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Computational Studies on the Transient
Electrohydrodynamics of a Liquid Drop

Md. Abdul Halim1 and Asghar Esmaeeli2

Abstract: This study aims to gain a detailed understanding of the transient be-
havior of solitary liquid drops in electric fields at finite Reynolds number. A front
tracking/finite difference method, in conjunction with Taylor-Melcher leaky dielec-
tric model, is used to solve the governing electrohydrodynamic equations. The evo-
lution of the flow field and drop deformation is studied for a few representative fluid
systems, corresponding to the different regions of the deformation-circulation map.
It is shown that for the range of the physical parameters used here, the deformation-
time history is governed by one time scale while the fluid flow (characterized by
kinetic energy) is governed by two or more time scales. The effect of the mate-
rial property ratios and the wall on the electrohydrodynamics of the drop is also
investigated.

1 Introduction

The steady state electrohydrodynamics (EHD) of a liquid drop suspended in an-
other liquid and exposed to a weak uniform electric field is reasonably well un-
derstood. Taylor (1966) was the first in formulating the problem analytically by
considering creeping flow and zero deformation, who in the process laid out a
framework that later on became known as “Taylor-Melcher leaky dielectric” model
(Melcher and Taylor, 1969; Saville, 1997). Briefly, under a weak electric field the
drop remains spherical or deforms to an ellipsoid whose major axis is in the direc-
tion of or perpendicular to the field. Furthermore, a circulatory flow, in the form of
toroidal vortices, is established inside and outside of the drop. The deformation and
fluid flow circulation is due to mismatch of the dielectric properties (i.e., electric
conductivity and permittivity) of the fluids inside and outside of the drop, which
leads to electric stresses at the surface of the drop. These stresses tend to deform
the drop and set the fluid in motion at the interface.
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Following the seminal work of Taylor (1966), there have been several major studies
concerning the steady state behavior of a drop. Here we do not attempt to review the
literature, instead we refer to two comprehensive theoretical studies in this regard.
Feng and Scott (1996) present a nice review of the state of understanding of the
problem beginning with the studies based on the electrohydrostatic (EHS) model,
which were customarily used a decade or so before the leaky-dielectric model came
to existence, and the follow up studies after Taylor (1966) up to their own study.
These authors used Galerkin finite element method and performed comprehensive
parametric study to characterize the effect of fluid inertia on the deformation of
the drop. They also determined the critical electric strength beyond which an equi-
librium solution does not exit. More recently, Lac and Homsy (2007) performed
boundary integral calculations for various regions of the parameter space, assuming
creeping flow conditions, and identified the various equilibrium shapes or breakup
modes (i.e., tip-streaming, bulbous breakup from the middle, etc) of a drop.

While the steady state EHD of a drop is reasonably well-understood, not much is
known about its transient behavior. This understanding finds relevance in a host of
microfluidic applications such as enhancement of mixing by electric forces (Stone
et al., 2004) where information about the relative importance of the pertinent time
scales of the phenomena compared to the time scale of the process of interest,
and the manner in which the flow develops is a key to the optimum design and
performance of the device. Here the theoretical results are mostly limited to a
few studies based on analytical and semi-analytical solutions of the equations for
creeping flow regime and nearly spherical drops. A review of the literature in this
regard can be found in Esmaeeli and Sharifi (2011). Briefly, for fluid systems where
flow Reynolds number Re f = ρusa/µ and Ohnesorge number Oh = µ/

√
ρaγ are

small, the convective term (u ·∇u) and the temporal acceleration term ∂u/∂ t in the
Navier-Stokes equation can be ignored and the drop dynamics depends on one time
scale only, which is the deformation time scale that governs the relaxation of the
drop and the velocity field toward steady state. On the other hand, if Re f � 1 but
Oh 6� 1, the convective term can be ignored while the acceleration term cannot. In
this case, the dynamics will be governed by two time scales. Of particular relevance
to this work, is the analytical solution for the deformation of a liquid column (i.e.,
a 2D drop) by Esmaeeli and Sharifi (2011). These authors assumed Re f � 1 and
Oh� 1 and derived a closed form solution for the velocity field and deformation.
Specifically, they showed that the deformation-time history of a drop is governed
by the following equation:

