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Flow Characteristics of Revolving Ferrofluid with Variable
Viscosity in a Porous Medium in the Presence of

Stationary Disk

Paras Ram1 and Anupam Bhandari2

Abstract: The present problem is formulated by considering the dynamics of a
ferromagnetic fluid of variable viscosity permeating a porous medium in a rotating
system in the presence of a stationary boundary. The fluid at large distance from
such a boundary (disk) is assumed to rotate at a given uniform angular velocity.
The viscosity of the fluid is assumed to depend on the intensity of the applied mag-
netic field. The governing nonlinear partial differential equations are transformed
into a set of coupled nonlinear ordinary differential equations resorting to a simi-
larity transformation. The resulting system of equations is solved numerically by
applying a shooting iteration technique combined with a forth-order Runge-Kutta
method.
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χ The magnetic susceptibility
∇ Gradient operator
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k MFD viscosity parameter
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ω Angular velocity
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vr Radial velocity
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)
vθ Tangential velocity
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)
vz Axial velocity
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)
K Darcy (medium) permeability
β Medium permeability parameter

1 Introduction

Ferromagnetic fluids (ferrofluids) are colloidal liquids made of nanoscale ferromag-
netic, or ferrimagnetic, particles suspended in a carrier fluid. The hydro-dynamics
of such fluids are a (challenging) subject of interest for several reasons ranging
from fundamental fluid mechanics to a variety of applications in engineering. After
their first stable synthesis in the early 1960s, development of these suspensions in
carrier liquid proved the high potential for new technological applications, thereby
opening a new field of research, generally referred to as “ferrohydrodynamics”.

As outlined above, ferrofluids do not exist in nature; they are synthesized fluids.
The principal type is the “colloidal” ferrofluid, a suspension of finely divided par-
ticles in a certain medium which settles out slowly. Such ferrofluids are composed
of small (3-15nm) particles of solid magnetite coated with a molecular layer of a
dispersant and suspended in a liquid carrier. Thermal agitation keeps the particles
suspended because of Brownian motion and coating prevents the particles from
sticking to each other.

A typical ferrofluid contains 1023 particles per cubic meter.

One of the many fascinating features of ferrofluids is the possibility of influencing
the flow by a magnetic field and vice versa (Feynman, Leighton, Sands (1963) and
Shliomis (2004)). Ferrofluids are widely used in sealing of hard disk drives and
rotating x-ray tubes. In particular, sealing of the rotating shafts is the most known
application of a magnetic fluid.
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The major application for ferrofluids used in synergy with electrical fields is the
control of heat in loudspeakers, which makes their life longer and increases acous-
tical power without any change in the geometrical shape of the speaker system.

Magnetic fluid are also used in the contrast medium in X-ray examinations and
for positioning tamponade for retinal detachment repair in eye surgery. Therefore,
ferrofluids play an important role in bio-medical applications as well.

In the presence of an uniform magnetic field, the magnetization characteristics de-
pend on particle spin, but do not depend on fluid velocity. Convection of ferromag-
netic fluids is gaining much importance due to such peculiar physical properties.

The dynamics of fluids in “rotating systems” has also attracted much attention as a
fundamental problem in fluid-dynamics.

Several boundary value problems, in detail, have been discussed in Schlichting
(1960). The pioneering study of ordinary viscous fluid flow due to an infinite ro-
tating disk was carried by Von Karman. He introduced the famous transformation
which reduces the governing equations to non linear differential equations in di-
mensionless form. Karman’s (1921) rotating disk problem was extended to flows
started impulsively from rest in Cochran’s (1934). Cochran (1934) obtained asymp-
totic solutions for the steady hydrodynamic problem formulated by Von Karman.
Benton (1966) improved Cochran’s solutions, and solved the unsteady case. The
effect of uniform high suction on the steady flow of non-Newtonian fluid due to a
rotating disk was considered by Mithal (1961). Attia (2004) discussed about flow
due to an infinite disk rotating in the presence of an axial uniform magnetic field
by taking the Hall effect into consideration.

