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Heat Transfer and Entropy Analysis for Mixed Convection
in a Discretely Heated Porous Square Cavity

A. Maougal1 and R. Bessaïh2

Abstract: The present study is a numerical investigation of the irreversibility and
heat transfer properties of a steady laminar mixed flow in a square cavity, filled with
a saturated porous medium and heated by a discrete set of heat sources. The con-
tinuity, Navier-Stokes, energy and entropy generation equations have been solved
by a finite volume method. Both heat transfer irreversibility and fluid friction irre-
versibility have been taken into account in the computations of entropy generation.
Simulations have bee carried out for Reynolds number Re=20, 40, 80, 100, 200,
Darcy number, Da=10−5-10−1, Prandtl number, Pr=0.015, 0.7, 10, 103, and aspect
ratio, D/H =0.05, 0.10, 0.15, 0.2, 0.25, expressly considering the influence of such
parameters on the entropy generation and heat transfer processes. The effect of
the irreversibility distribution function and aspect ratio has been also taken into ac-
count. The results are presented in terms of entropy generation, Nusselt and Bejan
numbers. Finally, a general correlation between all these parameters is determined
on the basis of the present findings.

Keywords: Mixed convection, Porous medium, Heat transfer, Entropy genera-
tion.

Nomenclature

Be local Bejan number
Be average Bejan number
Br Brinkman number
D slot of inlet and outlet fluid flow, m
Da Darcy number
D/H aspect ratio
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Ek Eckert number
F Forchheimer coefficient
Gr Grashof number
g gravitational acceleration, m/s2

H cavity height, m
K permeability, m2

k thermal conductivity, W/m.K
Nu local Nusselt number
Nu average Nusselt number
n normal coordinate
Pr Prandtl number
Re Reynolds number
T temperature, K
T0 ambient temperature, K
TW temperature of the hot wall, K
∆T temperature difference, K
sgen local entropy generation rate, W/m3.K
Sgen dimensionless local entropy generation rate
St dimensionless total entropy generation
U, V dimensionless horizontal and vertical velocities in x- and y- directions,

respectively
u,v horizontal and vertical velocities in x- and y- directions, respectively, m/s
V uniform inlet velocity, m/s
X, Y dimensionless horizontal and vertical coordinates in X- and Y-directions,

respectively
x, y horizontal and vertical coordinates in x- and y-directions, respectively

Greek symbols

α thermal diffusivity of the fluid, m2/s
β thermal expansion coefficient, K−1

ε porosity
Θ dimensionless temperature
λ inertial coefficient
µ dynamic viscosity, kg/m.s
ν kinematic viscosity, m2/s
φ irreversibility distribution ratio
Φ dimensionless viscous dissipation function
ψ dimensionless stream function
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Ω dimensionless temperature difference
∇x gradient along x-coordinate
∇y gradient along y-coordinate

1 Introduction

Entropy generation, non-equilibrium thermodynamics, optimal transportation (Vil-
lani, 2008), and sustainable development are terms increasingly used in recent
decades by scientists. The need to get a maximum work with minimum effort
while preserving the environment is probably the main aim of scientists and politi-
cians. It is in this context that this work relies. In recent decades, many scientists
working on different subjects are focusing of major interest to the second law of
thermodynamics. Entropy has become a term used by biologists, mathematicians,
sociologists, economists, architects, and especially by physicists.

Entropy is not only a principle of thermodynamics but also a life principle. The
coming years will certainly experience a significant development of this subject.
This has already begun by the Prigogine theorem (Prigogine and Kondepudi, 2002),
Bejan constructal theory (Bejan and Lorente, 2006) and their different applications.

In this paper, the mixed convection flows in porous media within a square heated
open cavity, the entropy generation and heat transfer are analyzed. Due to their
wide applications in many areas of engineering systems development, the phe-
nomenon of mixed convection in open cavities with heat transfer in porous media
has received considerable attention. Practical applications of the studied configu-
ration are diverse and have a significant impact in several areas such as: thermal
insulation, cooling of electronic systems, geophysics, nuclear reactors, petroleum
reservoirs, buildings, solar energy...etc.

