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Comparison of EHD-Driven Instability of Thick and Thin
Liquid Films by a Transverse Electric Field

Payam Sharifi1, Asghar Esmaeeli2

Abstract: This study aims to explore the effect of liquid film thickness on the
electrohydrodynamic-driven instability of the interface separating two horizontal
immiscible liquid layers. The fluids are confined between two electrodes and the
light and less conducting liquid is overlaid on the heavy and more conducting one.
Direct Numerical Simulations (DNSs) are performed using a front tracking/finite
difference scheme in conjunction with Taylor-Melcher leaky dielectric model. For
the range of physical parameters used here, it is shown that for a moderately thick
lower liquid layer, the interface instability leads to formation of several liquid
columns and as a result of competition between these columns eventually a big
column is formed. On the other hand, for a thin lower layer the lower electrode
strongly influences the growth of the instability, leading to a short and a longer
column that are connected together by a thin liquid film. When the film becomes
too thick, more columns are formed, but the fluid system does not reach a steady
state because the liquid columns grow so rapidly that they hit the top electrode. The
flow structure is examined and the variation of the steady state kinetic energy of the
system with the film thickness and the applied electric voltage is explored.

1 Introduction

Electrohydrodynamic-driven instability of the interface separating two immiscible
fluids finds relevance in a host of industrial processes. Examples include enhance-
ment of heat and mass transfer rates in pool boiling [Zaghdoudi and Lallemand
(2002)], production of fine liquid drops from a liquid jet in electrospraying by ap-
plication of an electric field in the direction of the jet axis [Collins et al. (2008)],
and creation of highly precise structures using polymer melts on submicron scales
by electrolithography [Chou and Zhuang (1999); Schaffer et al. (2000)]. Early
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interest on the interaction of the electric field and liquids stemmed from the natu-
rally occurring phenomena such as deformation and break up of rain drops during
thunderstorm [Macky (1931)] and the electric break down of the liquids in opti-
cal studies due to air bubbles trapped in the liquid [O’Konski and Thacher (1953);
O’Konski and Harris (1957)]. More recent interest is directed toward microfluidic
and biofluidic applications [Stone et al. (2004); Zeng and Korsmeyer (2004)]. The
electric field is an attractive means in these applications because of its scalability
and action from the distance, in addition to the fact that it acts at the surface and,
therefore, becomes increasingly dominant at microscale.

In the absence of free volume electric charge, the electric field affects the interface
of the two fluids through interfacial electrical stresses that develop due to mis-
match of the electric conductivity σ and permittivity ε of the two fluids. The the-
oretical model that describes the phenomenon fairly well is the so-called Taylor-
Melcher “leaky-dielectric model (LDM)”, developed concurrently by Taylor and
Melcher in the contexts of electrohydrodynamics of drops [Taylor (1966)] and
electrohydrodynamic-driven instability of superimposed fluids [Smith and Melcher
(1967); Melcher and Schwarz (1968); and Melcher and Smith (1969)]. The theo-
retical foundation and the mathematical formulation of the model have been well
described in the review articles by Melcher and Taylor (1969), Arp et al. (1980),
and Saville (1997). The essence of the model is to assume fluids have finite elec-
tric conductivities and that the time scale of charge relaxation due to conduction
from the bulk to the surface to be much shorter than any process time of interest.
The first assumption allows for accumulation of free charges at the interface and,
therefore, the possibility of a net interfacial electrical shear force. The second as-
sumption leads to a substantial simplification in the mathematical formulation as
the electric field equations will be decoupled from the momentum equation and
reduce to quasi-steady state laws. The leaky dielectric model is also referred to as
electrohydrodynamic (EHD) theory since it accounts for the hydrodynamic effect
that originates from the imbalance of electric shear stresses at the interface.

The theoretical basis of the electric field-driven instability of the interface was laid
out in the pioneering study of Melcher (1963) who used the classical linear stability
analysis in conjunction with the “electrohydrostatic” (EHS) model. In the frame-
work of this model, the two superimposed fluids are treated either as two perfectly
dielectric fluids or a perfectly dielectric fluid and a perfectly conducting one. In
either case, there would be no fluid flow at steady state when the interface settles to
an equilibrium shape since the EHS theory precludes the imbalance of tangential
electric stresses at the interface. Accordingly, the viscosities of the fluids will only
play a role in the transient process and do not come to the picture at steady state.
The EHS model combined with inviscid flow assumption can lead to significant
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simplification of the mathematical formulation. Melcher (1963) used this approach
and formulated a closed form solution to determine the criteria for instability of two
horizontal superimposed fluids due to a transverse or parallel (with respect to the
interface) uniform DC electric field. His analysis shows that the transverse elec-
tric field is always destabilizing when the electric field strength is above a critical
magnitude.

While EHS model provides insight into the electric-driven interface instability and
is useful in predicting the behavior of the interface for some fluid systems, it does
not lead to experimentally-backed results in general. This is because the model
precludes formation of free charges at the interface, therefore, overlooking the im-
pact of the interfacial electric shear stresses on the dynamics. These stresses tend to
create fluid flow even when the interface is stationary [Esmaeeli and Reddy (2011)]
and generally tend to stabilize the instability [Yeoh et al. (2007)]. As pointed out
by Taylor (1966), the fluids should not be treated as perfect dielectric; rather they
should be considered having slight conductivity to allow for accumulation of free
electric charge at the interface. The action of the electric field on this charge results
in the net electric shear stress, which is overlooked in EHS model. Taylor’s theory
was coined Taylor-Melcher leaky dielectric model by Saville (1997). For leaky di-
electric fluids, the formulation of the problem becomes more involved. Here, the
electric conductivities and viscosities of the fluids also come to the picture. The
formulation of the electric-driven instability due to a transverse electric field in
the framework of the leaky dielectric theory (EHD) was first done by Smith and
Melcher (1967). These authors solved the linearized governing equations using the
method of normal modes and derived a dispersion relation that should be generally
solved numerically to find the growth rate. Similar to the EHS model, the EHD
model suggests that the electric field can be destabilizing once it is above a critical
field strength. However, as shown by Uguz et al. (2008), for a certain range of fluid
properties the electric field could be stabilizing due to the subtle role of the surface
charge.

