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Effect of Suspended Particles on the Onset of Thermal
Convection in a Compressible Viscoelastic Fluid in a

Darcy-Brinkman Porous Medium

G. C. Rana1, and R. C. Thakur2

Abstract: In this paper, the effect of suspended particles on thermal convec-
tion in a compressible viscoelastic fluid hosted in a porous medium is considered.
For the porous medium, the Brinkman model is employed with the Rivlin-Ericksen
approach used in parallel to describe the rheological behaviour of the viscoelastic
fluid. By applying a normal mode analysis method, a dispersion relation is derived
and solved analytically. It is observed that the medium permeability, suspended
particles, gravity field and viscoelasticity introduce oscillatory modes. For station-
ary convection, it is found that the Darcy-Brinkman number has a stabilizing effect
whereas the suspended particles and medium permeability have a destabilizing in-
fluence on the system.

Keywords: Darcy-Brinkman porous medium, Rivlin-Ericksen fluid, Suspended
particles, Thermal convection, Viscosity, Viscoelasticity.

1 Introduction

Over the last few decades, considerable interest has been devoted to the study of
thermal instabilities in porous media because this subject has various applications
in different fields (geophysics, food processing and nuclear reactors just to cite a
fiew).

Experimental studies have been devoted to the case of Newtonian fluid since the
beginning of the past century (e.g. Chandra (1938) and many others). A number
of theoretical and numerical analyses are also available (see the reviews by Chan-
drasekhar (1981); Lappa (2004, 2005, 2007a,b, 2013) and many others).

For the case of convective flow in a porous medium, it is worth citing Lapwood
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(1948) who used the linearized stability theory. The Rayleigh instability of a ther-
mal boundary layer in a porous medium was considered by Wooding (1960).

Scanlon and Segel (1973) were among the first authors to investigate the effect of
suspended particles on the onset of Bénard convection and found that the critical
Rayleigh number was reduced solely because the heat capacity of the pure gas was
supplemented by the particles. The suspended particles were thus found to destabi-
lize the layer. There are many elastico-viscous fluids that cannot be characterized
by Maxwell’s constitutive relations or Oldroyd’s constitutive relations. One such
class of fluids is Rivlin-Ericksen elastico-viscous fluid having relevance in chem-
ical technology and industry. Rivlin and Ericksen (1955) proposed a theoretical
model for such an elastico-viscous fluid.

The investigation in porous media has been started with the simple Darcy model
and gradually was extended to Darcy-Brinkman model. A good account of con-
vection problems in a porous medium has been given by Vafai and Hadim (2000),
Ingham and Pop (1981) and Nield and Bejan (2006). More recent studies have been
developed by Choukairy and Bennacer (2012); Hamimid, Guellal, Amroune, and
Zeraibi (2012); Al-Ajmi and Mosaad (2012); Ram and Bhandari (2012); Labed,
Bennamoun, and Fohr (2012) (see also the references in these works)

Kuznetsov and Nield (2010) have studied thermal instability in a porous medium
layer saturated by a nanofluid: Brinkman model. In this context it is also worth
mentioning Corcione (2011).

Sharma and Rana (2001) studied thermal instability of an incompressible Walters’
(Model B’) elastico-viscous in the presence of variable gravity field and rotation
in porous medium. When the fluids are compressible, the equations governing the
system become quite complicated. To simplify them, Boussinesq tried to justify
the approximation for compressible fluids for density variations arising principally
from thermal effects. Spiegal and Veronis (1960) simplified the set of equations
governing the flow of compressible fluids under the following assumptions:

(a) The vertical dimension of the fluid is much less than any scale height, as defined
by Spiegal and Veronis (1960);

(b) The motion-induced perturbations in density and pressure do not exceed, in
order of magnitude, their total static variations.

Under the above approximations, Spiegal and Veronis (1960) showed that the equa-
tions governing convection in a compressible fluid are formally equivalent to those
for an incompressible fluid if the static temperature gradient is replaced by its ex-
cess over the adiabatic one and Cv is replaced by Cp; where Cv and Cp are the spe-
cific heats at constant volume and constant pressure, respectively, which is impor-
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tant in ground water hydrology, chemical engineering, modern technology and in-
dustries. Recently, Rana (2011) studied the onset of convection in Rivlin-Ericksen
fluid in a Darcy-Brinkman porous medium heated from below whereas Rana and
Kango (2011) studied the stability of incompressible Rivlin-Ericksen superposed
fluid under rotation in porous medium.