In fact, there is a wide range of published works which covers these subjects. More
precisely, transport phenomena in porous media (Ingham and Pop, 2005), convec-
tion in porous media (Nield and Bejan, 2006), Handbook of porous media (Vafai,
2005) and principles of heat transfer in porous media (Kaviany, 1999). Several ex-
perimental, analytical and numerical papers were published; such as (Shohel and
Pop, 2006) numerically investigated a mixed convection in a square vented enclo-
sure filled with a porous medium. Their study is based on the variation on the Péclet
and Rayleigh numbers as well as the width of the fluid inlet. Their results showed
that the width of the fluid inlet affects considerably the heat transfer and flow char-
acteristics, for fixed values of the Péclet and Rayleigh numbers. Basak et al. (2010)
numerically studied a mixed convection flows in a lid-driven square cavity with
porous medium. The relevant parameters are Darcy number (Da=10−5− 10−3),
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Grashof number (Gr=103− 105), Prandtl number (Pr=0.015− 10), and Reynolds
number (Re=1−102). It has been noted that a significant result is that the average
Nusselt numbers are almost invariant with Grashof number for Pr =0.7. Stiriba et al.
(2010) investigated with a direct numerical simulation the flow structure and heat
transfer characteristics, for a mixed convection past a three-dimensional open cubi-
cal cavity on a broad interval of Reynolds (Re=102−103) and Richardson (0.001–
10) numbers. The study is on the interaction between the induced stream flow and
the buoyancy flow from heated wall. The obtained results show that the Nusselt
number increases slightly when the forced flow is dominating and when Reynolds
and Grashof numbers are significantly important, natural convection comes into
play and Nusselt number increases significantly. It can be noted that there are in-
sufficient studies on mixed convection in porous media with entropy production,
especially in open cavities; this was the main motivation that this work has been
fulfilled.

The entropy production in porous media is essentially studied in many references
such as (Baytas and Baytas, 2005), using Darcy’s law and Boussinesq-incompressible
approximation. Authors numerically resolved entropy production, momentum and
energy equations for laminar natural convection with heat transfer in inclined satu-
rated porous cavity. The parameters considered are the angle of inclination and the
Darcy–Rayleigh number. They showed that they can determine the optimum angle
by calculating the entropy production. In their paper, Makinde and Osalusi (2005),
studied the entropy production for laminar flow through a channel filled with a
porous medium. Their results show that heat transfer irreversibility dominates over
fluid friction, and viscous dissipation has no effect on the entropy production rate
at the centreline of the channel. The entropy generation in porous square cavi-
ties with four configurations of heat sources during laminar natural convection has
been studied by Kaluri and Basak (2011), more fluids are considered (Pr=0.0015,
0.7, 10, and 1000), Da=10−6− 10−3, Ra=103− 106. Their results show that for
different positions of heat sources, the flow characteristics are affected. Entropy
generation increased with the increase of Da and the average Bejan number is less
than 0.5. The importance of thermal boundary conditions of heated/cooled walls
and their impact on the entropy production and heat transfer inside porous enclo-
sure was studied by Zahmatkesh (2008). For Ra=10−103, the flow characteristics
and the entropy generation were strongly influenced by the thermal boundary con-
ditions (Zahmatkesh, 2008). Bensouici and Bessaïh (2010) numerically studied
the mixed convection heat transfer in a vertical channel containing heat sources.
Among their achievements, one can mention: the maximum temperature decreases
with the Richardson number, while the Nusselt number increases. The same results
are obtained when the matrix thickness is increased.
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Other recent interesting contributions are the studies by Al-Ajmi and Mosaad (2012),
Hamimid, Guellal, Amroune and Zeraibi (2012), Choukairy and Bennacer (2012)
and Labed, Bennamoun and Fohr (2012).