Experimental studies of the electric-driven interfacial instability have a long history
and go as far back as the mid-eighteenth century. Despite that, some of the funda-
mental aspects of the phenomena are still not reasonably well understood. Here, we
do not provide a detailed account of the literature and only refer to a study by Dong
et al. (2001) which is particularly relevant to the present work. These authors stud-
ied the formation of liquid columns on liquid-liquid interface under a transverse
electric field for several different fluid systems. When the applied voltage was low,
no column was formed but the interface started oscillating. For sufficiently high
voltage, liquid columns were formed that rose from the fluid with higher electric
conductivity and penetrated into the liquid with lower conductivity. The columns
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were not uniformly distributed and moved and twisted irregularly on the interface,
with rotation about the column axis. Furthermore, some of the columns were not
vertical. When the applied voltage was further increased the columns were drawn
higher and finally connected to the top electrode. The total number of the columns,
their average diameter, height, and slenderness ratio were found to increase with an
increase in the applied voltage.

The numerical simulations of the problem in the context of leaky dielectric liquids
are more recent and limited to only a few studies. Here a notable work is due to
Collins et al. (2008) who studied the mechanism of cone formation, jet emission,
and breakup during tip-streaming due to a transverse electric field. To expedite
the formation of the cones, the authors used a forcefocusing approach where they
exposed only a narrow region around the middle of the thin liquid film to an electric
potential difference using an electrode that was placed right above the middle of the
liquid film. The authors developed a scaling law to predict the size of the drops that
were produced from the jet break up. Furthermore, based on the simulation results
they concluded that tip-streaming would not develop if the fluids were perfectly
insulating or perfectly conducting. Another relevant undertaking in this regard is
due to Sharifi and Esmaeeli (2008) who studied formation of liquid columns at the
interface of two-superimposed liquids in an essentially unbounded domain. The
results of this study showed growth of a liquid column, which originated from a
symmetric sinusoidal perturbation and extended from the more conducting fluid
toward the less conducting one. For sufficiently large surface tension, the column
resembled a cone with a base that spanned the lower electrode. However, when
the surface tension was reduced sufficiently, the column transferred to a slender
cylinder with droplets ejecting from its tip.

Since in many microfluidic applications the film is confide by a wall, it is of in-
terest to determine the effect of film thickness on the dynamics. To this end, we
perform several representative simulations where the thickness of the lower layer
is changed from one simulation to the other. We also examine the evolution of the
flow structure toward the steady state. The simulation results are interpreted using
the pertinent theoretical relations.

2 Linear Stability Analyses

In what follows we provide a brief account of the interface instability using EHS
and EHD models. This analysis is essential for understanding the numerical results
as well as the selection of the individual physical parameters.

We begin our analysis by considering the interface instability using EHS model
where the fluids are treated as perfectly insulating and inviscid. Figure (1) depicts a
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Figure 1: Schematic of a perturbed interface in an infinite domain.

fluid system comprising two horizontal fluid layers of infinite extension, subjected
to a transverse electric field where the lighter fluid is overlaid on top of the heavier
one. Here subscripts a and b are used to identify the quantities associated with
the upper and lower fluids, respectively. The interface is initially flat and in the
absence of the electric field, the fluid system is stable in a Rayleigh-Taylor sense;
i.e., perturbations in the form of waves with small amplitude introduced at the in-
terface will die off. To explore the circumstances under which the fluid system
becomes unstable, the flat interface is perturbed by a wave that is characterized
by ξ = Re[ξ̂ exp(ωt− ikx)], where ξ̂ is the complex amplitude k is a real number
denoting the wavenumber, t is time, and ω = ωr + iωi is an inverse time constant,
which is in general a complex number. i is the imaginary unit, and Re stands for
the real part of a complex expression. Using the method of normal modes, where
a perturbation series solution is used for the dependent parameters in the linearized
equations (continuity, momentum, and electric field equations), results in the fol-
lowing equation for ω (the so-called dispersion relation) as a function of the input
parameters:

ω
2 =

k2

ρa +ρb

[
fe−

∆ρg
k
− γk

]
, (1)

where

fe ≡ fe,PDM =
(εa− εb)

2EaEb

εa + εb
. (2)

Here Ea and Eb represent, respectively, the normal components of the electric field
strength [Vol/m] in the upper and the lower layers in the base state; i.e., before
introduction of the perturbation. Note that Ea and Eb are uniform in each layer. In
the above equations ε denotes the electric permittivity, γ is the surface tension, g is



394 Copyright © 2013 Tech Science Press FDMP, vol.9, no.4, pp.389-418, 2013

the gravity, ∆ρ = ρb−ρa>0, and PDM stands for perfect dielectric model. fe is the
electric force per unit area, which in EHS model is solely due to dielectrophoretic
effects resulting from the mismatch of the electric permittivities of the two fluids.
As is evident from Eq. (1), for a typical wave of wavenumber k, as long as the
electric field strength is below a certain threshold (or the so called critical field),
ω2 < 0 and the interface will remain stable. However, if the electric field strength
goes beyond the critical field, ω2 > 0 and the interface becomes unstable. The
critical field associated with each wavenumber can be found by setting ω2 = 0 in
Eq. (1), yielding:

fecr(E(k),ε) =
∆ρg

k
+ γk. (3)

Considering the continuity of electric displacement field at the interface for perfect
dielectric fluids (εaEa = εbEb), Eq. (3) yields the critical electric field strength in
the upper and lower layers, respectively:

E2
cra
(k) =

(
εb

εa

)
εa + εb

(εa− εb)2

[
g∆ρ

k
+ γk

]
,

E2
crb
(k) =

(
εa

εb

)
εa + εb

(εa− εb)2

[
g∆ρ

k
+ γk

]
.

(4)

Here, k inside the parentheses is used for fecr(E(k),ε), E2
crb
(k), and E2

cra
(k) to em-

phasize that these critical quantities are associated with a particular wave k.

Figure (2) shows the variation of Ecra(k) versus k for three different ε̃ = εb
/

εa.
Here, the properties are ρa = 1, ρb = 4.7807, g = 2, εa = 1×10−5, εb = 2×10−4,
and γ = 0.5. As is evident, the required electric field to destabilize the small
wavenumbers is very large and increases nearly linearly for large wavenumbers,
while it passes through a minimum in between.

This is because for small wavenumbers, the surface tension is weak and the electric
force is balanced by the buoyancy (Ecr(k) ∼ 1

/√
k), while for large wavenum-

bers, the buoyancy is weak and the electric force is balanced by the surface tension
(Ecr(k)∼

√
k). The figure suggests that the variations of Ecr(k) with ε̃ is not mono-

tonic and a larger electric field is needed when the permittivities of the two fluids
are of the same order. This can be justified by considering Eq. (4), where it is
seen that Ecr(k) is more influenced by the difference in, rather than the ratio of, the
permittivities.

