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A Finite Element Investigation of Elastic Flow
Asymmetries in Cross-Slot Geometries Using a Direct

Steady Solver
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Abstract: Numerical investigations of purely-elastic instabilities occurring in creep-
ing flows are reported in planar cross-slot geometries with both sharp and round
corners. The fluid is described by the upper-convected Maxwell model, and the
governing equations are solved using the finite element technique based on a steady
(non-iterative) direct solver implemented in the POLYFLOW commercial software
(version 14.0). Specifically, extensive simulations were carried out on different
meshes, with and without the use of flow perturbations, for a wide range of rheo-
logical parameters. Such simulations show the onset of flow asymmetries above a
critical Deborah number (De). The effect of rounding the corners is also addressed.
The numerical results obtained are found to be in good quantitative agreement with
previously published numerical results

Keywords: Purely-elastic flow instabilities; Sharp and round cross-slot geome-
tries; Finite-element method, Upper-Convected Maxwell (UCM) model.

1 Introduction

The cross-slot flow belongs to the group of stagnation point flows and in this partic-
ular case the stagnation point is created at the center. [Arratia et al (2006)] have re-
ported experimentally symmetry-breaking and oscillatory instabilities in cross-slot
flows of polymer solutions at high enough Deborah (De) numbers. Here De is de-
fined as (≡ λU /H) and represents the ratio of a fluid characteristic time (relaxation
time, λ ) to that of the flow with U and H representing a characteristic velocity and
length scales respectively. Additionally, the cross-slot geometry has been a widely
employed extensional flow test case in computational rheology [Remmelgas et al
(1999); Singh and Leal (1995)]. In particular, the flow in such geometry is charac-
terized by a strong extensional component similar to that found in several industrial
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flows and in a number of practical applications such as in flow focusing devices for
the generation of droplets [Anna et al (2003)], in DNA sequencing [Dylla-Spears et
al (2010)], in extensional flow oscillatory rheometry [Odell and Carrington (2006)]
and in an extensional micro-rheometer [Haward (2012)]. Hence, the ability to pre-
dict the details of such flows and the symmetry breakdown not only provides a
good test of the computational techniques that can be used in the design of practi-
cal equipment where similar flows can occur, but is also an essential requirement
for the correct design of microsystems. In fact, the onset of flow instabilities limits
the range of operation of the cross-slot device as an extensional rheometer, or as
a component of a flow focusing device for the generation of droplets. In contrast,
flow instabilities may also be desired at microscale for development of efficient
micromixing systems.

Contrary to Newtonian fluid flows that become unstable only at relatively high
Reynolds numbers (Re), flows of viscoelastic fluids such as polymer solutions and
melts, are known to exhibit flow instabilities and nonlinear dynamical behavior at
extremely low Re, defined as Re (≡ρUH/η) and represents the relative importance
of inertia to viscous forces within the flow, ρ and η represent the density and the
viscosity of the fluid respectively. Such instabilities are due to nonlinear elastic
effects and can be seen in many practical applications such as in the rheometry
of complex fluids. In shear, for example, [Giesekus (1966)] observed cellular in-
stabilities in Taylor-Couette flows of non-Newtonian fluids at very low Reynolds
(Taylor) numbers and [Larson et al (1990)] demonstrated experimentally that such
non-Newtonian instabilities are caused by fluid elasticity. The mechanism of this
instability is a purely elastic one, and is related to the coupling of perturbations in
the hoop stress with the base state velocity gradients.

The elastic instabilities are also often present in extensionally dominated non-
Newtonian fluid flows exhibiting an interior stagnation point and in this respect the
cross-slot geometry has recently been the focus of several identifications. [Arratia
et al (2006)] identified experimentally, using particle tracking image velocimetry
and flow visualization, a new type of flow instability associated with viscoelastic-
ity, for the flow in a microscale cross-slot geometry. Two distinct instabilities were
identified in the low Re (< 0.01) flow of flexible polymer solutions: the first above
a critical flow rate (or Deborah number), where the flow patterns progressively ac-
quired a steady flow asymmetry in a symmetric geometry, followed by a second
instability towards time-dependent asymmetric flows above a second (higher) crit-
ical Deborah number.