The present study is aimed to study the influence of the Reynolds number on the
flow and thermal fields, on the average Bejan number, average Nusselt number and
total entropy generation. The effects of Darcy number, Prandtl number, irreversibil-
ity distribution function and aspect ratio on the average Nusselt number, average
Bejan number, and total entropy generation is also analyzed. Section 2 presents
the mathematical formulation. Section 3 concerns the entropy generation analysis.
Section 4 discusses the numerical method and techniques which have been used
for the computation as well as the grid independence study and code validation.
Section 5 presents the results and discussion, and finally a conclusion is given.

2 Governing equations

A two dimensional square vented cavity is filled with a fluid saturated porous
medium. The porous medium is assumed to be homogeneous and isotropic. The
configuration model and boundary conditions are shown in Fig.1. The Cartesian
coordinate system is used in this problem. The left vertical wall is adiabatic and
in the middle of the other walls are placed three discrete heat sources. The flow is
modeled by the Darcy-Brinkman-Forchheimer equation in the porous matrix, and
by the Navier–Stokes equations in the fluid domain. Mixed convection is due to the
forced flow which enters from the bottom slot with a constant velocity V0and comes
out through a slot at the upper border of the vertical surface. The thermo physical
properties of the fluid and porous media are assumed to be constant (Kaluri and
Basak, 2011).

The conservation equations of mass, momentum, and energy for a two-dimensional
laminar mixed convection and steady incompressible flow with Boussinesq approx-
imation were considered, using the following dimensionless variables:

X =
x
H
, Y =

y
H
, U =

u
V0

, V =
v

V0
, Θ=

T −T0

∆T
, ∆T =Tw−T0, Ω=

∆T
T0
(1)

Continuity:

∂U
∂X

+
∂V
∂Y

= 0 (2)
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Figure 1: A square open cavity filled with a saturated porous medium. Three dis-
cretely heat sources are placed on the right, bottom and top walls.

X-momentum:

1
ε2

(
U

∂U
∂X

+V
∂U
∂Y

)
=− ∂P

∂X
+

1
ε Re

{
∂ 2U
∂X2 +

∂ 2U
∂Y 2

}
− 1

ReDa
U−

λ
(
U2 +V 2)1/2

.U

(3)

Y-momentum:

1
ε2

(
U

∂V
∂X

+V
∂V
∂Y

)
=− ∂P

∂Y
+

1
ε Re

{
∂ 2V
∂X2 +

∂ 2V
∂Y 2

}
− 1

ReDa
V−

λ
(
U2 +V 2)1/2

.V +
Gr
Re2 Θ

(4)

Energy:

U
∂Θ

∂X
+V

∂Θ

∂Y
=

1
Re Pr

{
∂ 2Θ

∂X2 +
∂ 2Θ

∂Y 2

}
(5)
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where U and V are dimensionless velocity components in the X- and Y- directions,
respectively, and λ represents the inertial coefficient (λ = F/Da1/2=0.35 (Ben-
souici and Bessaïh, 2010)).

The Reynolds, Darcy, Grashof, and Prandtl numbers are defined, respectively, as
follows:

Re =
V0H

ν
, Da =

K
H2 , Gr =

gβ (Tw−T0)H3

ν2 , Pr =
ν

α
(6)

The dimensionless boundary conditions for our study are:

At X = 0, 0≤ Y ≤ 1 : U = 0, V = 0,
∂Θ

∂X
= 0 (adiabatic wall) (7a)

At X = 1, 0.25≤ Y ≤ 0.75 : U = 0, V = 0, Θ = 1 (heat source N˚2) (7b)

At Y = 0, 0≤ X ≤ X/D : U = 0, V = 1, Θ = 0 (inlet channel) (7c)

At Y = 0, 0.5≤ X ≤ 0.75 : U = 0, V = 0, Θ = 1 (heat source N˚1) (7d)

At Y = 1, 0.5≤ X ≤ 0.75 : U = 0, V = 0, Θ = 1 (heat source N˚3) (7e)

At Y = 1, 0≤ X ≤ X/D :
∂U
∂Y

= 0,
∂V
∂Y

= 0,
∂Θ

∂Y
= 0 (outlet channel) (7f)

3 Entropy generation analysis

In this case, the entropy generation equation (Eq.8) includes three terms that quan-
tify the irreversibility:

• A first term reflects the heat transfer.