Rosensweig (1985) has given an authoritative introduction to the research on mag-
netic liquids in his monograph. A detail account of magneto viscous effects in
ferrofluids has been given in the subsequent monograph by Odenbach (2002).

In general, magnetization is a function of magnetic field, temperature and density
of the fluid. This leads to convection of a ferrofluid in the presence of a mag-
netic field gradient. Sunil, Diva, Sharma (2005) studied the effect of magnetic-
field-dependent (MFD) viscosity on thermosolutal convection in a ferromagnetic
fluid saturating a porous medium. Nanjundappa, Shivakumara, Arunkumar (2010)
studied Marangoni-Bénard convection in a ferrofluid layer in the presence of a
uniform vertical magnetic field with MFD viscosity (see also Hennenberg et al.,
2007). Sekar, Vaidyanathan, Ramanathan (1993) examined the ferroconvection in
a densely packed porous medium assumed to be bounded by stress free boundaries
and heated from below.

Ram, Bhandari, Sharma (2010, 2011) studied the effect of MFD viscosity and
porosity on the characteristics of a revolving ferrofluid flow due to an infinite ro-
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tating disk. Attia (1998) investigated the flow near a porous disk in the presence of
an applied uniform magnetic field. Frusteri, Osalusi (2007) examined the laminar
convective and slip flow of an electrically conducting Newtonian fluid with vari-
able properties over a rotating porous disk. Attia (2009) studied the steady flow of
an incompressible viscous fluid above an infinite rotating disk in a porous medium
with heat transfer and also discussed the effect of the medium porosity on the ve-
locity and temperature distribution. An analysis of the effect of MFD viscosity on
thermal convection in a ferromagnetic fluid in a porous medium is due to Sunil,
Bharti, Sharma, Sharma (2004). Other relevant studies about flow in porous me-
dia are due to Bataller (2010), Al- Ajmi and Mosaad (2012), Hamimid, Guellal,
Amroune and Zeraibi (2012), Choukairy and Bennacer (2012), Labed, Bennamoun
and Fohr (2012).

In the present paper, the effects of medium porosity and MFD viscosity are inves-
tigated in the presence of a stationary disk assuming that the fluid angular velocity
(ω) is uniform at a large distance from the plate.

We take cylindrical coordinates r, θ , z where z-axis is normal to the disk and this
axis is considered as the axis of rotation. The boundary layer equations together
with boundary conditions are solved numerically. This specific problem (a revolv-
ing ferrofluid with variable viscosity in a porous medium in the presence of station-
ary disk), to the best of our knowledge, has not been investigated yet.

2 Mathematical formulation of the problem

The problem is considered with the following assumptions:

a. The magnetization
−→
M is parallel to the applied magnetic field

−→
H .

b. The fluid and ferrous particles have the same velocity.

c. The fluid and the disk are both electrically non-conducting.

d. The magnetic field affects only viscosity, not other properties.

e. Thermal effects are not taken into consideration.

f. The flow is steady, axi-symmetric and incompressible.

The constitutive equations of motion are as follows

ρ

[
∂
−→
V

∂ t
+
(−→

V .∇
)−→

V

]
=−∇p+ µ0

−→
M .∇
−→
H + µ

(
1+
−→
δ .
−→
B
)

∇
2−→V − µ

K
−→
V (1)

∇.
−→
V = 0, ∇×−→H =

−→
0 , ∇.

(−→
H +4π

−→
M
)

= 0 (2)

With
−→
M = χ

−→
H ,
−→
M ×−→H =

−→
0 ,
−→
B = µ0

(−→
H +

−→
M
)

.
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Assuming that the overall system (geometry, flow and applied fields) is rotationally
symmetric, the variables are considered independent of the angular coordinates
(see, e.g., Mahfoud and Bessaih, 2012).