Numerical investigations of the two-dimensional cross-slot flow, using the finite-
volume methodology were carried by [Poole et al (2007)], who showed that the
same asymmetric behavior can be predicted using the Upper-Convected Maxwell
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(UCM) model and were able to capture qualitatively the supercritical bifurcation,
under creeping-flow conditions. At low Deborah numbers the flow remains steady
and symmetric, whereas above a critical Deborah number (Decr = 0.31) the flow
becomes asymmetric but remains steady. Increasing further the Deborah number
produced a second instability where the flow became time-dependent. It was also
shown that increasing the Reynolds number leads to a shift of the first critical Deb-
orah number to higher values, and a considerable decrease of the flow asymmetry.
The authors conjectured that the asymmetry is due to the compressive nature of
the flow upstream of the stagnation point. [Oliveira et al (2009)], using a finite-
volume code and both UCM and Phan-Thien–Tanner (PTT) models, considered a
cross-slot with three inlets and one exit arm and found the two types of instability
mentioned above in this flow focusing device. The authors conjectured also that
this bifurcation to asymmetric flow is a stress relief mechanism. A simulation of
a three-dimensional cross-slot geometry with six arms was carried out by [Afonso
et al (2010)] using the UCM model. The influences of the ratio of the inlet to the
outlet flow rates and of the Deborah and Reynolds numbers for different types of
extensional flow corresponding to biaxial and uniaxial extensional flow configura-
tions were analyzed. For the uniaxial extensional flow the authors reported similar
findings to the 2D planar flow geometry where the flow becomes steady asymmet-
ric for the first critical Deborah number, Decr ≈ 0.22 and unsteady asymmetric for
a second critical Deborah number, Decr ≈ 0.32. However, for the biaxial flow con-
figuration only one transition from steady symmetric to unsteady asymmetric flow
was observed, at De ≈ 0.61. It was also shown for the uniaxial flow configuration
that inertia has a stabilizing effect and the first critical Deborah number increases
with Re, while for the second transition inertia helps destabilize the flow and the
second critical Deborah number decreases with Re. This role of inertia is similar to
that previously seen for the 2D crossslot flow by [Poole et al (2007)].

Subsequently, other numerical studies analyzed the influence of the constitutive
equation and its rheological parameters such as [Rocha et al (2009)], who used
the shear-thinning FENE-P model [Bird et al (1980); Bird et al (1987)] and the
constant-viscosity FENE-CR model proposed by [Chilcott and Rallison (1988)],
respectively. It is clear from the above that purely elastic instabilities in cross-slot
flows have been identified using experimental and numerical means and that both
approaches show that the symmetry to asymmetry steady flow transition is a su-
percritical bifurcation with the correct signature (bifurcation diagram). However
and understandably, the rheology of the fluids used in the simulations have not
attempted to faithfully reproduce the actual fluids used in the experiments which
could explain the discrepancies between the values of the critical Deborah num-
bers from the calculations and experiments. Most simulations referred to for the
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viscoelastic flow in the cross-slot made use of the finite volume technique based
on a variety of iterative solvers either in steady or unsteady modes and represent
contributions from essentially one group of researchers using the same viscoelastic
flow solver, hence it remains to be shown whether the bifurcation can be detected
by other integration techniques as well. Thus, in this work we investigate the vis-
coelastic flow in 2D orthogonal geometries with four arms, consisting of two op-
posed inlets and outlets, using the UCM model at low Reynolds number (Re ≈ 0).
The numerical integration approach uses for the first time the finite element tech-
nique embedded in the POLYFLOW commercial software, which is based on the
DEVSS/SU (Discrete Elastic Viscous Split Stress/Streamline Upwinding) scheme
and contrary to previous works we use a non-iterative direct robust solver. In this
work and because a non-iterative direct solver is used we show that the supercriti-
cal bifurcation can still be obtained using a non-symmetrical mesh. The parameters
that influence the appearance of asymmetric flow such as the roundness of the cor-
ners are discussed and confirm previously obtained results.