• A second is related to the porous media.

• The last term corresponding to the viscous friction.

The local entropy generation (or the entropy generation number) is then (Bejan,1982):

sgen =
k

T 2
0

[(
∂T
∂x

)2

+

(
∂T
∂y

)2
]
+

µ

KT0
(u2 + v2)

+
µ

T0

{
2

[(
∂u
∂y

)2

+

(
∂v
∂y

)2
]
+

(
∂u
∂y

+
∂v
∂x

)2
}

(8)

By using kΩ2/H2, as typical scales for entropy generation, the dimensionless local
entropy generation (Eq.8), which is called the entropy generation number, becomes
(Bejan, 1982):

Sgen =
[
(∇xΘ)2 +(∇yΘ)2

]
+

Br
ΩDa

(
U2 +V 2)+ Br

Ω
Φ (9)
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∇x and ∇y are the gradients along the x and y coordinates, respectively. The term
Br/Ω is generally translated by the irreversibility distribution ratio φ , which is de-
fined as:

φ =
Fluid− f riction irreversibility
Heat− trans f er irreversibility

(10)

The dimensionless total entropy generation, St is obtained by integrating equation
(9) as:

St =
∫
V

{[
(∇xΘ)2 +(∇yΘ)2

]
+

Br
ΩDa

(
U2 +V 2)+ Br

Ω
Φ

}
dV (11)

Heat transfer in the cavity is measured by the mean Nusselt number, which is equal
to the dimensionless temperature (Sivasankaran et al., 2010):

Nu =−
1∫

0

(
∂Θ

∂Y

)
Y=0

dX , for the bottom wall (12a)

Nu =−
1∫

0

(
∂Θ

∂X

)
X=0

dY, for the left vertical wall (12b)

Nu =−
1∫

0

(
∂Θ

∂Y

)
Y=1

dX , for the top wall (12c)

Nu =−
1∫

0

(
∂Θ

∂X

)
X=1

dY, for the right vertical wall (12d)

In order to know the dominant irreversibility, it is necessary to introduce the local
Bejan number Be that has the following expression:

Be =
sgen,h

sgen,h + sgen, f
(13)

where Sgen,h and Sgen, f are the local entropy generation due to heat transfer and fluid
friction, respectively. When Be >0.5 the heat transfer irreversibility dominates and
when Be <0.5 irreversibility is dominated by fluid friction effects (Bejan, 2006).

The average Bejan number Be is found by integrating the local Bejan number as:

Be =

∫
A

Be(X ,Y ).dA∫
A

dA
(14)
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4 Numerical procedure

The governing equations (2-5), with the associated boundary conditions (7a-7f),
were solved using a finite volume technique (Patankar, 1980). The components of
the velocity (U and V) were stored at the staggered locations, and the scalar quan-
tities (P and Θ) were stored in the centre of these volumes. A fully implicit scheme
was employed. The numerical procedure called SIMPLER (Patankar, 1980) was
used to handle the pressure-velocity coupling. For treatment of the convection and
diffusion terms in equations (2-5), central difference scheme was adopted. Finally,
the discretized algebraic equations were solved by the line-by-line tri-diagonal ma-
trix algorithm (TDMA). Convergence was obtained when the maximum relative
change between two consecutive iteration levels is defined as:∣∣∣∣∣Λ

n+1
i, j −Λn

i, j

Λ
n+1
i, j

∣∣∣∣∣< 10−5 (15)

where Λ denotes one of the main variables U,V,Θ and n is the iteration index.
Calculations were carried out on a PC (Intel Core 2 Duo) with 2.00 GHz CPU.

4.1 Grid independence study

Different mesh sizes were chosen to find the appropriate grid. A regular grid is
used and increasing the mesh size from 82 ×82 to 222 ×222 nodes. Due to the
relative error on the entropy generation which is rather small, the mesh size 202
×202 nodes, has therefore been chosen. The relative error is defined as follows:

Error % =

∣∣∣∣∣N
2
s(k,k)−N1

s(k,k)

N1
s(k,k)

∣∣∣∣∣ (16)

where Ns(k,k) is the previously calculated value of the entropy generation rate corre-
sponding to the mesh size (k, k). Table1 represents the different values of entropy
generation rate for each chosen grid and the associated relative error. This calcula-
tion is done for the fixed thermal convective parameters: Gr=104, Re=100, Pr=0.71,
ε=1, Da=10−3, D/H=0.25 and φ=10−2.