To determine the minimum critical electric field strength Ecr,min, we set d fecr

/
dk =

0 in Eq. (3), leading to:

fe(Ecr,min,ε) = 2
√

g∆ργ, (5)
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Figure 2: Variation of critical electric field with wavenumber for three different
permittivity ratios.

where the wavenumber associated with the minimum critical electric strength is:

k =
√

g∆ρ
/

γ ≡ kcr. (6)

Considering the continuity of the electric displacement field at the interface (εaEa =
εbEb) in Eq. (5), the minimum critical electric strengths in the upper and the lower
layers are found to be:

E2
cr,mina

= 2
√

g∆ργ

(
εb

εa

)
εa + εb

(εa− εb)2 ,

E2
cr,minb

= 2
√

g∆ργ

(
εa

εb

)
εa + εb

(εa− εb)2 .
(7)

A few observations regarding the preceding results are in order. First, the wave-
length associated with the minimum critical electric field strength (Eq. (6)) is the
same as the Rayleigh inviscid wavelength. This is intuitively understandable be-
cause at the threshold of the instability the weight of the fluid (encapsulated in
the protrusion) g∆ρ

/
k3 is balanced by the restoring force of surface tension γ

/
k.

Second, in practical applications one is generally interested in the critical volt-
age ∆ϕcr across the two layers rather than the critical electric field strengths in
each layers. If we assume that the upper and the lower electrodes are at distances
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ha ≡ a and hb ≡ b from the initially flat interface, then ∆ϕcr ∼ Ecr,minaa+Ecr,minbb.
Third, the term

√
g∆ργ , which appears in Eqs. (5)-(7) can be interpreted as

√
FB×

√
FS ∼

√
∆ρgls×

√
γ
/

ls, where FB and FS are the buoyant force and the
surface tension (per unit area) and ls is a suitably defined length scale. Since
fe ∼ εE2[N

/
m2] represents the electric force per unit area, this observation in con-

junction with Eq. (5) signifies the fact that the electric force must overcome the
restoring forces of buoyancy and surface tension to sustain the instability. It also
points to the fact that εE2

/√
g∆ργ is an intrinsic nondimensional number for the

problem at hand. Fourth, when the electric field strength is below the critical field
strength, ω is imaginary (ω2 < 0), which results in a traveling wave. In this case,
the electric field leads to undulation of the interface. Accordingly, when the electric
field is slowly raised, it is expected to see undulations of the interface followed by
formation of the columns (see, for example, Dong et al. 2001).

A question that naturally arises is that for a given fluid system and an electric field
that is larger than the critical field (i.e., fe > 2

√
g∆ργ ≡ fe(Ecr,min,ε)), what is

the range of the possible waves that will be excited? To answer this question, the
starting point is again the dispersion relation given in Eq. (1). Here, we set ω2 = 0,
but this time we solve for the wavenumber k. This yields −k2 + fe(k

/
γ)− k2

cr = 0,
solution of which results in:

kL =
fe−

√
f 2
e −4g∆ργ

2γ
; kU =

fe +
√

f 2
e −4g∆ργ

2γ
, (8)

where kL and kU are the lower and upper wavenumbers of the waves kL ≤ k ≤ kU

that will be excited. Of all the waves that become unstable, the wavenumber of the
one with the fastest growth rate (the most unstable wavenumber) is particularly of
interest. This is found be by setting dω2

/
dk=0 in Eq. (1), yielding:

kmax,e =
fe +

√
f 2
e −3g∆ργ

3γ
. (9)

It should be noted that kL < kcr < kmax,e < kU and also fe > 2
√

g∆ργ ≡ fe(Ecr,min,ε)
in order for kmax,e to be real.

In summary, the net result of the EHS model is that the transverse electric field is
always “destabilizing” once its strength is above the minimum critical electric field
strength.In particular, since kcr < kmax,e, then kmax,0 = kcr

/√
3 < kmax,e. Therefore,

electric field can excite waves whose wavelengths are smaller than the most unsta-
ble two-dimensional Rayleigh inviscid wavelength λmax,0. The relative significance
of fe compared to the restoring force of buoyancy and surface tension

√
g∆ργ is

a determining factor in setting the relation between λmax,e and λmax,0. The strik-
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ingly simple structure of fe is due to the simplifications inherent in EHS model in
conjunction with the inviscid flow assumption.

While the EHS model can correctly predict the dynamics for some fluid systems, it
will lead to results that are incompatible with experimental studies for some other
fluid systems. This is because the formation of the free charge and the associated
force is ignored in this model. Smith and Melcher (1967) were the first to study
interfacial instability of leaky dielectric fluids. These authors used a linear stability
analysis and were able to find a general dispersion relation, which should be solved
numerically. Here, we describe a special case that is relevant to our study and is
also amenable to a closed form solution. This case was also analyzed by Smith and
Melcher (1967). In the spirit of EHD, the conductivity σ and the viscosity µ of the
fluids should be included in the analysis. As a result of exposition to the electric
field, a volume charge is formed inside the two fluids, which migrates gradually to
the interface. The volume charge can be excluded from the analysis if we assume
that the electrical relaxation time in both fluids (εa

/
σa and εb

/
σb) are much shorter

than the time scale of the motion of the interface 1
/
|ω|. If we further assume that

the dynamical time scale 1
/
|ω| in turn is much larger than the time scale of viscous

diffusion (1
/

k2νa, 1
/

k2νb), the general dispersion relation can be simplified to:

D(ω,k)≡ (ρa +ρb)ω2 +
[
2k2 (µa +µb)

]
ω +

[
g∆ρk+ γk3− k2 fe,LDM

]
= 0, (10)

where

fe,LDM = εaE2
a

[(
ε̃
/

σ̃2−1
)
(1− σ̃)

σ̃ +1
+

2
(
1− ε̃

/
σ̃
)2 (1+ ε̃

/
σ̃
)

2(σ̃ +1)2 M+
(
1− ε̃

/
σ̃
)2
(1+ σ̃)

]
, (11)

Here, M=σaµa(1+ µ̃)
/
(εaE2

a ) and LDM stands for Leaky Dielectric Model. From
Eq. (10)-(11) it is evident that the relative magnitudes of the permittivity and con-
ductivity ratios, ε̃ and σ̃ , plays a key role in setting the magnitude of the electric
force. Compared to the dispersion relation for perfect dielectric fluids (i.e., Eq.
(1)-(2)), here the coefficient of ω is not zero because the effect of viscous forces
are accounted for. Furthermore, the structure of fe is more involved. As before, the
electric field that leads to the incipience of instability for a given wavenumber k can
be found by setting ω = 0 in Eq. (10), yielding k2− fe,LDM(k