The interest for investigations of non-Newtonian fluids is also motivated by a wide
range of engineering applications which include ground pollutions by chemicals
which are non-Newtonian like lubricants and polymers and in the treatment of
sewage sludge in drying beds. Recently, polymers are being used in agriculture,
communications appliances and in bio medical applications. Examples of these ap-
plications are filtration processes, packed bed reactors, insulation system, ceramic
processing, enhanced oil recovery, chromatography etc. Viscoelastic materials have
the properties of both viscous and elastic materials, and are modeled by combining
elements that represents both characteristics. There are several models of interest
to quantify the related behaviour. Rivlin-Ericksen fluid model is one of such model.
Stress relaxation describes how viscoelastic materials relieve stress under constant
strain.

With the importance in various applications mentioned above, our main aim in the
present paper is to study the effect of suspended particles on thermal convection for
a compressible Rivlin-Ericksen elastico-viscous fluid in a Darcy-Brinkman porous
medium. To the best of our knowledge, this problem has not been investigated so
far.

2 Mathematical model and perturbation equations

Here we consider an infinite, horizontal, compressible Rivlin-Ericksen elastico-
viscous fluid of depth d, bounded by the planes z = 0 and z = d in an isotropic and
homogeneous medium of porosity ε and permeability k1, which is acted upon by
gravity g(0,0,−g) as shown in figure 1. This layer is heated from below such that
a steady adverse temperature gradient β =

(∣∣dT
dz

∣∣) is maintained. The character of
equilibrium of this initial static state is determined by supposing that the system is
slightly disturbed and then following its further evolution.

Let ρ , v, v
′
, p, ε , T , α and v, denote respectively, the density, kinematic viscosity,

kinematic viscoelasticity, pressure, medium porosity, temperature, thermal coeffi-
cient of expansion and velocity of the fluid.

The equations expressing the conservation of momentum, mass and temperature for
compressible Rivlin-Ericksen elastico-viscous fluid in a Brinkman porous medium
[Chandrasekhar (1981); Scanlon and Segel (1973); Sharma and Rana (2001); Rana
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Figure 1: Schematic Sketch of Physical Situation
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where vd(x̄, t) and N(x̄, t) denote the velocity and number density of the particles
respectively, K

′
= 6φρvη , where η is particle radius, is the Stokes drag coefficient,

vd = (l,r,s) and x̄ = (x,y,z), C f , Cpt and kT denote, respectively, the heat capacity
of the pure fluid, heat capacity of particles and ’effective thermal conductivity’ of
pure fluid.

If mN is the mass of particles per unit volume, then the equations of motion and
continuity for the particles are

mN
[

∂vd

∂ t
+

1
ε
(vd .∇)vd

]
= K

′
N(v− vd), (4)

ε
∂N
∂ t

+∇(Nvd) = 0. (5)

The presence of particles adds an extra force term proportional to the velocity dif-
ference between particles and fluid and appears in the equation of motion (1). Since
the force exerted by the fluid on the particles is equal and opposite to that exerted
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by the particles on the fluid, there must be an extra force term, equal in magnitude
but opposite in sign, in the equations of motion for the particles (4). The buoyancy
force on the particles is neglected. Interparticles reactions are not considered either
since we assume that the distance between the particles are quite large compared
with their diameters. These assumptions have been used in writing the equations of
motion (4) for the particles.

The state variables pressure, density and temperature are expressed in the form
[Spiegal and Veronis (1960)]

f (x,y,z, t) = fm + f0(z)+ f
′
(x,y,z, t), (6)

where fm denotes for constant space distribution f , f0 is the variation in the absence
of motion, and f

′
(x,y,z, t), is the fluctuation resulting from motion. The basic state

of the system is

p = p(z),ρ = ρ(z),T = T (z),v = (0,0,0) (7)

where

p(z) = pm−g
z∫

0

(ρm +ρ0)dz,ρ(z) = ρm[1−αm(T −T0)+Km(p− pm)],

T =−β z+T0,αm =−
(

1
ρ

∂ p
∂ t

)
m
,Km =

(
1
ρ

∂ρ

∂ p

)
m
.