4.2 Code validation

The numerical code was validated with the numerical results of Megherbi et al.
(2003) Essentially, their study is based on the Rayleigh number effect on the en-
tropy generation and the irreversibility distribution ratio. As shown in Fig.2, it is
clear that the present work is in a good agreement with the numerical results of
Megherbi et al. (2003).
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Table 1: Results of the grid independence tests, for Gr=104, Re=100 (Ri=1),
Da=10−3, Pr=0.71 (air), φ=10−2, D/H =0.25.

Grid Total entropy generation
82 ×82 nodes 7.300
142 ×142 nodes 7.530
182 ×182 nodes 7.604
202 ×202 nodes 7.632
222 ×222 nodes 7.657

 
Figure 2: Variation of the dimensionless total entropy generation versus Rayleigh
number (Ra= 2×104, 4×104, 6×104, and 8×104): Comparison between the
present results and those of Megherbi et al. (2003).

5 Results and discussion

This work is devoted to study the effect of some thermo-convective parameters on
heat transfer and entropy generation. The interest has especially given to determine
the parameters giving the maximum heat transfer and the lowest entropy generation.
The value of the Grashof number Gr is equal to 104 in all the numerical simulations.
The adopted ranges are: Reynolds number, Re=20, 40, 80, 100, 200, Darcy number,
Da=10−5–10−1, Prandtl number, Pr=0.015, 0.7, 10,103 and aspect ratio D/H =0.05,
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0.10, 0.15, 0.2, 0.25. It can be noted that for Gr=104, the values of Reynolds
numbers (Re=200, 100, 80, 40, 20) correspond to the values of Richardson numbers
(Ri= 0.25, 1, 1.5625, 6.250, 25), respectively. All these results are presented in
dimensionless values.

5.1 Effect of Reynolds number

In order to make a wide investigation, three Richardson number values are consid-
ered: Ri<1, Ri=1 and Ri>1. Dimensionless stream function (defined as: U=∂ψ/∂Y)
and dimensionless temperature Θ are plotted in Fig3 with fixing the following pa-
rameters: Gr=104, Pr=0.71, ε=1, Da=10−3, D/H=0.25, φ=10−2.

When Ri>1, the Ri=6.25 case is taken which is equivalent to Re=40, this repre-
sents a low-speed flow, so the natural convection dominates. When the Richardson
number decreases, forced convection becomes more important and the isothermal
contour plots are pushed around the heat sources. Fig 4a shows that the local Be-
jan number is greater than 0.5, which proves that the heat transfer irreversibility
dominates the fluid friction irreversibility. This explains the similarity between di-
mensionless total entropy generation rate and average Nusselt number variations in
Fig 4b. The increase in Reynolds number promotes heat transfer and increases the
irreversibility, as has been demonstrated by (Khan et al., 2006 and Eiyad Abu-Nada,
2006).

To get an idea about the spatial distribution of entropy generation, Fig.5 illustrates a
three dimensional view of the total entropy generation, St . According to this figure,
it can be shown that friction is significant at the entrance and exit of the flow. The
latter is translated by the fluid friction irreversibility but not as important as the heat
transfer irreversibility which is displayed by the peaks on the heat sources. It may
also be noted that the heat transfer irreversibility is more important than the fluid
friction irreversibility.