2 Mathematical and numerical models

The basic equations governing the viscoelastic incompressible flow of a UCM fluid
are the mass conservation and the momentum equations, together with a constitu-
tive equation for the upper-convected Maxwell model, which are given by

∇ ·uuu = 0, (1)

ρ∇ · (uuuuuu) =−∇ppp+∇ ·TTT (2)

TTT +λ
∇

TTT = 2ηDDD, (3)

where u represents the velocity, p the pressure, ρ the fluid density, T the extra-stress
tensor, D the rate of deformation tensor, η is the viscosity coefficient of the UCM
model and λ is the relaxation time of the fluid. The UCM constitutive equation is
the simplest model that features memory effects and elastic normal stresses and is
characterized by a constant shear viscosity. These are some of the characteristics of
a class of real viscoelastic fluids, the so-called Boger fluids, but at the same time this
constitutive model can exhibit unbounded stresses in pure extensional flow leading
to convergence difficulties of the numerical methods, so it is used as an important
test for the performance of codes in benchmark flows in computational rheology.

The upper-convected derivative
∇

TTT of the viscoelastic extra-stress and the rate of
deformation tensor D are defined respectively by

∇

TTT = uuu ·∇TTT −TTT ·∇uuu−∇uuuT ·TTT , (4)
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DDD = (∇uuu+∇uuuT )/2. (5)

In view of its rheological simplicity, the UCM model is one of the simplest vis-
coelastic constitutive equations. It exhibits a constant shear viscosity and a quadratic
first normal-stress difference as a function of the shear rate. It is however, recom-
mended only when limited information about the fluid is available, or when a quali-
tative prediction is sufficient. Nevertheless, this model is very challenging from the
numerical point of view, due to its inherent stress singular behavior near corners or
near geometric singularities [Oliveira et al 1998]). The loss of convergence of the
iterative schemes beyond a critical high Weissenberg number in a contraction flow
[Keunings (1986)], often accompanied by a loss of evolution of the configuration
tensor [Dupret and Marchal (1986)] were major motivations for developments in
computational rheology.

In this work, the numerical simulations have been performed using the POLYFLOW
solver, which is based on the finite element numerical method. The advective na-
ture of the constitutive equation and the interaction of multiple discrete unknown
fields (viscoelastic stress, velocity and pressure) both present a challenge to nu-
merical modeling. An algebraic multi-frontal Approximate Minimum Fill (AMF)
direct solver is used to solve the governing equations. Due to the highly non-linear
characteristics of non-Newtonian flows, their numerical simulation remains a chal-
lenging task in terms of accuracy, stability and convergence. To deal with con-
vergence and obtain stable solutions, a mixed finite element method (DEVSS/SU),
which combines the discrete version of the elastic-viscous split stress (DEVSS)
method, [Guénette and Fortin (1995)], and the streamline upwinding (SU) scheme,
was used for discretizing the governing equations.

The DEVSS method is proposed as a discrete version of the elastic viscous stress
splitting method (EVSS) of [Rajagopalan et al (1990)], in which an auxiliary vari-
able DDD, as a discrete counterpart of the rate of deformation tensor and an indepen-
dent variable is introduced, and determined in terms of satisfaction in a weighted
average form,

DDD−DDD = 0. (6)

Further, taking the divergence of Eq. (5) and adding a diffusive term −2η∇ · (DDD−
DDD) to the momentum equation, with the use of Eq. (4), we obtain

ρ∇ · (uuuuuu) =−∇p+2η∇ ·DDD+∇ ·TTT −2η∇ ·DDD. (7)

This equation is the stabilized form of the original momentum equation re-formulated
in terms of the DEVSS method. Equations (1), (3) and (7) constitute the governing
equations, in which the three main variables u, p, T and an auxiliary variable DDD
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are involved. DDD is the projected rate-of-deformation tensor into the stress space
[Rajagopalan et al (1990)].

In the present study, an evolution method for the relaxation time λ and the DE-
VSS/SU method were used to reach numerical convergence and to deal with the
viscoelastic stress terms. In POLYFLOW, convergence assessment is based on the
calculation of a global relative error for each field (pressure, velocity, extra-stress).
The relative error is calculated as the ratio of the difference in the value of a given
field at every node between two successive iterations and the maximum value of
the field. The convergence criterion used in our simulations was 10−5, which is
considered to be sufficient for a properly converged solution.