D = D∞

[
1− exp(−t/τ)

]
, (1)



Computational Studies on the Transient Electrohydrodynamics of a Liquid Drop 437

τ =
(µi +µo)a

γ
, (2)

D =
ymax− xmax

ymax + xmax
. (3)

Here, D is the deformation parameter, τ is the characteristic time, and D∞ is
the steady state deformation. xmax and ymax are are the end-to-end length of the
cylinder cross section in the direction of electric field and the maximum breadth
in the traverse direction, respectively. The steady state deformation is found us-
ing D∞ = (Ca/3)[Φ/(R+ 1)2], according to Reddy and Esmaeeli (2009). Here,
Φ = R2 +R+1−3S is a characteristic function that determines the sense of defor-
mation of the drop (i.e., oblate vs. prolate), Ca = µus/γ is the capillary number,
and R and S are the electric conductivity and permittivity ratios (inside over the
outside), respectively.

While the studies pertaining to evolution of nearly spherical drops in creeping flow
provides a good insight about the transient behaviors, in a large class of practical
applications the inertia becomes important and the deformation cannot be ignored.
Furthermore, even for the steady state behavior of a single drop, it seems that the
effect of fluid properties, and the wall effects have not been studied in a systematic
way. Our goal is to shed some light on these less-explored aspects using Direct Nu-
merical Simulations. While the computations are performed for two-dimensional
systems, the results are applicable for three-dimensional systems in a “qualitative”
sense.

2 Problem Setup and Nondimensional Parameters

The problem setup is shown in Fig. (1), depicting an initially circular drop of
radius a in a pool of another liquid. The electric field is established by assigning
electric potentials φt and φb to the top and the bottom walls, respectively. The
computational domain is periodic in the horizontal direction and wall-bounded in
the vertical direction. No-slip and no-through flow boundary conditions are used
for the velocity field at the walls and periodic boundary conditions are used in the
horizontal direction.

The physical properties of the fluids are the densities, ρi, ρo, the viscosities, µi,
µo, the electric permittivities, εi, εo, and the electric conductivities, σi, σo. The
surface tension is γ . The subscripts i and o denote the physical parameters inside
and outside of the drop, respectively. The gravity is set to zero. The governing
nondimensional numbers of this problem are Re f = ρousa/µo, Ca = µous/γ , α =
πa2/WH, R = σi/σo, S = εi/εo, ρ̃ = ρi/ρo, and µ̃ = µi/µo. Here, Re f , Ca, and α

are, respectively, the flow Reynolds number, the capillary number, and the volume
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Figure 1: The computational setup, depicting a liquid drop of radius a immersed
in another liquid. Here ρ , µ , σ , and ε represents, respectively, the density, the
viscosity, the electric conductivity, and the electric permittivity. The computational
domain is wall-bounded and periodic in the vertical and the horizontal direction,
respectively.

fraction. us = εoE2
0 a/µo is a velocity scale that is constructed by balance of the

electric and viscous shear stresses at the surface of the drop and E0 = |φt−φb|/H is
a characteristic scale for the electric field strength. Sometimes in the literature, the
Ohnesorge number Oh = µo/

√
ρoaγ , or the nondimensional strength of the electric

field E∗ =
√

Ca = E0/
√

γ/εoa are used in lieu of the Re f and Ca, respectively. For
leaky dielectric model to be valid, the time scale of charge relaxation from the bulk
to the surface of the drop (i.e., maximum of τCi = εi/σi and τCo = εo/σo) should
be much shorter than any process time of interest τP. The ratio of τC over τP is
called the electric Reynolds number Reel , and thus it should be very small. Here,
the convective time scale is the process time of interest, τP = a/us, and the electric
Reynolds number in our simulations is Reelo = εous/σoa = 0.005� 1. When we
present our results, unless mentioned otherwise, we will use us, a, and ts = a/us as
our velocity, length, and time scales.
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3 Mathematical Formulation

Electrohydrodynamics deals with interactions of electric field and fluid flow. As
such, the laws concerning the fluid dynamics and electric field and their coupling
need to be considered. Here, the governing equations are the conservations of
mass and momentum, and simplified Maxwell’s electromagnetic equations. For
leaky dielectric fluids with constant properties and net zero charge in the bulk, it
can be shown that the electric field equations are decoupled from the fluid flow
equations, but the fluid flow equations are coupled to the electric field equations
through the momentum jump conditions (Melcher and Taylor, 1969; Saville, 1997).
This decoupling allows one to solve the electric field and fluid dynamics equations
sequentially.