For the Reynolds number values varying from 20 to 200 at Pr=0.71, Da=10−3,
Gr=104 (Ri=1), ε=1, D/H=0.25, the total entropy generation St , average Nusselt
number Nu, and average Bejan number Be can be correlated by the following equa-
tions, respectively as:

St = 1.3108Re0.3788 (17a)

Nu = 1.0519Re0.4538 (17b)

Be = 2.7938Re0.1601 (17c)
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Figure 3: Streamline contours ψ (on the right) and isotherms Θ (on the left) at
Gr=104, Da=10−3 , Pr=0.71 (air), φ=10−2, D/H =0.25, and for various values of
the Reynolds number (a) Re=40, (b) Re=100, and (c) Re=200,which correspond to
the values of the Richardson number, Ri=Gr/Re2= 6.250, 1, and 0.25, respectively.



Heat Transfer and Entropy Analysis 47

Re

B
ej

an
nu

m
be

r

20 40 60 80 100 120 140 160 180 200
0.5

0.6

0.7

0.8

0.9

1

Gr=10 , Pr=0.71, Da=104 -3

 
 

(a) 
 

Re

A
ve

ra
ge

N
us

se
lt

nu
m

be
ra

nd
to

ta
le

nt
ro

py
ge

ne
ra

tio
n

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

Nusselt number
Total entropy generation

Gr=10 , Pr=0.71, Da=10
4 -3

 
 

(b) 
 Figure 4: Effect of the Reynolds number Re (=20, 40, 80, 100, and 200) on (a) av-

erage Bejan number and (b) average Nusselt number and total entropy generation,
for Gr=104, Da=10−3 , Pr=0.71 (air), φ=10−2, and D/H =0.25.
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Figure 5: Total entropy generation variation St for Gr=104, Re=200 (Ri =0.25),
Da=10−3, Pr=0.71 (air), φ=10−2, and D/H =0.25.

5.2 Effect of Darcy number

The fixed parameters are: Gr=104, Re=100 (Ri=1), Pr=0.71, ε=1, D/H=0.25. Darcy
number is the porous medium dimensionless permeability. It reflects the fluids flow
conductance through the porous medium. Its increase promotes better convection.
This would lead to a better convective heat transfer. Fig.6a shows that the average
Nusselt number decreases as the Darcy number increases, this means that the heat
transfer is largely done by conduction and heat diffusion more than heat convection
in the porous region (Vafai and Huang, 1994), the extreme case has been dealt with,
where the porosity is equal to one. The average Bejan number increases with Darcy
number (Fig.6b). Bejan number shows the dominant irreversibility, which can be
expressed it in terms of the irreversibility distribution ratio by:

Be =
1

1+φ
(18)

For the Darcy number value, Da=10−5, Be→0, which is equivalent to φ tend to
infinity, from the φ definition in equation (10) the fluid-friction irreversibility dom-
inates. Be→1 is the opposite limit at which the heat transfer irreversibility domi-
nates and which corresponds to Da=10−1. Physically, it is acceptable then the heat
transfer increases with permeability (Nield and Bejan, 2006) The Darcy number
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effect on the entropy generation is depicted in Fig.6c, which shows that entropy
production decreases when Da decreases. Entropy generation is related to irre-
versible processes. In this case it is about of thermal transfer and fluid friction pro-
cesses. When Da increases, the frictional resistance is less important in the porous
medium. Fig.6c shows that heat transfer is mainly controlled by diffusion, which
causes a decrease in entropy generation. The porous medium is the main cause of
this irreversibility. It can be concluded that the Entropy Generation Minimization
(EGM) principle is not verified in this case and the heat transfer decreases with en-
tropy production. Table 2 represents the heat transfer and total entropy generation
values for two cases: with and without the porous medium, the introduction of the
porous medium increases the heat transfer and reduces the total entropy generation,
which is in agreement with the EGM principle.

Table 2: Average Nusselt number, total entropy generation and average Bejan num-
ber with and without porous medium.

