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Abstract: A double-population Lattice Boltzmann Method (LBM) is applied to
solve the steady-state laminar natural convective heat-transfer problem in a triangu-
lar cavity filled with air (Pr = 0.71). Two different boundary conditions are imple-
mented for the vertical and inclined boundaries: Case I) adiabatic vertical wall and
inclined isothermal wall, Case II) isothermal vertical wall and adiabatic inclined
wall. The bottom wall is assumed to be at a constant temperature (isothermal) for
both cases. The buoyancy effect is modeled in the framework of the well-known
Boussinesq approximation. The velocity and temperature fields are determined by
a D2Q9 LBM and a D2Q4 LBM, respectively. Comparison with previously pub-
lished work shows excellent agreement. Numerical results are obtained for a wide
range of parameters: the Rayleigh number spanning the range

(
103−106

)
and the

inclination angle varying in the intervals (0˚ to 120˚) and (0˚ to 360˚) for cases
I and II, respectively. Flow and thermal fields are given in terms of streamlines
and isotherms distributions. It is observed that inclination angle can be used as a
relevant parameter to control heat transfer in right-angled triangular enclosures.

Keywords: Lattice Boltzmann Method, Natural convection, Heat transfer, Right-
angled triangular enclosure.

Nomenclature

c Lattice speed, ms−1

cs Speed of sound, ms−1

ci Discrete particle speeds, ms−1

F External forces, kg m s−2
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f Density distribution functions , kg m−3

f eq Equilibrium density distribution functions, kg m−3

g Internal energy distribution functions, K
geq Equilibrium internal energy distribution functions, K
~g Gravity vector , m s−2

n Normal direction of the inclined wall
Ma Mach number
Nu Local Nusselt number
Pr Prandtl number
Ra Rayleigh number
T Temperature, K
u(u,v) Velocities , m s−1

x(x,y) Lattice coordinates, m

Greek symbols

∆ x Lattice spacing, m
∆ t Time increment, m
τα Relaxation time for temperature, s
τν Relaxation time for flow, s
ν Kinematic viscosity, m2 s−1

α Thermal diffusivity , m2 s−1

ρ Fluid density, kg m−3

ψ Non-dimensional stream function
Φ Inclination angle
θ Non-dimensional temperature

Subscript

c cold
h hot

1 Introduction

The Lattice Boltzmann Method (LBM) is emerged as a powerful tool to simulate
fluid flow, heat and mass transfer. It has become a novel alternative to conven-
tional Computational Fluid Dynamics (CFD) solvers like Finite Difference Method
(FDM), Finite Element Method (FEM) and Finite Volume Method (FVM) for solv-
ing the Navier–Stokes Equations (NSE) [Chen and Doolen (1998)]. The advantages
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of LBM include simple calculation procedures and easy-implementation boundary
conditions. It is well suitable for parallel computation, ease and robust in handling
of multiphase flow and can be applied for complex geometries. Moreover when
using LBM the coupling between pressure and velocity field is avoided; in con-
ventional classical methods this linkage is handled by algorithms such as SIMPLE,
SIMPLER [Patankar (1980)] and others which are CPU time consumers. Another
advantage it is that can capture turbulence without any turbulence models [Dixit
and Bab]. More details about the LBM can be found in the reference [Higuera,
Succi and Benzi (1989); Benzi, Succi and Vergassola (1992); Succi (2001)]. Stan-
dard benchmark problems have been simulated by LBM and the results were shown
to agree well with the classical CFD solvers [McNamara and Alder (1993)].