Rather than writing the governing equations separately for each phase, we use a
“one-fluid” formulation, where a single set of equations is written for all the flu-
ids/phases involved, and the phase boundary is treated as an embedded interface by
adding the appropriate source terms to the conservation laws. These source terms
are in the form of delta-functions localized at the interface and are selected in such a
way to satisfy the correct matching conditions at the phase boundary. Here, we are
concerned with incompressible, immiscible, and Newtonian fluids. The resulting
“one-fluid” Navier-Stokes equation governing the entire domain is:

ρ

(
∂u
∂ t

+∇ · (uu)
)
=−∇p+∇ · [µ(∇u+(∇u)T )]+ γ

∫
S

κ f n f δ (x−x f )dS f +Fe.

(4)

This equation is similar to the conventional Navier-Stokes equation except for the
two terms on the right hand side which account for the effect of surface tension
and electric field, respectively. Note that the gravity is zero in our simulations. The
force due to the surface tension is represented by the integral over the surface of the
phase boundary; γ is the surface tension coefficient, κ is twice the mean curvature
in two dimensions, n is a normal unit vector at the interface, δ is a two-dimensional
delta function, and dS is the differential surface element of the interface. The vari-
ables with subscript f are evaluated at the interface; x is the point at which the
equation is evaluated and x f is the position of a point at the interface.

To calculate Fe, we need to calculate the electric potential φ first. This is done in
one-fluid formulation by solving the following equation

∇ ·σ∇φ = 0, (5)

and then computing the electric field strength using E = −∇φ . The electric force
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is calculated using Fe = ∇ · τe, where τe is the Maxwell stress tensor:

τ
e = εEE− 1

2
IE ·E. (6)

The momentum equation is supplemented by the mass conservation equation, which
for incompressible flows is simply:

∇ ·u = 0. (7)

It is important to recognize that the single-field formulation satisfies the conven-
tional governing equations and naturally incorporates the correct jump conditions
across the interface. Specifically, the mass conservation leads to

[[u]] ·n = 0, (8)

the Navier-Stokes equation yields

[[τh− pI]] ·n+[[τe]] ·n+ γκn = 0, (9)

and the electric field equation results in

[[φ ]] = 0; [[σ∇φ ]] ·n = 0. (10)

Here, [[Q]] = Qo−Qi represent the jump in a typical variable Q across the interface.

The key parameters that affect the sense of interface deformation and fluid circula-
tion are the net normal and tangential electric traction forces at the interface; i.e.,
[[τe

nn]] and [[τe
tn]], respectively. Using Maxwell stresses and the continuity of the

electric current density at the interface, it can be shown that the net normal and
tangential electric stresses are

[[τe
nn]] =

εo

2

[(
1− S

R2

)
E2

no
+(S−1)E2

t

]
, (11)

and

[[τe
tn]] = εoEnoEt

(
1− S

R

)
= qsEt , (12)

respectively, qs being the free electric charge at the surface. Here, these stresses
are presented in terms of tangent-normal t−n coordinates so that they can be used
for a general orthogonal coordinate system. Note that subscript “o” stands for the
outside and Eti =Eto ≡Et . For a spherical (circular) drop in three (two) dimensional
spherical (polar) coordinates t ≡ θ and n ≡ r. As is seen, both components of the
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electric field contribute to the net normal and tangential stresses. The action of the
electric field on free surface charge can lead to both normal and tangential forces at
the interface. The free surface charge can be found from

qs = εoEno

(
1− S

R

)
. (13)

See, Reddy and Esmaeeli (2009) for more detail. It should be noted that in the
one-fluid formulation, the net electric stresses are implicitly enforced through the
calculation of Fe = ∇ · τ and the surface charge is found using qs = ∇ · (εE).