Average Total Average
Nusselt number entropy generation Bejan number

With porous (Da=10−3) 7.854 7.632 0.763
Without porous 7.687 8.015 0.717

For the Darcy number values (10−5 < Da< 10−1) at Gr=104, Re=100 (Ri=1),
Pr=0.71, ε=1, and D/H=0.25, the total entropy generation St , average Nusselt
numberNu, and average Bejan number Be can be correlated, respectively, as:

St =
1.5872

Da0.3289 (19a)

Nu =
7.5594

Da0.0058 (19b)

Be = 3.5687Da0.3239 (19c)

5.3 Effect of Prandtl number

It characterizes the relative importance of viscous and thermal effects. For fluids of
high Prandtl number, thermal time is larger than the viscous time and heat process
diffusion drive the fluid motion. For small values of Prandtl number, thermal effects
are dwindling and the fluid behavior is essentially hydrodynamic. To achieve a wide
investigation, four different fluids have been considered: Pr=0.015 (Liquid metal),
Pr=0.71 (air), Pr=10 (Aqueous solutions), Pr=1000 (Engine Oils). Several works
such as (Rahman et al., 2011) show that the Nusselt number and entropy generation
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Figure 6: Effect of Darcy number Da (=10−5 , 10−4 , 10−3 , 10−2, and 10−1) on (a)
average Nusselt number (b) average Bejan number and (c) total entropy generation,
for Gr=104, Re=100 (Ri=1), Da=10−3 , Pr=0.71 (air), φ=10−2, and D/H =0.25.
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increases with Prandtl number. Fig.7 shows the local heat entropy generation which
clearly increases with the Prandtl number. The Bejan number can be interpreted as
the ratio of viscous forces on heat transfer (Bejan et al., 2003).

 

 
(a)Pr=0.015 (liquid metal)                                          (b) Pr=0.71 (air) 

 
 

 
(c) Pr=10 (Aqueous  solutions)                                                          (d) Pr=1000 (Engine Oils) 

 

Figure 7: Local heat entropy generation variation in the X-Y plane, for var-
ious Prandtl numbers (Pr=0.015, 0.71, 10, and 1000) at Gr=104, Re=100
(Ri=1),Da=10−3 , φ=10−2, and D/H =0.25.

Figure 8 shows the distribution of local Bejan number in the cavity. By increasing
the Prandtl number or the fluid viscosity, viscous forces become more important
and have an effect on thermal diffusion. The local Bejan number indicates that
the heat transfer irreversibility concentrates near heat sources. Increasing Prandtl
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number has an effect on the heat diffusion, which generates an increase on the
Nusselt, Bejan numbers and entropy generation (figures 9a and 9b). The work
results are confirmed by those found by Tamayol et al. (2010).
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Figure 8: Local Bejan number variation in the X-Y plane, for various Prandtl num-
bers (Pr=0.015, 0.71, 10, and 1000) at Gr=104, Re=100 (Ri=1),Da=10−3 ,φ =10−2,
and D/H =0.2

For the Prandtl number values (0.0015, 0.71, 10, 1000) at Da=10−3, Gr=104 ,Re=100
(Ri=1), ε=1, D/H=0.25, the total entropy generation St , Nusselt average number
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Figure 9: Effect of Prandtl number Pr (=0.015, 0.71, 10, and 1000) on (a) total
entropy generation and average Nusselt number and (b) average Bejan number, for
Gr=104, Re=100 (Ri=1), Da=10−3 , φ=10−2, and D/H =0.25.

Nu, and Bejan average number Be can be correlated, respectively as follows:

St = 9.0494Pr0.2606 (20a)

Nu = 9.0178Pr0.4449 (20b)

Be = 1.4889Pr0.0709 (20c)

Vertical and horizontal velocity profiles along the lines Y=0.5 and X=0.5 are pre-
sented in Fig.10, for Gr=104, Ri=1.0 and Pr=0.71. The two transversal velocities
have the same appearance except in the case with porous medium, the velocity has
a negative minimum to the abscissa X=0.7. The velocity vertical component is
more intense in the presence of the porous medium, which implies that the porous
medium promotes the transport of kinetic energy. The axial velocity profile is com-
plex as a result of the interaction between the mixed convection with energy inside
and the buoyancy forces. There is a braking effect by the porous medium which
promotes heat transfer.