Here pm and ρm denote a constant space distribution of p and ρ while T0 and ρ0
denote temperature and density of the fluid at the lower boundary.

The equation of state is

ρ = ρm[1−α(T −T0)], (8)

where α is the coefficient of thermal expansion, as the density variations arise
mainly due to temperature variations. Following the assumptions given by Spiegal
and Veronis (1960) and the results for compressible fluid, the flow equations are
found to be the same as that of incompressible fluid except that the static temper-
ature gradient β is replaced by the excess over the adiabatic β − g/cp, cp being
specific heat of the fluid at constant pressure.

Let v(u,v,w), vd(l,r,s), N0, θ , δp and δρ denote, respectively, the perturbations
in fluid velocity v(0,0,0), particle velocity vd(0,0,0), suspended particles number
density N, temperature T , pressure p and density ρ .

The change in density δρ caused by perturbation θ in temperature is given by

δρ =−αρmθ . (9)
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The linearized perturbation equations governing the motion of fluid are

1
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where v = µ

ρm
, v
′
= u

′

ρm
, κ = kT

ρmC f
, g

C f
and w stand for kinematic viscocity, kinematic

viscoelasticity, thermal diffusivity, adiabatic gradient and vertical fluid velocity,
respectively.

Also b =
mN0Cpt
ρmC f

and w, s are the vertical fluid and particles velocity and

E = ε +(1− ε)

(
ρsCs

ρmC f

)
,

which is constant, κ is the thermal diffusivity and µ̃ is effective viscosity of porous
medium; ρs, Cs; ρm, C f denote the density and heat capacity of solid (porous)
matrix and fluid respectively.

3 The dispersion relation

Following the normal mode analyses, we assume that the perturbation quantities
have x, y and t dependence of the form

[w,θ ] = [W (z),Θ(z)]exp(ilx+ imy+nt), (15)

where l and m are the wave numbers in the x and y directions, k = (l2 +m2)1/2

is the resultant wave number and n is the frequency of the harmonic disturbance,
which is, in general, a complex constant. Using equation (15), Equations (10)–(14)
after a little algebra, can be written in non-dimensional form as[

1+
(

Pl

ε
+

MPl

ε(1+ τ1σ)
+F

)
σ −DA(D2−a2)

]
(D2−a2)W +

gαa2d2PlΘ

v
= 0,

(16)
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(D2−a2−E
′
p1σ)Θ =−

(
βd2

κ

)(
G−1

G

)(
B+ τ1σ
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)
W, (17)

where we have put a = kd, σ = nd2

v , E
′
= E + bε , τ = m

K′
, τ1 = τv

d2 , M = mN0
ρ0

,

B= b+1, Pl =
k1
d2 , is the dimensionless medium permeability, p1 =

v
κ

, is the thermal

Prandtl number, F = v
′

d2 , is the dimensionless kinematic viscoelasticity, DA = µ̃k1
µd2 ,

is the Darcy-Brinkman number and D∗ = d d
dz and the superscript ∗ is suppressed.

Eliminating Θ between equations (16) and (17), we obtain{[
1+
(

Pl

ε
+

MPl

ε(1+ τ1σ)
+F

)
σ −DA(D2−a2)

]
(D2−a2)(D2−a2−E p1σ)

}
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Ra2Pl

(
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G

)(
B+ τ1σ
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)
W = 0, (18)

where R = gαβd4

vκ
, is the thermal Rayleigh number.

Here we assume that the temperature at the boundaries is kept fixed, the fluid
layer is confined between two boundaries and adjoining medium is electrically
non-conducting. The boundary conditions appropriate to the problem are [Chan-
drasekhar (1981)]

W = D2W = D4W = θ = 0 at z = 0 and 1. (19)

The case of two free boundaries, though a little artificial is the most appropriate for
stellar atmospheres. Using the boundary conditions (19), we can show that all the
even order derivatives of W must vanish for z = 0 and z = 1 and hence the proper
solution of W characterizing the lowest mode is

W =W0 sinπz; W0 is a constant. (20)

Substituting equation (20) in (18), we get

R1xP
(

G−1
G

)
=

[
1+
(

P
ε
+

MP
ε(1+ τ1iσ1)

+ τ
2F
)

iσ1 +DA1(1+ x)
]

(1+ x+E
′
p1iσ1)

(
1+ τ1π2iσ1

B+ τ1π2iσ1

)
, (21)

where we have put

R1 =
R
π4 ,DA =

DA

π2 ,x =
a2

π2 , iσ =
σ

π2 ,P = π
2Pl.