Many works dealing with convection in enclosures are restricted to the cases of
simple geometry, rectangular, cylindrical or spherical cavities. But the real con-
figurations are complex and varied. Natural convection in triangular enclosures
has received increased attention due to its direct relevancy to many engineering
applications because of its applications to real life configurations such as thermal
insulation of buildings using air gaps, solar energy collectors, furnaces and fire
control in buildings. A few studies on natural convection on triangular enclosures
filled with a viscous fluid have been carried out by earlier researchers [Ostrach
(1988); Catton (1978); Gebhart, Jaluria, Mahajan and Sammakia (1988); De Vahl
Davis (1983)]. [Asan and Namli (2001)] presented a computational study of natural
convection in an isosceles triangular enclosure with a hot horizontal base and cold
inclined walls. They used the stream function-vorticity formulation in conjunc-
tion with the volume control integration solution technique. Steady state solutions
were obtained for Rayleigh number ranging from 103 to 106. They showed that the
height-base ratio and Rayleigh number have profound effect on temperature and
flow field. [Rahman, Billah, Rahman, Kalam and Ahsan (2011)] investigated nu-
merically the behavior of nanofluids in an inclined lid-driven triangular enclosure to
gain insight into convective recirculation and flow processes induced by nanofluids.
It is observed that solid volume fraction strongly influenced the fluid flow and heat
transfer in the enclosure. Moreover, the variation of the average Nusselt number
and average fluid temperature in the cavity is linear with the solid volume frac-
tion.[Koca, Oztop and Varol (2007)] analyzed the effect of Prandtl number on nat-
ural convection heat transfer and fluid flow in triangular enclosures with localized
heating. The governing equations of natural convection are formulated based on
a stream function–vorticity approach and solved with the finite-difference method.
Bottom wall of triangle is heated partially while inclined wall is maintained at a
lower uniform temperature than heated wall while remaining walls are insulated. It
is observed that both flow and temperature fields are affected with the changing of
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Prandtl number, location of heater and length of heater as well as Rayleigh number.
[Omri (2007)] deal with a numerical simulation of natural convection flows in a
triangular cavity submitted to a uniform heat flux using the Control Volume Finite
Element Method (CVFEM). Their results showed that the flow structure is sensitive
to the cover tilt angle. Many recirculation zones can occur in the core cavity and
the heat transfer is dependent on the flow structure. [Mahmoudi, Pop and Shahi
(2012)] investigated numerically natural convection for a two-dimensional triangu-
lar enclosure with partially heated from below and cold inclined wall filled with
nanofluid in presence of magnetic field. Governing equations are solved by finite
volume method. Flow pattern, isotherms and average Nusselt number are presented
for six studied cases that are made by location of heat sources. Their results show
in presence of magnetic field flow field is suppressed and heat transfer decreases.
Furthermore it is observed that maximum reduction of average Nusselt number in
high value of Ha occurs at Ra = 106. They also found that the nanoparticles are
more effective at Ra = 104 where conduction is more pronounced. [Ghasemi and
Aminossadati (2010)] presented a numerical study on the mixed convection in a
lid-driven triangular enclosure filled with a water-Al2O3 nanofluid. A comparison
study between two different scenarios of upward and downward left sliding walls is
presented. The effects of parameters such as Richardson number, solid volume frac-
tion and the direction of the sliding wall motion on the flow and temperature fields
as well as the heat transfer rate are examined. The results show that the addition
of Al2O3 nanoparticles enhances the heat transfer rate for all values of Richardson
number and for each direction of the sliding wall motion. However, the downward
sliding wall motion results in a stronger flow circulation within the enclosure and
hence, a higher heat transfer rate. [Varol (2011)] studied numerically heat trans-
fer and fluid flow due to natural convection in a porous triangular enclosure with
a centered conducting body. The center of the body was located onto the gravity
center of the right-angle triangular cavity. The Darcy law model was used to write
the governing equations and they were solved using a finite difference method. He
concluded that both height and width of the body and thermal conductivity ratio
play an important role on heat and fluid flow inside the cavity. [Ching , Oztop,
Rahman, Islam and Ahsan (2012)] investigated numerically mixed convection heat
and mass transfer in a right triangular enclosure is. The bottom surface of the en-
closure is maintained at uniform temperature and concentration that are higher than
that of the inclined surface. The study is performed for pertinent parameters such
as. The effect of buoyancy ratio, Richardson number and the direction of the sliding
wall motion parameters on the flow and temperature fields as well as the heat and
mass transfer rate examined. The results show that the increase of buoyancy ratio
enhances the heat and mass transfer rate for all values of Richardson number and
for each direction of the sliding wall motion. However, the direction of the sliding
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wall motion can be a good control parameter for the flow and temperature fields.

