
known maximum value (cf., Fig. 1). Therefore, a guess is made on this unknown
ηmax.-value at the start point of solution. Then, the integration advances in small
steps ∆X f until X f =1. Once the predicted η-value at X f =1 is found different from
zero, the procedure is repeated using a new adjusted value for ηmax.at X f =0, until,
eventually, the predicted η-value at X f =1 becomes very close to zero. Solution
trials are stopped when predicted η-value at X f =1 is found less than 10−6. In the
preliminary tests of employed numerical technique, the asymptotic results (36)-(39)
were used as a reference to adjust the accuracy of the numerical solution as well
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as to insure its reliability. It was found that the solution for ∆X f = 0.001 produces
stable and accurate results.

At first, the numerical results of the thin-wall case of εw→ 0 are discussed. In this
case, the wall temperature θw(x) varies only in the longitudinal direction. Figure 2
shows the distribution of θw(x) as a function of Γ−parameter. The plotted results
indicate that for a fixed Γ-value, θw(x) varies almost linearly along the wall except
at the two ends. It is also noted that θw(x) approaches the high extreme temperature
of the hot vapour side as Γ→ ∞, while approaches the low extreme temperature
of the cold porous side as Γ→ 0. This behavior can be more clearly seen from
the results displayed in Fig. 3, where θw(x) at the wall mid-height is plotted versus
Γ–parameter.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Wall  temperature profile as a function of  Γ- parameter;   for εw 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3  Wall temperature at mid height as a function of Γ- parameter;  for εw 0. 
 
 

0 0.2 0.4 0.6 0.8 1

                          θw 

0

0.25

0.5

0.75

1

   
   

   
   

W
al

l h
ei

gh
t

Γ (= .01, .2, .7, 2, 7, 20, 90)

                   

0.01 0.1 1 10 1000.03 0.3 3 30 300
Γ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

   
   

   
  θ

w

Figure 2: Wall temperature profile as a function of Γ - parameter; for εw→ 0.

The dependence of the local Nusselt number on Γ–parameter is shown in Fig. 4. It
is clear that Nuxapproaches the asymptote of film condensation solution as Γ→ ∞,
while approaches the asymptote of porous-side convection as Γ→ 0. Similar con-
clusion on the effect of Γ−parameter on the mean Nusselt number can be concluded
from the results plotted in Fig. 5. For the purpose of a comparison with other study,
data from ref. [Mosaad (1999)] are plotted in the same graph. The compared re-
sults indicate that the present model verifies the previous simplified model [Mosaad
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Figure 3: Wall temperature at mid height as a function of Γ - parameter; for εw→ 0.

(1999)] of negligible wall resistance case.

Results obtained for the more real and practical case of εw> 0 are demonstrated in
Figs. 6-7. The fluid temperature gradient at wall sides is plotted as a function of
εw-parameter in Fig. 6. The plotted results indicate also that the fluid temperature
gradient assumes a lower value on both sides for a higher value of εw. This means
that the wall acts as a thermal insulator between the two thermal media and relaxes
their interaction. In Fig. 7, the mean overall Nusselt number is plotted as a function
of εw and Γ parameters. The displayed results indicate that mean Nusselt number
increases with Γ and decreases withεw.

Here, it is importance to state that the present results are generally in agreement
with those reported in the open literature; however, the accuracy of these results
can be further evidenced by means of experiments.

4 Conclusions

A theoretical model has been developed to predict the wall temperature profiles and
Nusselt number for the conjugate heat transfer process between film condensation
and natural convection in a porous medium, separated by a vertical conducting wall
with finite thermal conductivity. The main points deduced from this study are:
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Fig. 4  Local Nusselt number on wall sides  as  function of  Γ- parameter;    
            for εw 0. 
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Fig. 5  Mean Nusselt number as a function of  Γ-parameter; for εw 0. 
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Figure 5: Mean Nusselt number as a function of Γ - parameter; for εw→ 0.

• The heat transfer effectiveness of the film condensation relative to the natural
convection is higher for a higher conjugation parameter Γ.

• Increasing the wall thermal parameter εw reduces the heat transfer perfor-
mance of both heat transfer modes.

• Mean Nusselt numbers increase with Γ-parameter and decrease with εw-
parameter.

For the thin walls of negligible thermal resistance, the solution reduces to that of
natural convection on an isothermal vertical surface embedded in a porous medium
when Γ→ 0, while reduces to that of laminar film condensation on isothermal
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Fig. 6 Fluid temperature gradient at both wall sides as a function of εw;  for Γ= 1. 
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Figure 6: Fluid temperature gradient at both wall sides as a function of εw. for
Γ = 1.

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Dependence of mean overall Nusselt number on εw and  Γ parameters 
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vertical surfaces as Γ→ ∞. These two extreme solutions confirm validity of the
proposed model.

The model verifies previous model [Mosaad (1999)] developed for the simplified
problem case of the thin walls of negligible thermal resistance.
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