Equations (1) and (2) can be written in cylindrical coordinates as:

∂ vr

∂ r
+

vr

r
+

∂ vz

∂ z
= 0 (3)

vr
∂ vr

∂ r
+ vz

∂ vr

∂ z
−

v2
θ

r
+

µ

ρ K
vr =

− 1
ρ

∂ p
∂ r

+
µ

ρ

∣∣∣−→M ∣∣∣ ∂

∂ r

∣∣∣−→H ∣∣∣+ν1

[
∂ 2vr
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∂
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(vr

r

)
+

∂ 2vr
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Where ν1 =
µ

(
1+
−→
δ .
−→
B
)

ρ
, ν = µ

ρ
and

−→
δ .
−→
B =

−→
δ .µ0

(−→
H + χ

−→
H
)

= µ0 (1+ χ)
−→
δ .
−→
H = µ0 (1+ χ) (δ1 Hr + δ3 Hz)

The approximate initial and boundary conditions for revolving flow of ferrofluid in
the presence of stationary disk with constant angular velocity ω are given by

at z = 0; vr = 0, vθ = 0, vz = 0 and at z = ∞; vr = 0, vθ = rω (7)

Here, vz does not vanish at z = ∞, but tends a finite value.

Using the boundary layer approximation 1
ρ

∂ p
∂ r −

µ0
ρ

∣∣∣−→M ∣∣∣ ∂

∂ r

∣∣∣−→H ∣∣∣= rω2 and similar-

ity transformations, vr = rω E (α) , vθ = rω F (α) , vz =
√

νω G(α) ; where

α = z
√

ω

ν
, the system reduces to a set of non-linear coupled differential equations

in the form of E, F and G as follows:

k E
′′−GE ′−E2 +F2−β E−1 = 0 (8)

k F
′′−GF ′−2E F−β F = 0 (9)
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G′+2E = 0 (10)

E (0) = 0, F (0) = 0, G(0) = 0; E (∞) = 0, F (∞) = 1 (11)

Where the expressions β = ν

Kω
and k = ν1

ν
, represents porosity parameter and MFD

viscosity parameter, respectively. In particular the latter parameter in explicit form
reads

k =
ν1

ν
= 1+

−→
δ .
−→
B = 1+ µ0 (1+ χ) (δ1 Hr + δ3 Hz)

3 Problem solution

Equations (8)-(10) are nonlinear and coupled differential equations. Now, we ap-
ply Shooting Method for numerical solution. First, we reduce the above differential
equations to the first order differential equations by using the following transfor-
mations:

E (α) = y1 (α) , E ′ (α) = y2 (α) , F (α) = y3 (α) , F ′ (α) = y4 (α) ,

G(α) = y5 (α)

Let y2 (0) = a and y4 (0) = b, we get an initial value problem 1. We will find a and
b later.

Initial value problem 1

dy1

dα
= y2; y1 (0) = 0 (12)

dy2

dα
=

1
k

(
y2 y5 + y2

1− y2
3 +β y1 +1

)
; y2 (0) = a (13)

dy3

dα
= y4; y3 (0) = 0 (14)

dy4

dα
=

1
k

(2y1 y3 + y5 y4 +β y3) ; y4 (0) = b (15)

dy5

dα
=−2y1; y5 (0) = 0 (16)

Differentiating (12)-(16) partially with respect to a as:

Yi = ∂yi
∂a for i = 1, 2, 3, 4, 5

We get the initial value problem 2 as:

Initial value problem 2

dY1

dα
= Y2; Y1 (0) = 0 (17)
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dY2

dα
=

1
k

(Y5 y2 + y5Y2 +2y1Y1−2y3Y3 +β Y1) ; Y2 (0) = 1 (18)

dY3

dα
= Y4; Y3 (0) = 0 (19)

dY4

dα
=

1
k

(2Y1 y3 +2y1Y3 +Y5 y4 + y5Y4 +β Y3) ; Y4 (0) = 0 (20)

dY5

dα
=−2Y1; Y5 (0) = 0 (21)