/
γ)+ k2

cr = 0, where

kcr =
√

g∆ρ
/

γ . This equation can be solved to determine fe,LDM as a function of
the wavenumber:

fe,LDM = γ

(
k+

k2
cr

k

)
, (12)

which is the same as Eq. (3), except for the fact that fe ≡ fe,PDM has been replaced
by fe,LDM.
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To find the minimum critical electric field strength and the associated wavenumber,
we set d fe,LDM

/
dk = 0 in Eq. (12), yielding the critical electric pressure:

fe,LDM(Ecr,min,ε,σ ,µ) = 2
√

∆ρgγ, (13)

and the associated critical wavenumber

k =
√

g∆ρ
/

γ ≡ kcr,LDM. (14)

Considering the continuity of the electric current at the interface (σaEa = σbEb)
a relation similar to Eq. (7) can be derived for the minimum critical electric field
strength in leaky dielectric fluids:

εaE2
cr,mina√
∆ρgγ

=

(
(1−αΣ)+

[
(1+αΣ)2 +4δΣ

]1/2
)

β
−1, (15)

where

α =

(
ε̃

σ̃2 −1
)
(1− σ̃)

(
1− ε̃

σ̃

)−2

,

δ=2
(

1+
ε̃

σ̃

)(
1− ε̃

σ̃

)−2

,

β=1+
ε̃

σ̃2 ,

Σ=
(

σa

εa

)
µa +µb√

∆ρgγ
.

(16)

It should be noted that the wavenumber associated with the minimum critical elec-
tric strength is the same as the Rayleigh inviscid critical wavenumber and that
Ecr,minb = σaEcr,mina

/
σb.

As pointed out earlier, when the applied electric field strength is larger than the
critical one, a collection of waves will become unstable. To find the wavenumbers
associated with these waves we use a similar procedure as before by solving k2−
fe,LDM(k

/
γ)+ k2

cr = 0 for k. This results in an upper bound kU,LDM and a lower
bound kL,LDM that have formally the same structure as the corresponding equations
for the perfect dielectric fluids, except that fe is now replaced by fe,LDM.

To find the wavenumber of the wave with the maximum growth, kmax,LDM, we take
the derivative of the terms in Eq. (10) with respect to k and set dω

/
dt = 0 in

the resulting equation. We then need to solve the resulting equation and Eq. (10)
numerically. Figure (3) shows the variation of the growth rate with the wavenumber
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for a leaky dielectric fluid and a perfect dielectric fluid. Here, the properties are
ρa = 1, ρb = 4.7807, g= 2, σa = 2×10−4, σb = 2×10−3, εa = 1×10−5, εb = 2×
10−4, and γ = 0.5. Since the goal was to compare the effect of electric properties,
we did not account for the fluid viscosities in plotting these curves.
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Figure 3: Variation of growth rate with wave number using leaky dielectric model
and prefect dielectric model.

For the range of the parameters that are used here the unstable region based on
the leaky dielectric model is substantially smaller than that based on the perfect
dielectric model. Furthermore, the growth rate based on the former is almost half
of that based on the latter

While a transverse electric field always plays a destabilizing role according to EHS
model, this is not the case if EHD model is used. This was shown by Uguz et
al. (2008) who derived the normal stress balance at the interface at the first order
of the perturbation for a linearized system of equations and showed that the sign
of the net normal electric stress is the same as the sign of the capillary force for
fluid systems if (ε̃

/
σ̃2− 1)(1− σ̃) < 0, reflecting the fact that the electric force

is stabilizing the perturbations. Inspection of Eq. (15)-(16) lends some support to
their analysis. Here, the second term in the bracket in Eq. (15) is always positive,
but the first term 1−αΣ can be negative or positive, depending on the sign of α ∼
(ε̃
/

σ̃2−1)(1−σ̃)< 0. For α < 0, 1−αΣ> 0 and Ecr will be larger compared with
the case when α > 0, suggesting that a larger electric field is needed to destabilize
the interface in the former fluid system.

It is worth mentioning that the EHD-based results will converge to EHS-based ones
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in the limit of σ̃ = ε̃ . This is because this limit is tantamount to elimination of the
free surface charge and the associated tangential shear stress.

3 Problem Setup

The problem setup is shown in Figure (4), depicting two superimposed fluid layers
that reside in a two-dimensional computational domain of size W ×H. The domain
is periodic in the horizontal direction and wall-bounded in the vertical direction.
The light fluid is overlaid on top of the heavy one and a uniform electric field is
established by setting the top and the bottom walls at fixed electric potentials of ϕtop

and ϕbot , respectively. Here, ϕtop > ϕbot , therefore, the electric potential gradient is
upward and the electric field strength is downward. Experimental results show that
the polarity of the electric field generally does not play a major role in the results.
This is also the case for the EHD (as well as the EHS) model since the electric force
is invariant with respect to the direction of the gradient of the electric potential.

E ∆ϕ H

y

x
W

ϕbottom

ϕtop

b

g

Figure 4: The problem setup depicting two superimposed liquid layers exposed to
a transverse electric field.
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4 Mathematical Formulations and Numerical Method

4.1 Mathematical Formulations

The governing equations for this problem are the momentum conservation, the
mass conservation, and the electric field equations. These equations should be
solved for each fluid and are coupled together through the jump conditions at the
interface. Rather than writing the governing equations separately, we use the so-
called “one-fluid” formulation where a single set of equations is written for all the
fluids involved. The phase boundary is treated as an embedded interface by adding
the appropriate source terms to the conservation laws. These source terms are delta
functions localized at the interface and are selected in such a way to satisfy the
correct matching conditions at the interface. The resulting one-fluid Navier-Stokes
equation is:

ρ

(
∂u
∂ t

+∇ · (uu)
)
=−∇p+ρg+∇ ·

[
µ
(
∇u+(∇u)T )]

+ γ

∫
n f κ f δ (x− x f )dS f +Felec.

(17)

Here we have used the conventional notation; u is the velocity, p is the pressure, g
is the gravity, ρ is the density, and µ is the viscosity. The force due to the surface
tension is represented by the integral over the surface of the phase boundary; γ is
the surface tension, κ is the curvature, n is a normal unit vector at the interface,
δ delta is a two-dimensional delta function, and dS is the differential arclength of
the interface. The variables with subscript f are evaluated at the interface; x is the
point at which the equation is evaluated and x f is the position of the interface.