[Basak, Anandalakshmi and Gunda (2012)] studied numerically entropy generation
due to natural convection in right-angled triangular enclosures of various fluids (Pr
= 0.025, 7 and 1000). The maximum value of entropy generation, due to fluid flow,
is observed near middle portions of the side walls. The location of this maximum
depends on the presence of high velocity gradients. [Oztop, Varol , Koca and Fi-
rat(2012)] studied experimentally and numerically, heat transfer in a right angle
triangular isosceles cavity, filled with air. The bottom wall of the cavity is hot, the
inclined wall is cold and the vertical wall is adiabatic. Numerical study is based on
the finite difference method. Results, such as the average Nusselt number on the
hot wall are shown experimentally and numerically for different angles and for two
values of the Rayleigh number 1.5×104 and 1.5×105. They showed, experimen-
tally, the effect of Rayleigh number and inclination angle on natural convection in
a triangular cavity. [Gurkan & Orhan (2013)] studied experimentally and numeri-
cally natural convection in a triangular recess, isosceles and right, filled with water,
the bottom wall is hot, the vertical wall is cold and the inclined wall is adiabatic.
Numerical solutions are obtained using a CFD commercial software, FLUENT, us-
ing the finite volume method. They showed, experimentally, the effect of Rayleigh
number on natural convection in a triangular cavity.

In this paper, we apply the LBM to solve the non-linear coupled partial differential
equations of flow and temperature fields. In the model the velocity and tempera-
ture fields are solved by tow independent Lattice Boltzmann equations which are
combined into a coupled equation for whole system. Two different boundary con-
ditions are applied to a right-angled triangular enclosure; adiabatic inclined wall
with isothermal cold vertical wall or isothermal cold inclined wall with adiabatic
vertical wall, the horizontal wall is maintained hot in the two cases. Numerical
results are presented in terms of isotherms, streamlines and average Nusselt num-
bers. The effects of the Rayleigh number and inclination angle are parametrically
investigated for the two studied cases.

2 Mathematical formulation

2.1 Problem statement

The cavity has the shape of an isosceles right-angled triangle. It is heated from a
wall, and cooled from the other wall. The third wall is maintained adiabatic. The
geometry of the present problem is shown in Fig. 1, and the thermal boundary
conditions for the two studied cases in this paper are represented in Table 1. The
walls of the cavity are rigid.
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Table 1: Definitions of thermal boundary conditions

wall Case I Case II
inclined Tc

∂T
∂n = 0

vertical ∂T
∂x = 0 Tc

bottom Th Th
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Figure 1: Geometry of the present study (a) Grid distribution (b) 

 

 

 

 

 

Figure 1: (a) Geometry of the present study (b) Grid distribution
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For all the walls of the cavity no slip conditions are applied:

u = v = 0

2.2 Lattice Boltzmann method

For the incompressible non isothermal problems, Lattice Boltzmann Method (LBM)
utilizes two distribution functions, f and g, for the flow and temperature fields re-
spectively.

For the flow field:

fi (x+ ci∆t, t +∆t) = fi (x, t)−
1
τν

(
fi (x, t)− f eq

i (x, t)
)
+∆tFi (1)

For the temperature field:

gi (x+ ci∆t, t +∆t) = gi (x, t)−
1

τα

(
gi (x, t)−geq

i (x, t)
)

(2)

Where the discrete particle velocity vectors defined by ci ,∆t denotes lattice time
step which is set to unity. τν , ταare the relaxation time for the flow and tempera-
ture fields, respectively. f eq

i geq
i are the local equilibrium distribution functions that

have an appropriately prescribed functional dependence on the local hydrodynamic
properties which are calculated with Eqs.(3) and (4) for flow and temperature fields
respectively

f eq
i = wiρ

[
1+

3(ci.u)
c2 +

9(ci.u)2

2c4 − 3u2

2c2

]
(3)

geq
i = w

′
iT
[
1+3

ci.u
c2

]
(4)

u and ρ are the macroscopic velocity and density, respectively. c is the lattice speed
which is equal to ∆x/∆t where ∆x is the lattice space similar to the lattice time step
∆t which is equal to unity, wi is the weighting factor for flow, w

′
i is the weighting

factor for temperature. D2Q9 model for flow and D2Q4 model for temperature are
used in this work so that the weighting factors and the discrete particle velocity
vectors are different for these two models and they are calculated with Eqs (5-7) as
follows:

For D2Q9

w0 =
4
9
, wi =

1
9

for i = 1,2,3,4 and wi =
1

36
for i = 5,6,7,8 (5)