Equation (21) is required dispersion relation accounting for the onset of thermal
convection in compressible Rivlin-Ericksen elastico-viscous fluid permeated with
suspended particles in a Darcy-Brinkman porous medium.
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4 Oscillatory modes

Here, we examine the possibility of oscillatory modes, if any, in compressible
Rivlin-Ericksen elastico-viscous fluid due to the presence of suspended particles,
viscoelasticity, medium permeability and gravity field. Multiplying equation (18)
by W ∗, the complex conjugate of W , integrating over the range of z and making use
of equations (18) with the help of boundary conditions (19), we obtain[

1+
(

Pl

ε
+

MPl

ε(1+ τ1σ
+F

)
σ

]
I1−DAI2−

αa2gκPl

vβ

(
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)(
G
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)
(I3 +E p1σ

∗I4) = 0, (22)

where
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∫ 1

0
(|DW |2 +a2|W |2)dz
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∫ 1

0
(|D2W |2 +a4|W |2 +2a2|DW |2)dz
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0
(|DΘ|2 +a2|Θ|2)dz

I4 =
∫ 1

0
(|Θ|2)dz,

The integral part I1− I4 are all positive definite. Putting σ = iσi in equation (22),
where σi is real and equating the imaginary parts, we obtain[(

Pl

ε
+

MPl

ε(1+ τ2
1 σ2

i )
+F

)
I1 +

αa2gκPl

vβ

(
G
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)
{(

τ1(B−1)
B2 + τ2

1 σ2
i

)
(I3 +E

′
p1I4)

}]
σi = 0, (23)

Equation (23) implies that σi = 0 or σi 6= 0 which mean that modes may be non-
oscillatory or oscillatory. The oscillatory modes introduced due to presence of vis-
cosity, viscoelasticity, suspended particles and medium permeability, which were
non-existent in their absence.

5 The Stationary Convection

For stationary convection, putting σ = 0 in equations (21), we obtain

R1 =
(1+ x)2

xPB

(
G

G−1

)
[1+(1+ x)DA1 ] (24)
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Equation (24) expresses the modified Rayleigh number R1 as a function of the
dimensionless wave number x and the parameters G, B, DA1 , P and compress-
ible Rivlin-Ericksen elastico-viscous fluid behave like an ordinary Newtonian fluid
since elastico-viscous parameter F vanishes with σ .

Let the non-dimensional number G accounting for compressibility effect is kept as
fixed, then we get

R̄c =

(
G

G−1

)
Rc, (25)

where R̄c and Rc denote, respectively, the critical number in the presence and ab-
sence of compressibility. Thus, the effect of compressibility is to postpone the
instability on the onset of thermal instability. The cases G = 1 and G < 1 corre-
spond to infinite and negative values of Rayleigh numbers due to compressibility
which are not relevant to the present study.

To study the effects of suspended particles, Darcy number and medium permeabil-
ity, we examine the behavior of ∂R1

∂B , ∂R1
DA1

and ∂R1
∂P analytically.

From equation (24), we get

∂R1

∂B
=−(1+ x)2

xPB2

(
G

G−1

)
[1+(1+ x)DA1 ], (26)

which is negative. Hence, suspended particles have destabilizing effect on the
thermal convection in Rivlin-Ericksen elastico-viscous fluid in a Brinkman porous
medium. This destabilizing effect is an agreement of the earlier work of Scanlon
and Segel (1973).

From equation (24), we get

∂R1

∂DA1

=
(1+ x)3

xPB

(
G

G−1

)
, (27)

which is positive implying thereby the stabilizing effect of Darcy number on the
system. This stabilizing effect is an agreement with the earlier work of Rana (2011).

It is evident from equation (24) that

∂R1

∂P
=−(1+ x)2

xP2B

(
G

G−1

)
[1+(1+ x)DA1 ]. (28)

From equation (28), we observe that medium permeability has destabilizing effect
on the on the system. This destabilizing effect is an agreement of the earlier work
of Scanlon and Segel (1973); Sharma and Rana (2001); Rana (2011); Rana and
Kango (2011).
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The dispersion relation (24) is analyzed numerically. Graphs have been plotted by
giving some numerical values to the parameters, to depict the stability characteris-
tics.