5.4 Effect of irreversibility distribution ratio

Variation of total entropy generation according to φ is depicted in Fig.11; the ir-
reversibility distribution ratio is defined as the ratio between the fluid friction ir-
reversibility and the heat transfer irreversibility and gives an idea of the dominant
irreversibility. This is the case where 0≤ φ <1, which implies that the heat transfer
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(a) Dimensionless vertical velocity V                   (b) Dimensionless horizontal velocity U 
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Figure 10: Variation of (a) horizontal velocity U at Y=0.5 and (b) vertical velocity
V at X=0.5, with and without porous medium (clear fluid), for Gr=104, Re=100
(Ri=1), Pr=0.71, and D/H =0.25.

irreversibility is dominant. Increasing the irreversibility distribution ratio, the total
entropy generation increases. In considering the φ definition, this result may be
explained. The latter can be expressed as Br

Ω
, where Br is the Brinkman number

which is equal to the Pr.Ek product. As already shown, the entropy production
increases with Prandtl number. Eckert number expresses the relationship between
a flow’s kinetic energy and enthalpy. When the kinetic energy increases, the flow
becomes more intense which has the effect of increasing the entropy production.
The enthalpy is related to the temperature difference ∆T; it is the denominator as
defined Ek, heat transfer becomes more important by its increase and finally the
entropy production increases. Same results were obtained by Hooman and Ejlali
(2007).

5.5 Effect of the aspect ratio

Figure 12 is an answer to the question: is there an optimal aspect ratio? The prin-
ciple EGM stipulates that the maximum power output corresponds to the minimum
entropy generation (Bejan, 2009). The total entropy generation is plotted according
to the aspect ratio D/H and 0.2 is a maximum value of D/H, what does this mean? It
is important to note that the physical system geometry has an effect on the entropy
production as already announced, it is hoped to find a minimum entropy produc-
tion in order to optimize the physical system by applying the EGM principle, but
the opposite was found. It is known that the relationship between the minimum en-
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Figure 11: Effect of the irreversibility distribution ratio φ (=10−5, 10−4, 10−3,
10−2, and 10−1) on the total entropy generation for Gr=104, Re=100 (Ri=1),
Pr=0.71, Da=10−3, and D/H =0.25.

tropy production principle and maximum entropy production principle is not simple
(Martyushev and Seleznev, 2006). It has been shown for an open system evolving
toward a steady state, there is a thermodynamic path that maximizes its entropy
production. Furthermore, it was confirmed that the principle of maximizing the
entropy production for irreversible open systems is a theoretical investigation that
aims to analyze their stability. This is confirmed by the same author: "a steady state
is stable if the entropy generation is maximum" (Lucia, 2012). According to the
previously mentioned, the value of the aspect ratio that corresponds to the value
0.2 is a value for which the entropy production is at its maximum, it implies that
the physical system reaches a steady and stable state. It can also be noticed that
the heat transfer depends on the geometry of the physical system in question and
the same value of the aspect ratio (D/H= 0.2) performs better from the heat transfer
point of view.

6 Conclusions

This study was focused on the influence of mixed convection intensity, porous me-
dia compactness and fluid nature on the heat transfer and irreversibility. The pa-
rameters having an effect on the problem are: Reynolds number Re, Darcy number
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Figure 12: Effect of aspect ratio D/H (=0.05, 0.1, 0.15, 0.2, and 0.25) on the to-
tal entropy generation and average Nusselt number for Gr=104, Re=100(Ri=1),
Pr=0.71, Da=10−3, φ=10−2.

Da, Prandtl number Pr, irreversibility distribution ratio φ , and aspect ratio D/H. The
Grashof number is considered constant, Gr=104. The heat transfer is improved by
increasing the Reynolds and Prandtl numbers. They have the same effect on the
entropy production. It is interesting to note that it has a profitable effect when the
porous medium is introduced into the cavity in the sense where a better heat trans-
fer and lowest entropy production are obtained. This is in agreement with EGM
principle. Entropy generation rate, Bejan number and heat transfer increases with
Da. Re and Pr have the same effect on the Bejan number and the entropy generation
rate increases with the irreversibility distribution ratio. There is an aspect ratio for
which the entropy generation and heat transfer are maximum, it can be concluded
that the physical system must be stable for this value and the EGM principle is not
applicable for this case.
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