360 Copyright © 2013 Tech Science Press FDMP, vol.9, no.4, pp.353-388, 2013

ci =


0 i = 0
(coscos[(i−1)π/2],sin[(i−1)π/2])c i = 1,2,3,4√

2(cos[(i−5)π/2+π/4],sin[(i−5)π/2+π/4])c i = 5,6,7,8
(6)

For D2Q4
The temperature weighting factor for each direction is equal to w

′
i = 1/4 .

ci = (coscos[(i−1)π/2],sin[(i−1)π/2])c i = 1,2,3,4 (7)

The kinematic viscosity ν and the thermal diffusivity αare then related to the re-
laxation time by Eq. (8):

ν =

[
τν −

1
2

]
c2

s ∆t α =

[
τα −

1
2

]
c2

s ∆t (8)

Where cs is the lattice speed of sound witch is equals to cs = c/
√

3. In the simula-
tion of natural convection, the external force term F corresponding to the buoyancy
force appearing in Eq. (1) is given by Eq.(9)

Fi =
G.(ci−u)

c2
s

f eq
i (9)

With G is the external force acting per unit mass. In a natural convection problem
it is calculated by the following equation:

G =−ρβ~g(T −Tm) (10)

Where ~g is the gravitational vector. With the Boussinesq approximation, all the
fluid properties are constant except in the body force term where the fluid density
varies as

ρ = ρm [1−β (T −Tm)] (11)

Where ρm is the density of the fluid at the mean temperature Tm and β is the thermal
expansion coefficient.

The macroscopic quantities, u and T can be calculated by the mentioned variables,
with Eq.(12-14)

ρ = ∑
i

fi (12)

ρu = ∑
i

fici (13)

T = ∑
i

gi (14)
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2.3 Non-dimensional parameters

By fixing Rayleigh number, Prandtl number and Mach number the viscosity and
thermal diffusivity are calculated from the definition of these non dimensional pa-
rameters

ν = m.Ma.cs

√
Pr
Ra

(15)

Where m is number of lattices in y-direction. Rayleigh and Prandtl numbers are
defined as

Ra =
βgm3(Th−Tc)

να
and Pr = ν

α
respectively. Mach number should be less than Ma =

0.3 to insure an incompressible flow. Therefore in the present study, Mach number
was fixed at Ma = 0.1

Nusselt number is one of the most important dimensionless parameters in the de-
scription of the convective heat transport. The local Nusselt number Nux and the
average value Nu at the hot wall are calculated as:

Nux =−
H

Th−Tc

∂T
∂y

∣∣∣∣
y=0

(16)

Nu =
1
H

H
∫
0

Nuxdx (17)

2.4 Boundary conditions

The implementation of boundary conditions is very important for the simulation.
The distribution functions out of the domain are known from the streaming process.
The unknown distribution functions are those toward the domain.

2.4.1 Flow

Bounce-back boundary conditions were applied on all solid boundaries, which
means that incoming boundary populations are equal to out-going populations after
the collision.

2.4.2 Temperature

The bounce back boundary condition is used on the adiabatic wall. Temperature
at the isothermal wall is known. Since we are using D2Q4, the unknown internal
energy distribution functions are evaluated respectively as:

Case I
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South wall:

g2 = TH −g1−g3−g4 (18)

Inclined wall:

g3 = 0.5(TC−g1−g2) g4 = 0.5(TC−g1−g2) (19)

Case II
South wall:

g2 = TH −g1−g3−g4 (20)

Vertical wall:

g1 = TC−g2−g3−g4 (21)

3 Code validation

The problem of convection in a triangular cavity has been studied by several au-
thors. The validation of our code is tested first for a Rayleigh number equal to
2772 with the results obtained in references [Asan and Namli (2001); Akinsete
and Coleman (1982); Tzeng , Liou and Jou (2005)] by comparing the local Nus-
selt number (Fig. 2). For the case I, The numerical results are found to be good
agreement with those of previous studies [Oztop , Varol , Koca and Firat (2012)]
Fig. 3 presents the temperature profiles along the x-axis for several values of y /
H, with Ra = 1.5×104 and Φ=0. In conclusion, the results of this code show good
agreement with the published results. This shows that the present LBM code gen-
erates very accurate results compared with reference results; moreover the LBM is
a reliable tool for the solution of coupled flow and heat transfer.