Most non-linear problems require successive incrementation (or decrementation)
of the parameters controlling the non-linearity. Each iterative step starts from the
solution obtained at the previous step, or from a solution extrapolated on the basis
of previous solutions. Evolution is an incremental numerical scheme facilitating the
convergence of complex flow problems. In POLYFLOW, any problem parameter
can be defined as an algebraic function of the single evolution variable S. Dur-
ing the evolution process, the value of the specific parameter will be calculated as
the product of its nominal value and of a function of S selected for that particular
parameter.

For differential type viscoelastic constitutive models the appropriate evolution is
usually based on either the fluid relaxation time (λ ) or the flow rate Q providing
gradual increases in the values assigned to the Deborah number. In this work the
evolution technique is applied to the relaxation time such that λ i = f (Si) λ nom,
where λ nom is the nominal relaxation time, f (Si) = Si = Si−1 +∆Si−1, with initial
and final values of S given by S0 = 0 and S f inal = 1, respectively. The initial value
of ∆S is ∆S0 = 0.01, with S representing the evolution variable.

The solution of the non-linear problem is obtained using a direct solver based on
Gaussian elimination with the converged solution of the previous step used as the
initial guess when available. For example, for i = 1, we have λ1 = f (S1) λ nom,
if the solution converges ∆S1 = 1.5 ∆S0 and S2 = S1 +∆S1, then for i = 2, λ 2 = f
(S2) λ nom. However, if the solution diverges, ∆S’1 = ∆S1 / 2 and S2 = S1 +∆S′1 and
the iteration is re-done. If the solution diverges again ∆Si is progressively halved
until it becomes less than a minimum ∆Smin = 10−4 at which point the simulation
is interrupted.

3 Problem geometry and setup

The cross-slot geometries are shown schematically in Figure 1 for the cases with
(a) sharp and (b) round corners, the latter with a radius of curvature R = 0.1H. All
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branches have the same width (H) and the inlet and outlet branches have lengths
of ten channel widths (10 H). The geometry is two-dimensional and symmetric
about the planes x = 0 and y = 0, with the origin of the coordinates system set at the
center of the geometry. At the inlets fully-developed velocity and stress profiles are
imposed (in some tests uniform velocity profiles were also used) and the chosen
inlet length is more than sufficient for the flow at the junction to be independent of
the inlet condition. Similarly, the outlets are sufficiently long to avoid any effect of
the outflow boundary condition upon the flow in the central region. At the outlet
planes vanishing axial gradients are applied to velocity, extra-stress and pressure
gradient (Neumann boundary conditions: ∂ϕ/∂y = 0), and no-slip conditions are
imposed at all channel walls.
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Figure 1: Schematic of cross-slot geometry: (a) Sharp corners; (b) Round corners.

Grid sensitivity tests have been conducted with different numbers of cells to calcu-
late the velocity profile at the center of the cross-slot and obtain a grid independent
solution. Details of the different grid sensitivity tests performed are given in Tables
1 and 2 for the sharp and round corners cross-slot geometries, respectively.

The finite element grid in Figure 2 was established based on the expected behavior
of the solution. Near the walls the gradients produced by the no-slip boundary
condition dictated the use of smaller mesh spacing than for the slowly varying core
flow regions. The gradients produced by the sharp and round corners in the central
square also required a refined mesh to represent the solution adequately.

The variation of normalized streamwise velocity profile along the inlet centerline is
plotted for different meshes in Figure 3 (a) and (b) for the sharp and round corners
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Table 1: Characteristics of the mesh for sharp corners geometry

Blocks
M1 M2 M3

Nx Ny Nx Ny Nx Ny
I 25 25 50 50 75 75
II 105 25 130 50 180 75
III 105 25 130 50 180 75
IV 25 105 50 130 75 180
V 25 105 50 130 75 180

TNE = 10125 28500 56625
TNC = 10556 29121 57456

Table 2: Characteristics of the mesh for round corners geometry

Blocks
M4 M5 M6

N1 N2 N1 N2 N1 N2
I 10 12 15 25 25 35

Nx Ny Nx Ny Nx Ny
II 105 25 130 50 180 75
III 105 25 130 50 180 75
IV 25 105 50 130 75 180
V 25 105 50 130 75 180