To incorporate the effect of electric field, we need to compute the electric force per
unit volume Felec. For leaky dielectric fluids the electric forces are confined only to
the interface of the fluids. As such, it is more appropriate to consider these forces
as arising from a stress tensor. This is done by considering the electric force as
the divergence of an electric stress tensor Felec = ∇ · τM, where τM is the so-called
Maxwell stress tensor (Landau and Lifshitz, 1985):

τM = εEE− 1
2

εIE ·E. (18)

For a general dynamic system, the basic laws of electricity and magnetism are cou-
pled together and are represented by Maxwell’s equations (Stratton, 2007). How-
ever, in the absence of an external magnetic field, and for very small dynamic elec-
trical currents, it is possible to ignore the degree of magnetic induction and to de-
couple the electric and magnetic field. As shown by Saville (1997), this is true for
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a fairly wide class of problems. If it is further assumed that the time scale of charge
relaxation from the bulk to the surface by conduction is smaller than any process
time of interest, the electric field equations can be also decoupled from the fluid
flow equations. Under the above conditions, the equation for conservation of free
charge leads to the following one-fluid equation for the electric potential:

∇ ·σ∇ϕ = 0, (19)

where the electric field is obtained from the electric potential by E =−∇ϕ .

The momentum equation is supplemented by the mass conservation equation, which
for incompressible flows is simply:

∇ ·u = 0. (20)

Since the material properties are different for the different fluids, it is necessary
to track the evolution of these fields by solving the equations of state, Ds/Dt = 0,
where s represents density, viscosity, conductivity, and permittivity. Here, however,
we assume that the material properties are constant within each phase, so once the
interface position is known, these variables can be set.

It is important to recognize that the single-fluid formulation satisfies the conven-
tional governing equations and naturally incorporates the correct jump conditions
across the interface (see, for example, Esmaeeli and Tryggvason, 2004). Thus, Eq.
(17) leads to the conventional momentum equations in each fluid away from the
interface, where the delta function is zero. Integration of this equation over a very
thin volume that encompasses and moves with the interface results in the following
jump conditions across the interface in the normal

−JpK+ Jτ
h
nnK+ γκ + Jτ

e
nnK = 0, (21)

and the tangential directions

Jτ
e
ntK− Jτ

h
ntK = 0. (22)

Here

JQK = Qa−Qb (23)

represents the jump in a typical physical parameter Q across the interface where we
have assumed that the unit vector normal at the interface points toward the upper
fluid. τh and τe are the hydrodynamic and Maxwell stress tensors, respectively.
The subscript t and n, respectively, stand for the directions normal and tangent to
the interface. Similarly, the jump conditions associated with Eq. (19) are JEtK = 0
and JσEnK = 0, and are implicitly satisfied in our methodology.
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4.2 Numerical Method

We work with two sets of grids: a stationary grid and a moving/unstructured one.
The stationary grid is used to discretize the governing equations. The moving grid
marks the position of the phase boundary and is used to keep the stratification of
material properties sharp and to calculate the surface tension. This grid is also used
to advect the fluid/fluid phase boundary by interpolating the velocities of the marker
points from the regular grid.

The computations start with meshing the interface and setting the materials prop-
erties of both fluids. We then solve Eq. (19) for the electric potential and find the
electric field using E =−∇ϕ . Equation (18) is then used to calculate the Maxwell
electric stress and the electric force Felec = ∇ · τM. This term is then added to the
right hand side of Eq. (17). To solve the Navier-Stokes equation, we use a standard
projection algorithm where we split the momentum equation into two parts. The
first part is a prediction step where the effect of pressure is ignored:

u∗−un

∆t
=

1
ρn A(un), (24)

and the second part is a correction step where the pressure gradient is added:

un+1−u∗

∆t
=− 1

ρn ∇h p. (25)

Here, A is a term that bulks the discrete advection, diffusion, surface tension, and
electric force terms in the Navier-Stokes equations, and u∗ is a provisional velocity
field in the absence of pressure. The subscript h denotes the finite difference nu-
merical approximation. The pressure is determined in such a way that the velocity
at the next time step is divergence free:

∇h ·un+1 = 0· (26)

To find the pressure, we take the divergence of Eq. (25) and use Eq. (26), resulting:

∇h ·
1

ρn ∇h p =
∇h ·u∗

∆t
. (27)

This equation is solved using a multigrid iteration method and the velocity field is
corrected by including the pressure effects:

un+1 = u∗− 1
ρn ∆t∇h p. (28)

The method as described above is first order in time and second order accurate
in space. However, in the numerical implementation, we use a predictor/corrector
algorithm which makes the method second order accurate in time. See, Esmaeeli
and Tryggvason (2004) for more details regarding the time integration.
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5 Selections of the Individual Parameters and the Governing Nondimen-
sional Numbers

As we pointed out earlier, for leaky dielectric fluids the electric field will be desta-
bilizing, provided the fluid properties are such that (ε̃

/
σ̃2− 1)(1− σ̃) < 0 and

the applied electric field strength E0 ∼ (ϕt −ϕb)
/

H is larger than Ecr,min. Under
this circumstance, perturbations with wavenumbers in the range kL ≤ k ≤ kU will
grow, with kmax,e having the largest growth rate. To ensure excitation of at least
a few waves the width of the computational domain W and the applied electric
field strength E0 should be chosen appropriately. Here, we have chosen W = λd ,
where λd ≡ λmax,0 =

√
3λcr is the most unstable two-dimensional Rayleigh invis-

cid wavelength. Since λmax,e < λmax,0, we expect to see the growth of a few waves.
To choose the applied electric potential difference ∆ϕ = ϕt −ϕb, we performed
the following procedure. First, we estimated the critical electric field strengths
(Ecra,LDM, Ecrb,LDM) that would destabilize a perturbation of wavelength λmax,0 us-
ing Eq. (12). Then we increased the estimated value by about 10-30%. Subse-
quently, we used the solution for the electric potential of two horizontal super-
imposed fluid layers of thicknesses a (upper) and b (lower), separated by a flat
interface, and solved for ∆ϕ using Ecra,LDM or Ecrb,LDM as an input parameter. This
yielded:

∆ϕ =
CEcra,LDM(σba+σab)

σb
, (29)

where C is the coefficient that accounts for the percentage of increase of the esti-
mated value. To allow for the sufficient growth of the perturbations, the height of
the domain was chosen as H = 2.5W .