Figure 2: Variation of Rayleigh number R1 with suspended particles B for G = 5,
P = 2 and DA1 = 10 for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8

Figure 3: Variation of Rayleigh number R1 with Darcy-Brinkman number DA1 for
G = 5, P = 2 and B = 3 for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8.

In fig. 2, Rayleigh number R1 is plotted against suspended particles B for G = 5,
P = 2 and DA1 = 10 for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8. This
shows that suspended particles has a destabilizing effect on the thermal convection
in Rivlin-Ericksen elastico-viscous fluid in a Darcy-Brinkman porous medium. In



Onset of Thermal Convection in a Compressible Viscoelastic Fluid 261

Figure 4: Variation of Rayleigh number R1 with medium permeability P for G = 5,
B = 3 and DA1 = 10 for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8.

Fig. 3, Rayleigh number R1 is plotted against with Darcy-Brinkman number DA1

for G = 5, P = 2, B = 3 for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8. This
shows that Darcy-Brinkman number has a stabilizing effect on the thermal convec-
tion in Rivlin-Ericksen elastico-viscous fluid permeated with suspended particles
in a Darcy-Brinkman porous medium.

In fig. 4, Rayleigh number R1 is plotted against medium permeability P for G = 5,
DA1 = 10 and B = 3 for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8. This
shows that medium permeability has a destabilizing effect on the thermal convec-
tion in Rivlin-Ericksen elastico-viscous fluid permeated with suspended particles
in a Darcy-Brinkman porous medium.

6 Conclusion

The effect of suspended particles on thermal convection in a compressible Rivlin-
Ericksen Walters’ (Model B’) elastico-viscous fluid heated from below in a Darcy-
Brinkman porous medium has been investigated. A dispersion relation, including
the effects of suspended particles, Darcy-Brinkman number, medium permeability
and viscoelasticity on thermal convection has been derived. From the analysis, the
following main conclusions have been derived:

(i) For the case of stationary convection, the compressible Rivlin-Ericksen elastico-
viscous fluid behaves like an ordinary Newtonian fluid in the limit as the
elastico-viscous parameter F vanishes with σ .

(ii) Expressions for ∂R1
∂B , ∂R1

DA1
and ∂R1

∂P have been examined analytically and it has
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been found that the Darcy-Brinkman number has a stabilizing effect whereas
the suspended particles and medium permeability have a destabilizing effect
on the system.

(iii) Oscillatory modes are introduced due to presence of viscoelasticity, suspended
particles, gravity and medium permeability.

Acknowledgement: The authors are grateful to the learned referees and editor
for their technical comments and valuable suggestions for the improvement of the
paper.
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Appendix A: Nomenclature

d Depth of fluid layer, m

F Dimensionless kinematic viscoelasticity

Pl Dimensionless medium permeability

g Gravitational acceleration, ms−2

n Growth rate of the disturbance, s−1

Cpt Heat capacity of particle, Jkg−1K−1

C f Heat capacity of fluid Jkg−1K−1

G Dimensionless compressibility

m Mass of suspended particle, kg

DA Darcy-Brinkman number

p Pressure, Pa

Cp Specific heat of the fluid at constant pressure, Jkg−1K−1

Cpt Heat capacity of particle, Jkg−1K−1

K Stokes drag coefficient

N Suspended particle number density, m−3

p1 Thermal Prandtl number

v Velocity of fluid, ms−1

vd Velocity of suspended particles, ms−1

k Wave number of disturbance, m−1
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T Temperature, K

Greek Symbols

β Adverse temperature gradient, Km−1

µ̃ Effective viscosity of the porous medium, kgm−1s−1

ρ Fluid density, kgm−3

µ Fluid viscosity, kgm−1s−1

µ
′

Fluid viscoelasticity, kgm−1s−1

v Kinematic viscosity, m2s−1

v
′

Kinematic viscoelasticity, m2s−1

δ Perturbation in respective physical quantity

θ Perturbation in temperature, K

η Radius of suspended particles, m

κ Thermal diffusitivity, m2s−1

α Thermal coefficient of expansion, K−1