4 Numerical Method

We use a well-established numerical method to solve the governing equations. In
the absence of the electric field, the method is described in detail in the review
article by Tryggvason et al. (2001). Here, we briefly describe the extensions of
the method for incorporation of electric field effects. We work with two sets of
grids: a stationary grid and a moving/unstructured grid. The stationary grid is
used to discretize the governing equations. The moving grid marks the position
of the phase boundary and is used to keep the stratification of material properties
sharp and to calculate the surface tension. This grid is also used to advect the
fluid/fluid phase boundary by interpolating the velocities of the marker points from
the regular grid. The computations start with meshing the surface of the interface
using small line segments and assigning the materials properties (ρ , µ , σ , and ε)
of both fluids. We then solve equation (5) for the electric potential and find the
electric field using E = −∇φ . Maxwell stress τe is then found using Eq. (6) and
the electric force is found by taking the gradient of the electric stress Fe = ∇ · τe.
This force is then added to the right hand side of the Navier-Stokes equation. To
solve the Navier-Stokes equation, we use a standard projection algorithm where
we split the momentum equation into two parts. The first part is a prediction step
where the effect of pressure is ignored:

u∗−un

∆t
=

1
ρn A(un), (14)

and the second part is a correction step where the pressure gradient is added:

un+1−u∗

∆t
=− 1

ρn ∇h p. (15)

Here, A is a term that bulks the discrete advection, diffusion, surface tension, and
electric force terms in the Navier-Stokes equations, and u∗ is a provisional velocity
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field in the absence of pressure. Subscript h denotes the finite difference numerical
approximation. The pressure is determined in such a way that the velocity at the
next time step is divergence free:

∇h ·un+1 = 0 (16)

To find the pressure, we take the divergence of equation (15) and using equation
(16) yields

∇h ·
(

1
ρn ∇h p

)
=

∇h ·u∗
∆t

. (17)

Equation (17) is solved using a multigrid iteration method and the velocity field is
corrected by including the pressure effects:

un+1 = u∗− 1
ρn ∆t∇h p. (18)

The method as described above is first order in time and second order accurate in
space. However, in numerical implementation, we use a predictor/corrector algo-
rithm that makes the method second order accurate in time (Esmaeeli and Tryggva-
son, 2004).

5 Results and Discussion

To study the transient behavior of liquid drops, it will be quite helpful to predict
their steady state behavior using the so-called deformation-circulation map. This
map is constructed in a R−S coordinates according to the asymptotic solution (i.e.,
creeping flow, zero deformation) of Taylor (1966) or Reddy and Esmaeeli (2009)
for drops in three- or two-dimensional system, respectively. The map was initially
used by Torza et al. (1971) to interpret their experimental and analytical results.
Baygents et al. (1998) also used the map to predict the interactions of two tandem
or side-by-side drops. Figure (2) shows the map for a drop in two-dimensional
systems, which is based on the solution of Rhodes et al. (1989). Here the straight
line is the so-called zero-circulation line, where R = S and the charge distribution
at the surface of the drop vanishes. Along this line the fluid flow cease to exist
at equilibrium, since R = S is tantamount to a perfect dielectric fluid system. The
curve is the so-called zero-deformation curve and represents the solution of Φ ≡
R2+R+1−3S = 0, where Φ is called the deformation characteristic function. For
more detail, see, Reddy and Esmaeeli (2009). The Φ = 0 curve and the R = S line
divide the domain into three regions, identified as region I, II, and III, respectively.
In region (I), Φ < 0 and R < S; the drop deforms to an oblate ellipse (an ellipse
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with its major axis perpendicular to the field) and the ambient fluid flows from the
top/bottome (poles) toward the sides (equator). In region (II), Φ > 0 and R < S; the
drop deforms to a prolate ellipse (an ellipse with its major axis in the direction of
the field) and the ambient fluid flows from the poles toward the equator. Finally,
in region (III), Φ > 0, and R > S; the drop deforms to a prolate ellipse (an ellipse
with its major axis in the direction of the field) and the ambient fluid flows from the
equator toward the poles.
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Figure 2: Circulation-deformation map.