The individual parameters that govern the problem are ρ , µ ,σ ,ε ,γ ,∆ρg, E0, b, and

H. We use the capillary length scale ls =
√

γ
/

g∆ρ as our primary length scale
and the properties of the lower fluid to construct our nondimensional numbers. To
proceed, we also need to choose a velocity scale. Two intrinsic velocity scales exist;
a primary scale and a secondary one. The primary velocity scale is constructed
based on the fact that the fluid flow is established as a result of a balance between
the electric shear stress τe

xy and the viscous shear stress τh
xy at the interface. The

electric shear stress τe
xy scales as qsEs, where qs is a free electric surface charge

scale and Es is an electric field strength scale. Considering qs ∼ εsEs and Es ∼
∆ϕ
/

H, results in τe
xy ∼ εs(∆ϕ)2

/
H2. Then the balance of the viscous shear stress

τh
xy∼ µsus

/
ls with τe

xy leads to the velocity scale us =(lsε
/

µ)(∆ϕ
/

H)2, which upon
substitution for the properties of the lower fluid becomes us = (lsεb

/
µb)(∆ϕ

/
H)2.

The secondary velocity scale is ub
s ∼
√

lsg, which is a velocity scale based on the
flow that is driven by the buoyancy.
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Nondimensionalization of the individual parameters leads to the flow Reynolds
number Re f = ρbusls

/
µb, the electric Weber number We = ρbu2

s ls
/

γ , nondimen-
sional lengths, b̃= b

/
ls, H̃ =H

/
ls, and the ratio of material properties ρ̃ = ρb

/
ρa, µ̃ =

µb
/

µa,σ̃ = σb
/

σa, and ε̃ = εb
/

εa. Furthermore, the electric Reynolds number
Reel = τC

/
τP is also an independent nondimensional number. This parameter is

the ratio of the charge relaxation time (maximum of τCa = εa
/

σa and τCb = εb
/

σb)
to the process time of interest τP, and is not the subject of parametric study when
leaky dielectric model is used. However, it should be sufficiently small to guar-
antee that the leaky dielectric model is applicable. The process time of interest in
our simulations is the time that it takes a liquid column to form, which is reason-
ably larger than τC. When we present our results, unless stated otherwise, we use

ls =
√

γ
/

g∆ρ , us = (lsεb
/

µb)(∆ϕ
/

H)2, and ts = ls
/

us as our length, velocity and
time scales.

6 Results

6.1 Effect of Film Thickness on the Formation of Liquid Columns

To investigate the effect of film thickness, we performed several simulations in the
computational domain depicted in Fig. (4). Here, the only difference between these
simulations was the thickness of the lower liquid layer b, which was changed from
one simulation to the other. To trigger instability, the flat interface was perturbed
by a series of random waves described by:

y = b+
a
N

N

∑
n=1

R(n)
[
cos
(
2πnx

/
W
)
+ sin

(
4πnx

/
W
)]
, (30)

where b is the average initial thickness of the film, N = 15 is the number of waves,
a = 0.02λmax,0 is the initial amplitude of the waves, and 0≤ R(n)≤ 1 is a number
determined by a random number generator. For all the simulations λmax,0 ≡ λd =
2.8, and the domain size was W ×H = 2.8× 7. Based on the grid refinement
studies, a 128×320 grid was used to resolve the flow. The nondimensional numbers
for these simulations are Re f = 1.58× 104, We = 9.9896× 104, H̃ = 27.237, ρ̃ =
4.7807, µ̃ = 2.591, σ̃ = 10, and ε̃ = 20. In what follows, we describe the results of
three representative simulations.

We start our analysis by considering the behavior of the interface in a moderately
thick lower layer. Figure (5) shows contours of the electric potential along with the
interface for this simulation at a few selected times. Here, b̃ = 5.836, or in terms of
the width of the domain, b

/
W=0.536. The variations of the electric potential at the

interface is a determining factor in setting the strength and distribution of the free
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surface charge and the net electric stresses. The ratio of the electric conductivities
plays a major role in setting the magnitude of the electric potential at the interface.
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Figure 5: Contours of electric potential along with the interface for a moderately
thick lower liquid layer. Here, b̃ = 5.836 and b/W = 0.536.

Since the conductivity of the lower layer is much higher than that of the upper one,
the electric potential is relatively uniform in this layer but changes linearly from
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the interface to the top electrode in the upper layer. This is evident from the con-
centration of the contourlines in the frames. Accordingly, the electric field strength
is weak in the lower layer and strong in the upper one. The interface is initially flat,
but its surface is rough because of the perturbations that were introduced. The sur-
face tension, however, stabilizes the short waves, providing incentive for the growth
of the longer waves. This results in formation of four waves (frame b). Since the
lower liquid is heavier, it penetrates into the upper one in the form of spikes, while
the top liquid penetrates into the lower one in the form of bubbles. The competition
between the four columns leads to the growth of three of the columns while one
of them hardly grows (frame c). As time progresses, binary competition between
the columns (i.e., counting from the left to the right, columns 1 and 2, and columns
3, 4) leads to suppression of two of them (frame d). The competition between the
remaining two columns (frame e) leads to the formation of a large column (frame
f). From this point onward, the interface settles to a steady-state, where the electric
force is balanced by the buoyancy and the surface tension.

The instability is driven by the nonuniformity of the electric forces at the inter-
face. Here, a slight protrusion of the initially flat interface into the upper or the
lower liquid leads to a locally higher or lower, respectively, electric field strength
at the surface of the protrusion. This is because the electric potential difference
is essentially between the interface and the top electrode due to the high conduc-
tivity of the lower fluid. Accordingly, the electric force is stronger at the peaks
compared to valleys, resulting in the growth of the instability. The relevant wave-
lengths for this simulation are listed in Table (1). The entries in this table were
found by plugging the electric field strengths based on the one-dimensional solu-
tion |Ea|= ∆φσb/(σba+σab), |Eb|= σa|Ea|/σb, into Eq. (2), (8), and (9), and the
corresponding equations for the LDM. Here λmax,e

/
λmax,0 =3.664, so we expect to

see excitation of at least three waves. The wavelengths of the incipient waves are in
line with the prediction from the linear theory, as shown in Fig. (6)b and reported
in the caption of this figure.