TNE = 10560 28000 50400
TNC = 11049 28661 51261
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Figure 2: Details of symmetric meshes (-2.5 ≤ x/H ≤ 2.5, -2.5 ≤ y/H ≤ 2.5): (a)
Sharp corners (Mesh M2); (b) Round corners geometry (Mesh M5).

cross-slot geometries, respectively. It is clear that the differences between meshes
M2 and M3 for sharp corners and M5 and M6 for round corners geometry are
negligible; therefore, to reduce the computational time further computations were
carried out in meshes M2 and M5 for the sharp and round cross-slots, respectively.

It was found that the simulations with the symmetric meshes always returned a
symmetric flow whatever the value of De. Consequently a mesh with a mild asym-
metric distribution of cells was also used to see whether the calculated flow would
become asymmetric as found by [Poole et al (2007)], where no perturbation was
required to obtain the steady asymmetric flow using an iterative solver and a per-
fect symmetric mesh was considered in their study. Several meshes with different
degrees of asymmetry were tried. Figure 4 represents the mesh with the mildest
asymmetry that returned asymmetric flow beyond the critical De. Results with a
higher asymmetry in the mesh were the same as the ones shown here. However,
meshes with a lower asymmetry than Fig. 4 returned a symmetric flow throughout.
The results of the extensive set of computations in both symmetric and asymmetric
meshes are reported in the next section.

4 Results and discussion

The results presented in this section are mainly provided in the form of streamline
patterns superimposed onto contour plots of the normalized first-normal stress dif-
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Figure 3: Dimensionless profiles of the streamwise velocity along the inlet center
plane for different meshes: (a) Sharp corner (b) Round corner.

ference and in terms of the parameter DQ (which quantifies the flow asymmetry)
as function of De, where DQ = (Q2-Q1)/Q with Q = Q1 +Q2= UH representing
the total flow rate per unit depth supplied to each inlet channel, which is divided in
two partial flow rates Q1 and Q2 [Poole et al (2007)]. Symmetric and asymmetric
flows are predicted for both geometries considered. The effects of the cross-slot
sharp and round corners and of rheological parameters that influence the flow are
discussed together with the effect of flow inertia.
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Figure 4: Details of asymmetric meshes near the intersection for the (a) sharp and
(b) round corners geometries.
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4.1 Symmetric Flow

Figures 5 and 6 present streamline patterns superimposed onto contour plots of (τyy-
τxx)/(η U /H) for Newtonian and non-Newtonian fluids for both sharp and round
corners geometries, respectively.

                             

                             

(a) 

(c) 

(b) 

(d) 

(a) 

(c) 

Figure 5: Streamline patterns superimposed onto dimensionless contour plots of
(τyy-τxx)/(ηU/H) for the sharp corner cross-slot mapped with a symmetric mesh:
(a) De=0 (Newtonian); (b) De = 0.34; (c) De = 0.38; (d) De = 0.45.

For the sharp corner geometry, results for the Newtonian fluid presented in figure
5 (a) show a perfectly symmetric flow, as expected. For the non-Newtonian fluid
at different supercritical Deborah numbers (De = 0.34, 0.38 and 0.45) the flow
remains symmetric as shown in figures 5 (b), 5 (c) and 5 (d) respectively, even when
the Deborah number exceeds the critical value computed by [Poole et al (2007)].
These cases were computed with symmetric meshes and it can be seen that the
normalized normal stress difference values (τyy-τxx)/(ηU/H) grow with Deborah
number, but flow asymmetry is not captured even when using a highly refined mesh,
such as M3.