Again, differentiating (12)-(16) partially with respect to b such as:

Zi = ∂yi
∂b for i = 1, 2, 3, 4, 5

We get the initial value problem 3 as:

Initial value problem 3

dZ1

dα
= Z2; Z1 (0) = 0 (22)

dZ2

dα
=

1
k

(Z5 y2 + y5 Z2 +2y1 Z1−2y3 Z3 +β Z1) ; Z2 (0) = 0 (23)

dZ3

dα
= Z4; Z3 (0) = 0 (24)

dZ4

dα
=

1
k

(2Z1 y3 +2y1 Z3 +Z5 y4 + y5 Z4 +β Z3) ; Z4 (0) = 1 (25)

dZ5

dα
=−2Z1; Z5 (0) = 0 (26)

Let

f1 (∞; an, bn) = y1 (∞; an, bn)− y1 (∞) = y1 (∞; an, bn)−0 = y1 (∞; an, bn) (27)

and

f2 (∞; an, bn) = y3 (∞; an, bn)− y3 (∞) = y3 (∞; an, bn)−1 (28)

Now, we can find a & b as follows:[
an+1
bn+1

]
=
[

an

bn

]
−

[
∂ f1
∂a

∂ f1
∂b

∂ f2
∂a

∂ f2
∂b

]−1

an,bn

[
f1
f2

]
an,bn

=
[

an

bn

]
−

[
∂y1
∂a

∂y1
∂b

∂y3
∂a

∂y3
∂b

]−1

an,bn

[
f1
f2

]
an,bn

(29)

The initial conditions, a & b, are calculated from (29) after iteration.
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4 Discussion

The problem considered here involves a number of parameters, on the basis of
which a wide range of numerical results have been derived. Of these results, a
small section is presented here for brevity.

In the present problem, the fluid at large distance from the stationary disk at z = 0
rotates with a constant angular velocity (ω). The fluid particles which rotate at a
large distance from the wall are in equilibrium due to centrifugal force balanced by
the radial pressure gradient and radial magnetization force gradient.

 
Figure 1: Radial velocity profile for various values of k at β = 1.

Figures 1, 4, 7 show the radial velocity profile for different values of MFD viscosity
parameter k at β = 1, 2, 3 respectively. A negative value of the radial velocity indi-
cates that the flow is directed radially inward whereas a positive value of the radial
velocity represents flow directed radially outward. The radial velocity is directed
radially inward but for increasing values of β it is less negative in comparison to
β = 1. However, for k = 1(no MFD viscosity) and β = 0 (no medium permeabil-
ity), the problem reduces to the classical ordinary case of viscous incompressible
flow in the presence of a stationary disk (see Schlichting (1960)). In such a case,
the radial velocity is negative for small values of α because near the wall the parti-
cles flow radially inward so that the peripheral velocity of the fluid particle near the
wall is reduced thus decreasing the centrifugal force. The flow behavior of mag-
netic fluid, in the range α = 0 to α = 3, is radially inward and for larger values of
α , it is in the opposite direction.

Figures 2, 5, 8 represent the tangential velocity profile. In figure 2, for β = 1,
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Figure 2: Tangential velocity profile for various values of k at β = 1.

 
Figure 3: Axial velocity profile for various values of k at β = 1.
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Figure 4: Radial velocity profile for various values of k at β = 2.

 
Figure 5: Tangential velocity profile for various values of k at β = 2.
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Figure 6: Axial velocity profile for various values of k at β = 2.