Table 1: The relevant wavelengths for the simulation with a moderately thick lower
liquid layer.

b̃ = 5.836 λL λU λmax,e

Leaky Dielectric 0.353 7.384 0.764
Perfect Dielectric 0.277 9.432 0.415

Figure (6) shows the velocity field for this simulation. The fluid is initially qui-
escent, but as a result of the imbalance of the electric shear stresses fluid flow is



408 Copyright © 2013 Tech Science Press FDMP, vol.9, no.4, pp.389-418, 2013

initiated at the interface and is amplified by the growth of the protrusions. Once
the protrusions become sufficiently large to turn into distinct waves (frame b), two
counter-rotating vortices appear per wave. The fluid flow around the waves is up-
ward at the peaks and downward at the valleys. As the waves grow further to form
columns, two new vortices are formed around the top of the columns, while the
original vortices grow larger and are displaced downward (frame c). The senses of
the newly formed vortices are opposite to those of the original neighboring ones. A
similar vortical structure is seen in frames (d) and (e). At steady state (frame f), the
flow field consists of two large vortices at the sides of the columns in the outside,
which are joined by their counterparts inside the column. Here, the velocity vectors
do not cross the interface, reflecting the fact that the interface is stationary.

The strength and distribution of the free electric charge is a determining factor in the
interface instability since it profoundly affects the strengths of the net normal and
tangential electric stresses. Figure (7) shows contours of the free electric charge and
vectors of the electric force Felec at the interface. Initially the charge distribution is
uniform (when the interface is flat) but it becomes nonuniform as the protrusions
grow. For a given electric potential gradient, the sign of the surface charge depends
on the relative magnitude of σ̃ and ε̃ . For σ̃ < ε̃ , the sign of the charge correlates
positively with the electric field potential difference ∆ϕ . The opposite is true for
σ̃ > ε̃ . Here, σ̃ < ε̃ and ∆ϕ > 0, thus the sign of the charge is positive as can be
seen from the figure. The magnitude of the charge depends on the local electric
field strength. As can be seen from the figure, the magnitude is the lowest at the
base and the highest at the tip, in line with the distribution of the electric field
strength at the interface. The electric force scales with the square of the electric
field strength. Accordingly, it is strongly affected by the non-uniformities of the
electric field strength at the interface. Thus, the electric force is the lowest at the
base and the highest at the tip. The outward sense of the vector forces signifies the
fact that the electric force provides the necessary pull to sustain the weight of the
column and the resorting force of the surface tension.

We now turn our attention to a simulation where the lower layer is thin. We keep
all the nondimensional parameters the same and decrease the nondimensional film
thickness to b̃ = 1.167, corresponding to a thickness to width ratio of b

/
W =

0.107. Here the “nominal” applied electric strength E0 ∼ ∆ϕ
/

H is the same as that
for the first simulation, however, since the lower layer is much more conducting
than the upper one, the “effective” electric field strength is much lower. Accord-
ingly, the range of the unstable wavelengths λL < λ < λU and the most unstable
wavelengthλmax,e are, respectively, smaller and larger than the corresponding val-
ues for the first simulation. Table (2) shows the relevant wavelengths for this sim-
ulation. Here λmax,e

/
λmax,0 =2.62, so we expect to see excitation of at least two
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Figure 6: Velocity vectors and the interface for a moderately thick lower liquid
layer. To aid visualization, the velocity vectors are drawn at every third grid points.
Here, b̃ = 5.836, b/W = 0.536, and the wavelengths of the incipient waves are
λ1 = 0.823λmax,e, λ2 = 0.886λmax,e, and λ3 = 0.738λmax,e.

waves. The wavelengths of the incipient waves are in line with the prediction from
the linear theory, as shown in Fig. (8)b and reported in the caption of this figure.
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(a) (b)

Figure 7: Contours of free electric charge and vectors of electric forces correspond-
ing to the last frame of Fig. (5).

Table 2: The relevant wavelengths for the simulation with a thin lower liquid layer.

b̃ = 1.167 λL λU λmax,e

Leaky Dielectric 0.543 4.805 1.067
Perfect Dielectric 0.416 6.276 0.624

Figure (8) shows selected frames from the evolution of the velocity field and the
interface during this simulation. As before, the surface tension stabilizes the small
scale disturbances, leading to the growth of longer waves (frame b).

Compared to the first simulation, here the lower wall strongly influences the com-
petitions between the waves as it prevents the downward growth of the protrusions.
Here, three waves emerge (frame c) and the competition between them leads to
two relatively long columns that are separated by a shorter one (frame d). As time
progresses the longer columns grow and in the process suppress the growth of the
shorter one (frame e), leading to two columns that are connected together at their
bases through a thin liquid film. The columns grow further until the lubrication
forces in the liquid film prevent further thinning of the film (frame f).

In the third simulation, we consider a very thick lower layer by positioning the
interface closer to the top wall, resulting in b̃ = 15.564 and b

/
W = 1.429. Table



Comparison of EHD-Driven Instability of Thick and Thin Liquid Films 411

(a) t̃ = 0

λ
1 λ

2 λ
3

(b) t̃ = 784 (c) t̃ = 5580

(d) t̃ = 3137 (e) t̃ = 5486 (f) t̃ = 39192

Figure 8: Velocity vectors and the interface for the simulation with a thin lower
liquid layer. To aid visualization, the velocity vectors are drawn at every third grid.
Here, b̃ = 1.167, b/W = 0.107, and the wavelengths of the incipient waves are
λ1 = 0.743λmax,e,λ2 = 0.688λmax,e, and λ3 = 0.449λmax,e.

(3) shows the wavelengths relevant to this simulation. Here λmax,e
/

λmax,0 =9.271,
so we expect to see excitation of at least nine waves.



412 Copyright © 2013 Tech Science Press FDMP, vol.9, no.4, pp.389-418, 2013

Table 3: The relevant wavelengths for the simulation with a very thick lower liquid
layer.

b̃ = 15.564 λL λU λmax,e

Leaky Dielectric 0.112 23.313 0.302
Perfect Dielectric 0.089 29.38 0.133

Figure (9) shows the velocity field and the interface for this simulation at selected
times. Here, the system did not settle to a steady state since a few of the columns

(a) t̃ = 0

λ
1 λ

2 λ
3

λ
4

λ
5

(b) t̃ = 390.7 (c) t̃ = 784.19

Figure 9: Velocity vectors and the interface for a very thick lower liquid layer.
To aid visualization, the velocity vectors are drawn at every third grid point.
Here, b̃ = 15.564, b/W = 1.429, and the wavelengths of the incipient waves are
λ1 = 1.366λmax,e, λ2 = 3.323λmax,e, λ3 = 1.497λmax,e, λ4 = 1.076λmax,e, and λ5 =
1.697λmax,e

grew so rapidly that they anchored the upper wall. Compared to the previous simu-
lations, where the shapes of the columns were conical, here the columns are cylin-
drical. Furthermore, one of the columns is not quite upright and is tilted toward
the left (frame c), suggesting a stronger interactions between the columns. Both of
these effects are due to the stronger interfacial normal electric forces. Frame (b)
shows the wavelengths of the emerging waves. Here the larger magnitude of the
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wavelengths with respect to λmax,e is due to the fact that this frame represents a
more advanced stage in the stability growth compared to the previous two simula-
tions.