Sharp corners are well known to be troublesome in the numerical solution of vis-
coelastic flow equations [Owens and Phillips (2002)] and in many of the early
simulations of the cross-slot, in which only one quarter of the full geometry was
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(d) (c) 

(b) (a) 

Figure 6: Streamlines patterns superimposed onto contour plots of (τyy-
τxx)/(ηU/H) for the round corner cross-slot mapped with a symmetric mesh: (a)
De=0 (Newtonian); (b) De = 0.34; (c) De = 0.38; (d) De = 0.45.

simulated, the corner was artificially rounded off by a slight amount [Remmelgas
(1999)] in order to enable high Deborah number solutions to be obtained. Com-
putations were also carried out here in geometries with rounded corners and these
are shown in Figure 6 for the same Deborah numbers of the sharp corner geometry.
Again the flow is symmetric in this geometry mapped with symmetric meshes for
all flows, i.e., for the Newtonian case as well as for the non-Newtonian flows at
Deborah numbers of De = 0.34, 0.38 and 0.45. As will be shown later, the critical
Deborah number for the round geometry is around 0.34, so the flows at the higher
values of De are clearly supercritical and these symmetric flow solutions are a result
of the non-iterative nature of the direct solver used

Bifurcation of the numerical solution is triggered by some possible imbalance of
the high stresses generated in these corner regions and high compressive stresses
generated along the centerline region of the two incoming flow streams. This be-
havior can be seen in the comparison between normalized stress difference values
for the sharp corners geometry, which are larger than those of the round corners ge-
ometry for the same Deborah numbers, as is clear from the contour plots in Figures
5 and 6.
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4.2 Asymmetric Flow

All simulations with a symmetric mesh returned a perfectly symmetric flow for the
elastic fluids, even beyond the critical Deborah number determined by [Poole et al
(2007)]. In addition, several tests with tighter convergence criteria equal to 10−10

also returned a perfectly symmetric flow beyond the critical Deborah number. Bear-
ing in mind that the numerical approach uses a robust direct solver, it was decided
to test separately two types of perturbations, one in terms of the inlet velocity at the
initial stages of the computation and the second in the form of a slight asymmetry
in the mesh topology used. This section reports on such calculations for both sharp
and rounded corners.

Regarding the perturbation in the inlet velocity profile, two strategies were used to
perform numerical simulations under conditions of supercritical De, but to no avail,
i.e., the final solution was still a symmetric flow. In one case instead of using a uni-
form inlet velocity profile, an asymmetric inlet profile with the same bulk velocity
was imposed at the beginning of the computations and after some iteration, the
inlet profile was switched back to the uniform profile. In the other case the simula-
tions were conducted under supercritical conditions only to converge to a solution
that was symmetric. Then, on half of one inlet the velocity profile was increased
by 10% (and 20% in a second trial) and on the other half the velocity profile was
decreased by the same amount to preserve the bulk velocity. The numerical sim-
ulation was restarted for a while with this non-uniform inlet velocity profile, and
subsequently restarted again with the original uniform profile until convergence. In
all cases tested the final result was a symmetric flow. Next, the results obtained
with the asymmetric mesh are discussed.

Streamlines superimposed on contours of the normalized first normal-stress differ-
ence (τyy-τxx)/(η U /H), are presented in Figure 7 for Newtonian and non-Newtonian
fluid flows in the sharp corners cross-slot at increasing De, which were obtained
with the asymmetric mesh of 10127 elements (10625 nodes) shown in Figure 4 (a).
Using more refined asymmetric meshes, containing 30500 elements (31161 nodes)
and 64000 elements (64881 nodes), led to divergence of the numerical method.

Using the asymmetric mesh of 10127 elements, perfectly symmetric flows were
calculated for the Newtonian fluid and viscoelastic fluid at De = 0.28 as shown
in Figures 7 (a) and 7 (b), respectively. Note that this Deborah number is be-
low the critical value reported by [Poole et al (2007)], hence the results were ex-
pected. However, above a critical Deborah number of De ≈ 0.31, the flow be-
comes asymmetric and for higher Deborah numbers, such as De = 0.45, the flow
is strongly asymmetric (cf. Figure 7 (f)). The corresponding local Weissenberg
number (Wi≡ λ ε̇), based on the strain rate at the stagnation point, is also indicated
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Figure 7: Streamlines patterns superimposed onto contour plots of (τyy-
τxx)/(ηU/H) for the sharp corner cross-slot mapped with an asymmetric mesh: (a)
De = 0 (Newtonian); (b) De = 0.28 (Wi = 0.554); (c) De = 0.31 (Wi = 0.566); (d)
De = 0.34 (Wi = 0.527); (e) De = 0.39 (Wi = 0.485); (f) De = 0.45 (Wi = 0.434).

in figure 7.