4 Results and discussion

4.1 Case I

In this section, we will study the effect of the variation of the inclination angle
and the effect of the variation of the Rayleigh number on temperature distribution
inside the aforementioned triangular cavity. For the Rayleigh number, it varies in
the range of 1.5×103 to 1.5×106, while Φ varies in steps of 30˚ in the range 0˚ to
120˚.

Fig. 4-5 presents respectively, the isotherms and streamlines for several values of
Rayleigh number and different inclination angles. The bold isotherm allows us
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Figure 2: Comparison of numerical results of local Nusselt numbers for triangular geometry 

with literature. 

 

 

 

 

 

 

 

 

 

Figure 2: Comparison of numerical results of local Nusselt numbers for triangular
geometry with literature

to better monitor the variation of the temperature distribution inside the triangular
cavity, this line corresponds to the temperature T−Tc

Th−Tc
= 0.5 .

For all inclination angles it can be seen that the heat transfer is mainly governed
by conduction in the corners of cavity for the values of the Rayleigh number rang-
ing from 1.5×103 to 1.5×105. These corners are inactive hydrodynamic regions,
the flow cannot reach these corners, it appears from the absence of cells in these
regions. We note for high Rayleigh number values (1.5× 105and1.5× 106), the
maximum of the stream function decreases with increasing inclination angle. This
decrease with the inclination angle (0 ˚-120˚) means that more fluid velocity de-
creases and the convection is disadvantaged. This appears clearly in Fig. 6, which
represents the profile of the velocity components along the y-axis for x / L = 0.5.

4.1.1 Effect of the inclination angle

Φ = 0◦, the hot wall is situated at the bottom of the triangle. A single cell is
formed; rotating in the clockwise direction, the maximum absolute value of the
stream function for Ra = 1.5× 106 is 250 times larger than its value for Ra =
1.5×103. More Rayleigh number increases, the fluid flow in the cavity increases.
Convection is dominant for the high Rayleigh number, which causes the reduction
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Figure 3: Comparison of local temperature along the x-axis for several values of y
/ H with experimental and numerical results for Ra = 1.5×104

of the boundary layer. This decrease in the boundary layer can also be seen by the
distribution of isotherms for this angle.

Φ = 30◦, a single cell is formed, rotating in the counterclockwise direction; con-
vection is still dominant for high values of Rayleigh number. For Ra = 1.5× 106

we see the appearance of small cells next to the intersection of hot and cold walls,
rotating clockwise.

Φ = 60◦, the cold wall is situated at the top of the triangular cavity. For small
values of Rayleigh number one cell is formed at the center of the cavity, rotating
in the anticlockwise direction. For Ra = 1.5×106, a second cell, of oval shape, is
formed close to the adiabatic wall. With increasing Rayleigh number, the fluid is
compressed near the walls, and the layer of cold fluid cannot reach the lower part
of the cavity. The center of the cavity loses its hydrodynamic effect.

Φ= 90◦, the hot wall is vertical, the effect of convection is disadvantaged compared
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Figure 4: Isotherms for different Rayleigh numbers and for different inclination angle  

 

 

 

 

 

 

 

Φ=30  
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Figure 4: (continued) 

 

 

 

 

 

 

 

 

 

Figure 4: Isotherms for different Rayleigh numbers and for different inclination
angle
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Φ=60  
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Figure 4: (continued) 

 

 

 

 

 

 

 

 

 

 

 

Φ=90  
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51.5 10Ra  61.5 10Ra  

 

Figure 4: (continued) 

 

 

 

 

 

 

 

Figure 4: (continued)
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Φ=120  
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Figure 4: (continued) 

 

 

Figure 4: (continued)
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Φ=0  

  
31.5 10Ra  

min maxΨ 0.16 Ψ 0  

41.5 10Ra   

min maxΨ 3.11 Ψ 0  

  
51.5 10Ra  

min maxΨ 13.17 Ψ 0  

61.5 10Ra  

min maxΨ 41.10 Ψ 0  

 

Figure 5: Streamlines for different Rayleigh numbers and for different inclination angle 
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Figure 5: (continued) 

 

 

 

 

 

 

 

 

 

 

Figure 5: Streamlines for different Rayleigh numbers and for different inclination
angle
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Figure 5: (continued) 
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Figure 5: (continued) 