5.1 Comparison of Representative Cases from The Map

5.1.1 Flow Patterns and Deformation Modes

We performed four simulations to explore the transient behaviors of the drops in
the various regions of the map; one simulation each in regions (I) and (III), and two
simulations in region (II); one simulation in the upper region and another one in
the lower region. The coordinates of these simulations in the map are marked with
solid circles. For all the simulations, Re f = 1, Ca = 0.25, α = 0.1256, Oho = 0.5,
Ohi = 0.71, ρ̃ = 0.5, and µ̃ = 1. So, the main difference from one simulation
to another is the difference in the conductivity and permittivity ratios; R and S,
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respectively. For all the simulations, the computational domain is 2.5d × 2.5d,
where d is the initial diameter of the drop and the grid resolution is 256×256.

We start our analysis by considering the behavior of a drop in region (I). Here, R= 2
and S = 8 and it is expected the drop to deform to an oblate shape and the ambient
fluid flows from the poles toward the equator at steady state. Figure (3) shows two
frames from the evolution of the velocity field and the drop and one frame from
the streamlines at a steady state. The flow field is stronger at the surface of the
drop compared with the rest of the domain, because the flow initiates there and
propagates to the rest of the domain. Both the net normal and tangential electric
stresses contribute initially to the velocity field because of the deformation of the
interface. However, at steady state where the drop does not deform any longer, the
velocity field is driven solely by the net tangential electric stresses. Initially four
vortices are formed outside of the drop near the surface and the velocity vectors
cross the surface of the drop. As the time progresses, the vortices gradually move
outward and the velocity field inside the drop becomes weaker. At steady state, the
velocity field consists of four closed vortices inside the drop that are matched by
their counterparts in the outside. The structure of the vortices at steady state can be
seen better by inspection of the streamlines. The fact that no streamline crosses the
drop is an evident that the interface does not deform any more.

Figure 3: Evolution of the velocity field and the streamlines for a single drop in DC
field (region I). Here, Re f = 1, Cael = 0.25, R = 2, S = 8, µ̃ = 1, and ρ̃ = 0.5.

Considering the direction of the ambient flow around the drop, it is clear that the
fluid flow (i.e., normal hydrodynamic stresses) tends to deform the drop to an
oblate. However, it should be noted that the deformation of the drop is the result
of the combined action of the net normal hydrodynamic [[τh

nn]] and [[τe
nn]] electric

stresses. Thus, from the direction of the flow field alone it is not possible to pre-
dict with certainty the sense of deformation of the drop. This point can be clarified
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Figure 4: Evolution of the drops and the velocity field for a single drop in DC field
(region II - upper). Here, Re f = 1, Reel = 0.005, Cael = 0.25, R = 6, S = 10, µ̃ = 1
and ρ̃ = 0.5.

better by considering the flow field and the drop deformation for the simulations
performed in region (II). Fig. (4) shows two selected frames of the velocity field
for this simulation, one at an early time and another one at a steady state. The last
frame shows the streamlines at a steady state. Here, R = 6 and S = 10 and it is
expected that the drop deforms to a prolate shape and the fluid flows from the poles
toward the equator. Note that this case corresponds to the upper part of region (II).
Judging by the structure of the velocity field at steady state it is evident that the
flow field tends to deform the drop to an oblate shape. However, considering the
fact that the actual steady state shape of the drop is a prolate it can be conjectured
that the net normal electric stresses have been larger in this case and their senses
are opposite to that of the hydrodynamic stresses.

Figure 5: Evolution of the velocity field and streamlines for a single drop in DC
field (region II-lower). Here, Re f = 1, Cael = 0.25, R = 0.05, S = 0.2, µ̃ = 1, and
ρ̃ = 0.5.
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We also performed anther simulation in the lower region, where R = 0.05 and S =
0.2. Figure (5) shows two frames for the velocity field (at an early time and a steady
state time) and the streamlines at steady state. As is evident, the steady state flow
pattern and the deformation are similar to the corresponding values in the upper
region.

Figure 6: Evolution of the velocity field and streamlines for a single drop in DC
field (region III). Here, Re f = 1, Cael = 0.25, R = 6, S = 2, µ̃ = 1, and ρ̃ = 0.5.

Figure (6) shows two selected frames for the velocity field for a simulation in region
(III). Here, R = 6 and S = 2 and it is expected that the drop deforms to a prolate
shape and the fluid flows from the equator to the poles. From the direction of the
flow pattern it is seen that the flow tends to deform the drop to a prolate. Evaluation
of the net normal electric stresses (Eq. 11) also suggests that these stresses tend
to deform the drop to a prolate. Considering the fact that both of the net normal
stresses are in the same direction, it is expected that the deformation of the drop
in this region will be larger than that for a drop in region (II) under comparable
condition.