 
Figure 7: Radial velocity profile for various values of k at β = 3.
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Figure 8: Tangential velocity profile for various values of k at β == 3

 
Figure 9: Axial velocity profile for various values of k at β = 3.
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the circumferential velocity becomes very small in the range α = 0 to α = 4.5;
however in figure 5, this regime is attained in the range α = 0 to α = 3.8 and
finally, in figure 8, it is in the range α = 0 to α = 3.5. It is evident from figures
that increasing values of parameter β favors the rotational motion of the ferrofluid.
In the ordinary case, tangential velocity increases rapidly for increasing values of
α , and at a large distance from the plate, the fluid rotates with constant angular
velocityω .

Figure 3, 6, 9 indicate the axial velocity profile. For β = 1, the magnitude of
the axial velocity is very large as the fluid flows radially in the negative direction,
resulting in high axial flows perpendicular to the ground as indicated in figure 3.
For increasing values of β , the axial velocity decreases but it is larger than in the
ordinary case. It is also observed that the axial velocity tends to a finite value at
infinite. In a nut shell, these results indicate that in a porous medium, axial motion
is larger in comparison to ordinary case.

5 Conclusions

The present study has background application in areas such as rotating machin-
ery, lubrication, oceanography, computer storage devices, viscometry and crystal
growth process. The results indicate that the flow resulting from the revolution of
a ferrofluid about an axis perpendicular to a stationary disk may be controlled by
properly tuning some parameters.

Flow characteristics depend essentially on the porosity of the medium and change
significantly when a variable viscosity is considered in comparison to the classical
case in the literature. It is also remarkable that at a large distance from the stationary
disk, the axial velocity component gets a maximum value, whereas it does not
depend much on the distance from the rotational axis.

Acknowledgement: Authors thankfully acknowledge the help provided by the
reviewers in improving the quality of the work.

References

Al-Ajmi R. and Mosaad M. (2012): Heat Exchange between Film Condensation
and Porous Natural Convection across a Vertical Wall, Fluid Dyn. Mater. Process.,
Vol. 8, No. 1, pp. 51-68.

Attia, H. A. (2009): Steady flow over a rotating disk in porous medium with heat
transfer. Nonlinear Analysis: Modelling and Control, vol. 14, pp. 117-127.

Attia, H. A. (1998): Unsteady MHD flow near a rotating porous disk with uniform



450 Copyright © 2012 Tech Science Press FDMP, vol.8, no.4, pp.437-451, 2012

suction or injection. Journal of Fluid Dynamics Research, vol. 23, pp. 283-290.

Attia, H. A.; Aboul-Hassan, A. L. (2004): On hydromagnetic flow due to a rotat-
ing disk. Applied Mathematical Modelling, vol. 28, pp. 1007-1014.

Bataller R.C. (2010): Towards a Numerical Benchmark for MHD Flows of Upper-
Convected Maxwell (UCM) Fluids over a Porous Stretching Sheet, Fluid Dyn.
Mater. Process., Vol. 6, No. 3, pp. 337-350.

Benton, E. R. (1966): On the flow due to a rotating disk. Journal Fluid Mechanics,
vol. 24, pp. 781-800.

Choukairy K. and Bennacer R. (2012): Numerical and Analytical Analysis of the
Thermosolutal Convection in an Heterogeneous Porous Cavity, Fluid Dyn. Mater.
Process., Vol. 8, No. 2, 155- 173.

Cochran, W. G. ( 1934): The flow due to a rotating disc. Proc. Camb. Phil. Soc.,
vol. 30, pp. 365-375.

Feynman, R. P.; Leighton, R.B.; Sands, M. (1963): Lecturers on Physics. Addison-
Wesley Reading MA.

Frusteri, F.; Osalusi, E. (2007): On MHD and slip flow over a rotating porous
disk with variable properties. Int. Comm. in Heat and Mass Transfer, vol. 34, pp.
492-501.

Hamimid S., Guellal M., Amroune A. and Zeraibi N. (2012): Effect of a Porous
Layer on the Flow Structure and Heat Transfer in a Square Cavity, Fluid Dyn.
Mater. Process., Vol. 8, No. 1, 69- 90.