 

 

 

 

 

 

Figure 5: (continued)
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Figure 5: (continued) 

 

Φ=120  

  
31.5 10Ra  
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min maxΨ 0 Ψ 6.61  

61.5 10Ra  

min maxΨ 0 Ψ 13.24  

Figure 5: (continued)
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51.5 10Ra  61.5 10Ra  

  

  
 

Figure 6: Variation along the y-axis of the velocity components for x/L=0.5 for several 

Rayleigh number 

 

 

 

 

 

 

 

Figure 6: Variation along the y-axis of the velocity components for x/L=0.5 for
several Rayleigh number

 

 

 

 

 

 

 

Figure 7: Variation of Nuselt number as function of the inclination angle for different 

Rayleigh number 

 

 

 

 

 

 

 

Figure 7: Variation of Nuselt number as function of the inclination angle for differ-
ent Rayleigh number
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to the case Φ = 0◦, a single cell is formed to rotate in the anticlockwise direction.
As the more the Rayleigh number increases, the more the center of its cell moves
to the point of intersection of the hot and cold walls. In addition the fluid flow
becomes increasingly tight on the hot and cold walls.

Φ = 120◦, a single cell is formed to rotate in the anticlockwise direction. The more
the Rayleigh number increases, the more the center of its cell moves to the point
of intersection of the hot and cold walls. For the range of angles in this case study,
Φ = 120◦ corresponds to the angle at which the convection is more disadvantaged.
This becomes clear by the low velocity of flow (Fig. 6), as by the minimum value
average Nusselt number (Fig. 7).

Fig. 7 shows the variation in average Nusselt number by varying the inclination
angle. For Ra = 1.5×104, the experimental results obtained by reference [Oztop,
Varol, Koca and Firat (2012)] clearly show that the increase of the tilt angle causes
the decrease of Nusselt number, it means that convection is more disadvantaged.

4.2 Case II

In this section we will discuss the variation of the temperature distribution in the
cavity with the boundary conditions already cited in Table 1, by varying the Rayleigh
number and by varying the inclination angle. The Rayleigh number varies in the
range of 103 to 106, for a tilt angle varied from 0˚ to 360˚. Fig. 8-9 presents re-
spectively, the isotherms and streamlines for several values of Rayleigh number
and different inclination angles. The bold isotherm allows us to better monitor
the variation of the temperature distribution inside the triangular cavity, this line
corresponds to the temperature T−Tc

Th−Tc
= 0.5

4.2.1 Effect of the inclination angle

Φ = 0◦ When increasing the Rayleigh number convection is favored. For values
of Rayleigh number above 105 convection is dominant, the maximum value of the
stream function, for the Rayleigh number equal to 106, is 150 times as larger as
its value when the Rayleigh is equal to 103. Fluid flow within the cavity is more
intense for the high values of Rayleigh; this causes the reduction of the thickness
of boundary layer which is shown clearly in the isotherms.

Φ = 90◦ the lower side of the triangle is cold, the heat transfer is mainly by conduc-
tion even for large values of the Rayleigh number, this appears by the low values of
the stream function and also by the distribution of temperature which is maintained
unchanged for the value of the Rayleigh number equal to 105. This means that the
heat transfer is not controlled by convection. The fluid is stratified near the cold
wall and we are in dominated conducting regime.



Application of the Lattice Boltzmann Method 373
 

 

Figure 8: Isotherms for different Rayleigh numbers and for different inclination angle 
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Figure 8: Isotherms for different Rayleigh numbers and for different inclination
angle
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Figure 8: (continued) 

 

 

 

Figure 8: (continued)
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Figure 8: (continued) 
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Figure 8: (continued) 
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Figure 9: Streamlines for different Rayleigh numbers and for different inclination angle 

Figure 9: Streamlines for different Rayleigh numbers and for different inclination
angle
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Figure 10: Average Nusselt number on the heated wall versus Rayleigh number 

 

Figure 10: Average Nusselt number on the heated wall versus Rayleigh number

Φ = 135◦ Two contra-rotating cells are formed inside the cavity for all values of
Rayleigh number, the top cell is rotating counterclockwise and the lower cell is
rotating in the clockwise. The two cells are not symmetrical. The velocity intensity
next to hot wall is higher than the velocity intensity next to the cold wall. The
inclined lower side is cold. The inclined upper side is hot, the heat transfer is
mainly by conduction even for large values of the Rayleigh number, and it appears
by the low values of the stream function even for large values of the Rayleigh
number.