The non-dimensional parameter DQ is used to quantify the degree of flow asymme-
try and is presented in Figure 8. The comparison in Figure 8(a) between the present
work and the numerical results of [Poole et al (2007)] for the variation of DQ with
the Deborah number, shows a good agreement for De varying from 0.25 to 0.45,
which is the maximum value we can achieve in the present numerical simulations.
The variation of the Weissenberg number representing the ratio of the elastic to
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viscous stresses in the flow defined as (Wi ≡ λ ε̇) at the central stagnation point
with the flow Deborah number for geometries with sharp and round corners are
presented in Figure 8 (b). Comparison with data from [Poole et al (2007)] for the
sharp corner geometry exhibits a very good agreement. In particular, for values of
De < Decr the local Weissenberg number increases with increasing Deborah num-
ber for geometries with sharp and round corners with the round corner geometry
exhibiting slightly lower values of Wi. Beyond the critical De which is different for
round and sharp corners, Wi decreases rather drastically with increasing De for the
sharp corner geometry but only mildly for the round corner geometry; which can
be explained by the fact that the flow asymmetry is less pronounced for the round
corner geometry.

It is well known that the steady state extensional viscosity for the UCM model be-
comes unbounded when λ ε̇ → 1/2 [Owens and Phillips (2002)]. In this flow, the
Weissenberg number at the stagnation point exceeds the critical value of 0.5 before
the asymmetry appears and consequently the streamwise normal stress at this point
becomes unbounded. In [Poole et al (2007)] for the same geometry and flow, it is
shown that the value of λ ε̇ exceeds 0.5 at the geometric center of the cross slot or
in other words the stress field becomes unbounded locally. The center is a stag-
nation point, and consequently the residence time is infinite and hence the steady
state extensional viscosity is achieved, which for UCM model becomes unbounded
at λ ε̇ ≥ 0.5. It is to be noted that unbounded stress fields can also be present in a
contraction flow even for Newtonian fluids, [Moffatt (1964)]. However, it is not the
unbounded nature of the normal stress at the stagnation point that drives this insta-
bility [Poole et al (2007)] and this particular feature has also been observed with
constitutive models that have bounded extensional viscosities, such as the FENE-P
and FENE-CR models used by [Rocha et al (2009)].

For the cross-slot with round corners, Figure 9 presents the flow streamlines super-
imposed upon contours of the normalized first normal-stress difference for Newto-
nian and non-Newtonian fluid flows at increasing De and based on the asymmetric
mesh with 10176 elements.

For the Newtonian and the non-Newtonian flows with De < 0.38 the flow remains
symmetric, whereas at De = 0.38 asymmetric flow appears but confined to the cen-
tral region of the cross-slot. This local flow asymmetry grows in extent at increas-
ingly larger Deborah numbers up to the maximum value of computed flow (De =
0.65), as shown in Figure 9, but outside this central region the flow remains sym-
metric and this is well shown through the non-dimensional parameter DQ, which
remains equal to zero, an indication of symmetry in terms of flow rate. The corre-
sponding contour plots of (τyy-τxx)/(ηU/H) remain symmetric outside the central
region of the cross-slot, but show increasing values of the first normal stress differ-
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Figure 8: Influence of De on (a) the asymmetric parameter DQ and (b) Wi calcu-
lated at the stagnation point for sharp and round corner geometries at Re = 0.01
and comparison with numerical results of Poole et al. [10] for Re = 0 for the sharp
corner geometry.

ence, especially in the stagnation point and around the rounded corners where the
stress gradients are very large.

It is clear from these results that rounding the corners of the cross-slot inhibits the
large stress gradients at the corners, when compared with the sharp corner cross-
slot, and that this affects the flow behavior and in particular the critical Deborah
numbers for the prediction of the flow asymmetry and for the variation of the non-
dimensional parameter DQ.
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Figure 9: Streamlines patterns superimposed onto contour plots of (τyy-
τxx)/(ηU/H) for the round corner cross-slot mapped with an asymmetric mesh:
(a) De = 0 (Newtonian); (b) De = 0.31; (c) De = 0.34; (d) De = 0.38; (e) De = 0.45;
(f) De = 0.65.