Hennenberg M., Weyssow B., Slavtchev S., and Scheid B., (2007), Coupling be-
tween Stationary Marangoni and Cowley-Rosensweig Instabilities in a Deformable
Ferrofluid Layer, Fluid Dyn. Mater. Process., Vol. 3, No. 4, pp. 295-302.

Karman, V. (1921): Uber laminare and turbulente Reibung. Z. Angew. Math.
Mech, vol. 1, pp. 232-252.

Labed N., Bennamoun L. and Fohr J.P. (2012): Experimental Study of Two-
Phase Flow in Porous Media with Measurement of Relative Permeability, Fluid
Dyn. Mater. Process., Vol. 8, No. 4, pp. 423-436.

Mahfoud B. and Bessaih R. (2012): Oscillatory of swirling flows in a cylindrical
enclosure with co-/counter-rotating end disks submitted to a vertical temperature
gradient, Fluid Dyn. Mater. Process., Vol. 8, No. 1, pp. 1-26.

Mithal, K. G. (1961): On the effects of uniform high suction on the steady flow
of a non-Newtonian liquid due to a rotating disk. Quart J. Mech. and Appl. Math,
vol. XIV, pp. 403–410.

Nanjundappy, C. E.; Shivakumara, I. S.; Arunkumar, R. (2010): Benard-



Flow Characteristics of Revolving Ferrofluid 451

Marangoni ferroconvection with magnetic field dependent viscosity. Journal of
Magnetism and Magnetic Materials, vol. 322, pp. 2256-2263.

Odenbach, S. (2002): Magneto viscous Effects in Ferrofluids. Springer-Verlag,
Berlin.

Ram, P.; Bhandari, A.; Sharma, K. (2010): Effect of magnetic field-dependent
viscosity on revolving ferrofluid. Journal of Magnetism and Magnetic Materials,
vol. 322, pp. 3476-3480.

Ram P. and Bhandari A (2012): Flow Characteristics of Revolving Ferrofluid
with Variable Viscosity in a Porous Medium in the Presence of Stationary Disk,
Fluid Dyn. Mater. Process., Vol. 8, No. 4, pp. 437-452.

Ram, P.; Bhandari, A.; Sharma, K. (2010): Axisymmetric ferrofluid flow with
rotating disk in a porous medium. International Journal of Fluid Mechanics, vol.
2, pp. 151-161.

Ram, P.; Sharma, K. (2011): Revolving ferrofluid flow under the influence of
MFD viscosity and porosity with rotating disk. Journal of electromagnetic analysis
and applications.vol. 3, pp. 378-386.

Ram, P.; Sharma, K.; Bhandari, A. (2010): Effect of porosity on ferrofluid flow
with rotating disk. Int. J. Appl. Math and Mech., vol. 6, pp. 67-76.

Rosensweig, R. E. (1985): Ferrohydrodynamics. Cambridge University Press.

Schlichting, H. (1960): Boundary Layer Theory. McGraw-Hill Book Company,
New York.

Sekar, R.; Vaidyanathan, G.; Ramanathan, A. (1993): The ferroconvection in
fluid saturating a rotating densely packed porous medium. International Journal of
Engineering Sciences, vol. 31, pp. 241-250.

Shliomis, M. I. (2004): Ferrofluids as thermal ratchets. Physical Review Letters,
vol. 92, pp. 188901.

Sunil; Bharti, P. K.; Sharma, D.; Sharma, R. C. (2004): The effect of a magnetic
field dependent viscosity on the thermal convection in a ferromagnetic fluid in a
porous medium . Zeitschrift fur Naturforschung, vol. 59a, pp. 397-406.

Sunil; Divya; Sharma, R. C. (2005): The effect of magnetic field dependent vis-
cosity on thermosolutal convection in a ferromagnetic fluid saturating a porous
medium. Transport in Porous Media, vol. 60, pp. 251-274.