Φ = 225◦ a single cell is formed rotating in the clockwise direction, the increase
of Rayleigh number favors convection. For values higher than 105 convection is
dominant, the fluid flow within the cavity is stronger for large values of Rayleigh.
This causes the reduction of the boundary layer.

Φ = 270◦ the upper side is cold, the hot side is vertical, this implies that the heat
transfer by convection is very intense for this angle. A single cell is formed by
rotation in the clockwise direction. The more the value of the Rayleigh number in-
creases, the more the convection is more dominant and the boundary layer becomes
thinner.

Φ = 315◦ the hot wall is at the bottom and the cold wall is at the top of the cavity.
For the Rayleigh number equal to 103, the conduction is dominant. Two symmetric
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contra rotating cells are formed. The bottom cell is rotating clockwise and the top
cell is rotating in a counterclockwise direction. The temperature distribution inside
of the cavity is symmetrical. When increasing the Rayleigh number the convection
regime is favored and the cells symmetry is broken. For the Rayleigh number equal
to 105, two contra-rotating cells are formed; the largest one is situated on the upper
zone of the domain and is rotating counterclockwise, the small cell is at the bottom
and rotating in the opposite direction. The hole of the cavity is cold. The effect of
convection has not the required power for heating the entire cavity. For the Rayleigh
number equal to 5× 105 three cells are formed, the larger cell is in the middle of
the cavity and is rotating in the clockwise direction, and the temperature is uniform
in the middle of the cavity. For the Rayleigh number equal to 106, two contra
rotating cells are formed; the largest cell is on the bottom of the cavity rotating in
the clockwise direction the small cell is at the upper of the cavity and is rotating
on the opposite direction. The effect of convection becomes very intense, and the
majority of the cavity is heated.

Fig. 10 shows the variation of the Nusselt number as function of the Rayleigh
number for several inclination angles. Convection is dominant and the value of the
Nusselt number increases with increasing Rayleigh number. For angles Φ = 90˚
and 135˚ conduction is dominant, and the Nusselt number is in its minimum value
compared to other angles. The highest values of the Nusselt number obtained for
Φ = 0˚, 270˚ and 225˚ where convection is dominant. In addition to Rayleigh num-
ber, it is clear that the inclination angle is a controlling parameter of heat transfer
in the cavity.

5 Conclusion

In this work we have assessed the ability of the so-called double-population Lattice
Boltzmann Method for the study of free convection in a right-angled triangular
cavity. We have considered a Rayleigh number spanning the range 103 to 106 and
an inclination angle varying from 0˚ to 120˚ for case I (adiabatic vertical wall and
inclined isothermal wall) and from 0˚ to 360˚ for case II (isothermal vertical wall
and adiabatic inclined wall).

• For both cases, an increase in the Rayleigh number strengthens both fluid
flow and the heat transfer rate.

• For Case I and Ra=103, the heat transfer rate does not depend on the inclina-
tion angle.

• For Case I and Ra>103, an increase in the inclination angle from 0˚ to 120˚
tends to mitigate the fluid flow and the heat transfer rate.
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• For Case II, and over the entire range of values of the Rayleigh number con-
sidered, heat transfer is favoured for Φ = 0˚, 225˚ and 270˚ (convection is
stronger); in particular, the best heat transfer rate is attained for Φ=0˚.

• For Case II, and over the entire range of values of the Rayleigh number con-
sidered, the lowest heat transfer rate is obtained for Φ = 135˚ (for this value
of Φsgonvection is significantly weakened).

References

Akinsete, V.; Coleman, T. A. (1982): Heat transfer by steady laminar free convec-
tion in triangular enclosures. Int. J. Heat Mass Transfer. vol.25, pp.991-998.

Asan, H.; Namli, L. (2001): Numerical simulation of buoyant flow in a roof of
triangular cross section under winter day boundary conditions. Energy Buildings,
vol.33, pp.753-757.

Basak, T.; Anandalakshmi, R.; Gunda, P. (2012): Role of entropy generation
during convective thermal processing in right-angled triangular enclosures with
various wall heatings. Chemical Engineering Research and Design, vol.90, pp.1779-
1799.