4.3 Inertial effects

The previous results all pertain to creeping flow conditions (Re ≈ 0) and in this
section we investigate the effect of inertia on the onset of flow asymmetry up to
Re = 3. The De-Re stability map of Figure 10 compares our numerical results with
those of [Poole et al (2007)] and confirms their earlier finding that inertia stabilizes
the flow by increasing the critical Deborah number for transition to asymmetric
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flow. Their results also showed that the stabilizing effect of inertia is accompanied
with a reduction of the magnitude of the flow asymmetry. Our calculations in Fig-
ure 10 also indicate that the flow is slightly less stable than originally predicted by
[Poole et al (2007)] since the present values of Decr are lower at the same Reynolds
number, except for the creeping flow limit, which was explored in more detail.
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Figure 10: Effect of inertia on the critical Deborah number for the asymmetric flow
in the sharp corner cross-slot.

5 Conclusions

The flow of viscoelastic fluids in planar cross-slot geometries with sharp and round
corners has been investigated for creeping and low Reynolds number flow condi-
tions. A finite element method was used for the first time in the present simu-
lations, based on the UCM constitutive equation for the extra-stress tensor and a
direct steady solver. Several poorly known aspects of this flow have been shown
and previous results obtained with different methods have been confirmed.

The main conclusions from this work can thus be summarized as follows:

• When using a direct solver and the DEVSS/SU technique, asymmetric flow
can be predicted with an asymmetric mesh whereas and the flow remains
symmetric with a symmetric mesh.Therefore, the use of a proper mesh is a
crucial factor in the process leading to the correct simulation of reality.
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• Elasticity was seen to directly drive the instability: the Newtonian and non-
Newtonian flows for De below the critical Deborah numbers (Decr = 0.309
for the sharp corners geometry and Decr = 0.38 for the round corners geome-
try) generate a symmetric flow, while for values above Decr the flow becomes
asymmetric but remains steady. In this physical system the asymmetric state
is driven by the large normal stresses near the stagnation point and in the
re-entrant corners of the cross-slot.

• Rounding the corners leads to an increase of the critical Deborah number,
which for this particular radius of curvature (R/H=0.1) is Decr = 0.38 (for
sharp corners Decr = 0.309). Additionally, the asymmetric flow is rather mild
and was only observed in the central region near the stagnation point, with-
out impacting the flow rate distribution through the outlets, which remained
symmetric.

• Inertia was seen to stabilize the flow and the critical Deborah number in-
creases with Re from Decr = 0.309 for Re ≈0 to Decr = 0.38 for Re = 3.
Beyond Re = 3 convergence problems were found for asymmetric flows.

The UCM constitutive model used in this work is only a crude approximation of
real fluids, although exhibiting an unbounded extensional viscosity. Future work
should aim to explore other constitutive models that are capable to describe other
fluid features, like shear-thinning of the viscosity and bounded normal stresses,
such as the Giesekus, FENE-P, Phan-Thien-Tanner and Pom-Pom models, among
others.
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Notation

DDD deformation rate tensor (s−1)
De Deborah number (λU/H)
Decr critical Deborah number
DQ degree of flow asymmetry parameter, DQ = (Q2−Q1)/(Q1 +Q2)
H channel width (m)
Nx number of cells along the x-direction
Ny number of cells along the y-direction
N1 number of cells along the x- or y-direction
N2 number of cells along orthogonal- direction
Q the total flow rate per unit depth supplied to each inlet channel (m2/s)
Q1,Q2 the upper and the lower partial flow rates per unit depth supplied to each

outlet channel (m2/s)
R radius of curvature of the rounded corners (m)
TTT extra-stress tensor (Pa)
TNC Total Number of Cells
TNE Total Number of Elements
U average velocity (m/s)
uuu velocity vector (m/s)
Wi Weissenberg number (≡ λ ε̇)
x,y Cartesian coordinates (m)
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Greek letters

λ relaxation time (s)
ε̇ strain rate (s−1)
τxx, τxy normal and shear stresses (Pa)
η viscosity coefficient of UCM model (Pa.s)