5.1.2 Electric Potential, Electric Strength, and Free Surface Charge

The structure of the electric potential φ around the surfaces of the drop is of in-
terest, as it affects the strength and distribution of the free electric charge and the
electric stresses, which control the intensity of fluid circulation and degree of drop
deformation. Fig. (7) shows contours of the electric potentials for the four cases.
For the simulations in regions (I), (II-upper), and (III), R > 1, therefore, the electric
potential is weaker inside the drop compared to the outside and the electric poten-
tial gradient is higher around the surface. Furthermore, the contourlines around
the drop surface conform to the pertinent surfaces. This is not the case for region
(II-lower), where R < 1. Here, the contourlines cross the interface and the electric
potential gradient is weaker around the surface.
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(a) Region I (b) Region II-upper

(c) Region II-lower (d) Region III

Figure 7: Contours of electric potential for a single drop in DC field for the four
different regions.

Fig. (8) shows the vectors of the electric field strength for these cases. For all the
cases, the electric field is uniform inside the drop and away from it. For the three
cases in region (I), (II-upper), and (III), the vectors in the ambient fluid cross the
drop, while for case (II-lower), the vectors conform to the surface and change their
way as they come close to the surface. It should be noted that in general the electric
field streamlines are orthonormal to the electric potential contours (Behjatian and
Esmaeeli, 2011).

Fig. (9) shows the contours of electric surface charge. Here the red and blue colors
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(a) Region I (b) Region II-upper

(c) Region II-lower (d) Region III

Figure 8: Vectors of electric field E for a single drop in DC field for the four
different regions.

represent, respectively, the positive and the negative charges. The concentration
of the contourlines represent the strength of the electric charge. As is evident, the
charge is nearly zero at the sides and its magnitude (in an absolute sense) increases
toward the poles. For the simulations in regions (I), (II-upper), and (II-lower),
where R < S, positive charges are induced at the upper half of the drop (which
faces the positive electrode) and negative charges are induced at the lower half
(which faces the negative electrode). For these cases, the electric shear stress tends
to drive the flow from the poles toward the equator. Conversely, for the simulation
in region (III), where R > S, negative charges are induced at the upper half of the
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drop (which faces the positive electrode) and positive charges are induced at the
lower half (which faces the negative electrode). For this case, the electric shear
stress tends to drive the flow from the equator toward the poles.

(a) Region I (b) Region II-upper

(c) Region II-lower (d) Region III

Figure 9: Contours of electric charge for a single drop in DC field for the four
different regions.

5.1.3 Deformation and Kinetic Energy Time History

The evolution of the drop shape and the velocity field toward the steady state pro-
vides interesting insight about the transient behavior. Here, we explore these pa-
rameters by calculating the deformation parameter D and the kinetic energy. The



450 Copyright © 2013 Tech Science Press FDMP, vol.9, no.4, pp.435-460, 2013

deformation parameter is found by approximating the drop with an ellipse with the
same surface area, calculation of the second moments of inertia of the drop (numer-
ically) and finding the major and minor axes. The kinetic energy is calculated using
KE = (1/2)

∫
A ρ(u2+v2)dA, where u and v are the components of the velocity field

in the horizontal and the vertical direction, and A is the area of the computational
domain. The kinetic energy is scaled with ρou2

s A, where us = εoE2
0 a/µo is the ve-

locity scale. The time is nondimensionalized with τd = µoa/γ which is a time scale
of surface deformation (see, Esmaeeli and Sharifi, 2011).
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Figure 10: Comparisons of the numerical and the analytical deformations for a
single drop in DC field for the four different regions. Here time is scaled with
τd = aµo/γ .