6.2 Effect of Film Thickness and Applied Voltage on the Kinetic Energy

As we observed in the preceeding simulations, the fluid flow does not cease at
steady state when the interface becomes stationary. As such, the structure of the
flow and its strength are of interest in microfluidic applications that involve en-
hancement of mixing by electric field. Among the parameters that affect the flow
strength, the film thickness and the applied electirc voltage are particularly impor-
tant because they affect the dynamics more directly. Here we have run two sets
of simulations to explore the effect of these parameters. In the first set, we used
the same nondimensional parameters as those used in Section 6.1 and performed
a few simulations at several film thicknesses other than those used in Section 6.1.
We then calculated the steady state kinetic energy KE = (1

/
2)
∫

ρ(u2 + v2)dA of
the system for these simulations. In the second set, we used the same fluid system
as before and a film thickness corresponding to the second simulation (b̃ = 1.167)
and performed a few simulations at several applied electric voltage E0 = ∆ϕ

/
H.

Figure (10) shows the variations of nondimensional kinetic energy with nondi-
mensional film thickness. Here the kinetic energy is made nondimensional us-
ing KEs = ρbu2

s l2s . Two different behaviors can be distinguished from this figure.
For thin and moderately thick films, corresponding to b̃ ≤∼ 6, the kinetic energy
increases slowly with an increase in the film thickness. However, it increases dra-
matically once the film thickness passes this threshold. Figure (11) shows the vari-
ations of the kinetic energy with the applied electric field strength. This figure was
not nondimensionalized since a change in the applied voltage affects two of the
nondimensional parameters simultaneously. The results suggest a scaling of the
form KE ∼ E4.7

0 , where the exponent is somewhat larger than the scaling that we
would expect using the EHD-induced velocity; i.e., us ∼ E2

0 → KE ∼ E4
0 . This is

presumably because the system did not settle to a steady state at higher electric
field, where the interface becomes highly unstable and the simulations are stopped
when a liquid column touches the top electrode. The insets show the interface at
the same nondimensional intermediate time for the corresponding runs. Note that
the second marked point on the curve corresponds to frame (c) of figure 8. As is
seen, increasing the applied voltage tends to make the columns more slender; a fact
that was also observed in experiments of Dong et al. (2001).
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Figure 10: Steady-state kinetic energy of fluids versus the nondimensional initial
position of interface b̃. With the exception of the film thickness, all the nondimen-
sional numbers are the same as those used for the three representative simulations.

7 Discussion

The analysis of the column formation and the steady state flow structure can be
facilitated by examining the net interfacial normal and shear electric stresses in
conjunction with the one-dimensional solution of the electric field equation for a
flat interface. These stresses are the drivers behind the fluid motion and interface
deformation. Using a tangent-normal coordinate at the interface, it can be shown
(Esmaeeli and Reddy 2011) that the net normal and tangential electric stresses,
respectively, are:

[[τe
nn]] =

εa

2
[(

1− ε̃
/

σ̃
2)E2

na
+(ε̃−1)E2

t
]

,

[[τe
nt ]] = εaEnaEt

(
1− ε̃

/
σ̃
)
= qsEt ,

(31)

where qs = εaEna(σ̃− ε̃) is the free surface charge. The double bracket denotes the
jump according to Eq. (23). The sense of net normal electric stresses is determined
by the relative strength of (1− ε̃

/
σ̃2) and (ε̃ − 1). Both terms are positive in our

simulation, thus [[τe
nn]] > 0, which means the direction of the net normal electric

force is from the lower fluid toward the upper one. This observation in conjunction
with the fact that for σ̃ > 1 the electric force is stronger at the peaks compared
to the valleys, results in the penetration of protrusions in the upper fluid, as is
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Figure 11: Variations of the kinetic energy of fluids with the applied voltage. Here,
b̃ = 1.167 and the fluid properties are the same as those used for the first three
representative simulations.

evident form the results of the simulations. The formation of the conical columns
is initially due to the particular density stratification, which results in penetration of
the heavy fluid in the light one in the form of spike and penetration of the light fluid
in the heavy one in the form of bubbles. However, at the later stages of growth, the
nonuniformity of the electric force distribution at the interface is the main factor in
sustaining the conical shapes.

The structure of the fluid flow is determined by the relative magnitude of the shear-
and deformation-induced flows. However, at steady state when the interface is
stationary, the sense of fluid circulation can be determined solely from the sense of
the net electric shear stresses. For instance, for frame (f) of Fig. (6) [[τnt ]]< 0, since
Ena < 0 and Et < 0 (based on the direction of E = Et t̂+Enn̂, which is downward)
and the fact that (1− ε̃

/
σ̃) < 0 for our fluid system. This results in a fluid flow

along the interface from the tip to the base. Accordingly, when the flow turns
around at the interface, a clockwise (counterclockwise) vortex is formed at the left
(right) side of the interface outside of the column. These vortices are joined by the
counterpart vortices inside the column.
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8 Conclusion

Direct Numerical Simulations (DNSs) were performed to explore the effect of film
thickness on the electric-field driven instability of leaky-dielectric fluids. It was
shown that the electric field had destabilizing effect, provided the fluid proper-
ties were such that (ε̃

/
σ̃2− 1)(1− σ̃) < 0 and the applied electric field strength

E0 ∼ (ϕt −ϕb)
/

H > Ecr,min. The electric field led to the excitation of a collection
of waves with wavenumbers in the range kL ≤ k≤ kU , with kmax,e having the largest
growth rate. For a moderately thick film, the excited waves competed to form a
large conical column that spanned the width of the computational domain. For a
thin film, however, the lower wall strongly influenced the competition between the
liquid columns, leading to formation of two columns that were connected together
by a thin film. Here, the minimum possible film thickness was the key factor in
setting the course of the competition and the steady state shape of the interface.
When the film was too thick, the columns grew rapidly until they anchored the top
electrode; as a result, the interface did not settle to a steady state. While the simu-
lations were performed for only a fluid system, some of the results can carry over
to other fluid systems as well. For instance, for moderately thick lower liquid layer,
where the protrusions can grow in both the upward and the downward directions
and the resulting columns will not grow so rapidly to touch the top electrode, the
competition between the columns will lead to the formation of only one column,
regardless of the choice of the fluid system.
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