Benzi, R.; Succi, S.; Vergassola, M. (1992): The lattice Boltzmann equation:
theory and applications. Phys. Rep., vol. 222, pp.145–197.

Catton, I. (1978): Natural convection in enclosures, Proc. 6th Int. Heat Transfer
Conf. vol.6, pp.13–31.

Chen, S.; Doolen, G. D. (1998): Lattice Boltzmann method for fluid flows. Annual
Review of Fluid Mechanics, vol. 30, pp. 329–64.

Ching, Y. C.; Oztop, H. F.; Rahman, M. M.; Islam, M. R.; Ahsan, A. (2012):
Finite element simulation of mixed convection heat and mass transfer in a right
triangular enclosure. Int. Commun. Heat Mass Transfer. vol.39, pp.689-696.

De Vahl Davis, G. (1983): Natural convection of air in a square cavity: a bench
mark numerical solution. Int. J. Numer. Methods in Fluids, vol.3, pp.249–264.

Dixit, H. N.; Bab, V. (2006): Simulation of high Rayleigh number natural con-
vection in a square cavity using the lattice Boltzmann method. Int. J. Heat Mass
Transfer, vol.49, pp.727-39.

Gebhart, B.; Jaluria, Y.; Mahajan, R. P.; Sammakia, B. (1988) Buoyancy-
induced Flows and Transport, Hemisphere, Washington.

Ghasemi, B.; Aminossadati, S. M. (2010): Mixed convection in a lid-driven trian-
gular enclosure filled with nanofluids. Int. Commun. Heat Mass Transfer. vol.37,
pp.1142-1148.



388 Copyright © 2013 Tech Science Press FDMP, vol.9, no.4, pp.353-388, 2013

Gurkan, Y.; Orhan, A. (2013): Laminar natural convection in right-angled tri-
angular enclosures heated and cooled on adjacent walls. textitInt. J. Heat Mass
Transfer. vol.60, pp.365–374.

Higuera, F. J.; Succi, S.; Benzi, R. (1989): Lattice gas dynamics with enhanced
collisions. Europhys. Lett. vol.9, pp.345–349.

Koca, A.; Oztop, H. F.; Varol, Y. (2007): The effects of Prandtl number on nat-
ural convection in triangular enclosures with localized heating from below. Int.
Commun. Heat Mass Transfer, vol.34, pp.511–519.

Mahmoudi, A. H.; Pop, I.; Shahi, M. (2012): Effect of magnetic field on natural
convection in a triangular enclosure filled with nanofluid. Int. J. Thermal Sciences.
vol.59, pp.126-140.

McNamara, G.; Alder, B. (1993): Analysis of the lattice Boltzmann treatment of
hydrodynamic. Physica A: Statistical Mechanics and its Applications. vol. 194,
pp. 218–28.

Omri, A. (2007): Numerical investigation on optimization of a solar distiller di-
mensions. Desalination, vol.206, pp.373–379.

Ostrach, S. (1988): Natural convection in enclosures. J. Heat Transfer. vol.110,
pp. 1175–1190.

Oztop, H. F.; Varol, Y.; Koca, A.; Firat, M. (2012): Experimental and numerical
analysis of buoyancy-induced flow in inclined triangular enclosures. Int. Commun.
Heat Mass Transfer, vol.39, pp.1237–1244.

Patankar, S. V. (1980): Numerical Heat Transfer and Fluid Flow, Hemisphere,
Washington, D.C.

Rahman, M.M., Billah, M.M., Rahman, A.T.M.M., Kalam, M.A., Ahsan, A.
(2011): Numerical investigation of heat transfer enhancement of nanofluids in an
inclined lid-driven triangular enclosure. Int. Commun. Heat Mass Transfer, vol.38,
pp.1360–1367.

Succi, S. (2001): The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.
Oxford University Press.

Tzeng, S. C., Liou, J. H., Jou, R. Y. (2005): Numerical simulation-aided paramet-
ric analysis of natural convection in a roof of triangular enclosures. Heat Transfer
Engineering. vol.26, pp. 69-79.

Varol, Y. (2011): Natural convection in porous triangular enclosure with a centered
conducting body. Int. Commun. Heat Mass Transfer, vol.38, pp.368-376.