Computational Studies on the Transient Electrohydrodynamics of a Liquid Drop 451

Fig. (10) shows the deformation time history for the drop in the four regions along
with the prediction from creeping flow solution of Esmaeeli and Sharifi (2011). In
all the cases, the drop deformation evolves monotonically toward the steady state,
which suggest that the surface deformation is governed only by one time scale.
Furthermore, the analytical solution always underpredicts the deformation, which
is understandable considering the fact that fluid inertia, as measured by Re f = 1, is
not weak in our calculation. It can be conjectured, however, that the time scales of
the drop deformation toward the steady state are nearly the same in both numerical
and analytical results.
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(b) Kinetic energy vs. time

Figure 11: Comparisons of the deformation (left frame) and the kinetic energy
(right frame) for a single drop in DC field for the four different regions. Here
the deformation is scaled with τd = µoa/γ and the kinetic energy is scaled with
ts = a/us.

Fig. (11) compares the deformation parameter and the kinetic energy for the four
cases. Again, τd = µoa/γ is used to nondimensionalize the time. The figure sug-
gests that the relaxation time toward steady state for all the cases is nearly the
same. The order of the deformation parameter in an absolute sense, from maxi-
mum to minimum, is regions (I), (III), (II-upper), and (II-lower). Considering the
deformation parameter predicted by the creeping flow solution

D =
Ca
3

Φ

(R+1)2 , (19)

where Ca = µous/γ and Φ = R2 +R+1−3S, it is seen that Ca number is the same
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for all the cases. Thus, the difference in the deformation parameter boils down
to the difference in Φ/(R+ 1)2. The magnitude of this parameter in an absolute
sense is |− 1.89|, 0.755, 0.41, and 0.265 for regions (I), (III), (II-lower), and (II-
upper), respectively. Thus, while the numerical and the analytical results agree in
the relative order of the deformation parameters of the drop in regions (I) and (III),
they disagree on the order of the deformation in the other two regions. Considering
the fact that the magnitudes of the numerical deformation for these two regions
are close, and that the kinetic energy of the flow in region (II-upper) is slightly
higher than that in region (II-lower), it can be conjectured that the inertia effects
are responsible for this discrepancy. While the deformation parameter increases
monotonically toward the steady state, the kinetic energy increase from zero to a
maximum and then settles to a steady state that is much smaller than that of the
maximum value. This is because the fluid velocity is controlled by two time scales,
the deformation time scale τd = µoa/γ and the diffusion time scale τµ = a2/νo,
where ν = µ/ρ . Here the kinetic energy reaches a maximum corresponding to
the shorter time scale and then settles to a steady, corresponding to the larger time
scale.

5.2 Effect of Ratio of Material Properties

In this section we investigate the effect of the material properties on the deformation
and kinetic energy time history. Here, a reference simulation is considered where
the non-dimensional parameters are Re f = 1, Cael = 0.25, Ohi = 0.71, Oho = 0.5,
α = 0.1256, R = 2.5, S = 0.5, µ̃ = 1, and ρ̃ = 0.5. To study the effect, one of the
non-dimensional parameters is changed at a time while keeping all the others the
same. In all the cases considered, the time scale of the deformation-time and ki-
netic energy-time curves are nondimensionalized by τd = µoa/γ (the deformation
time scale) and ts = a/us (the convective time scale), respectively.

5.2.1 Effect of Electric Conductivity Ratio R

Here, we performed five simulations, including the reference simulation, to explore
the effect of this parameter. Fig. (12) shows the results. As is evident, both the
deformation and the kinetic energy increase with an increase in R. This observation
can be justified by considering Eqs. (11)-(13). An increase in R, while keeping the
permittivity ratio S constant, is tantamount to an increase in the net normal and
tangential electric stresses. The former is the key parameter in setting the sense and
the magnitude of the deformation and the latter is the key parameter in setting the
strength of the flow field.
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Figure 12: Effect of conductivity ratio (R) on drop dynamics. Here the deformation
is scaled with τd = µoa/γ and the kinetic energy is scaled with ts = a/us.

5.2.2 Effect of Electric Permittivity Ratio S
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Figure 13: Effect of permittivity ratio (S) on drop dynamics. Here the deformation
is scaled with τd = aµo/γ and the kinetic energy is scaled with ts = a/us.

Here, we performed five simulations, including the reference simulation, to explore
the effect of this parameter. Fig. (13) shows the results. The deformation parameter
decreases with an increase in S, while the kinetic energy increases with an increase
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in S. Again, this observation is in line with the predictions from the net normal
and tangential electric stresses at the interface. An increase in S, decreases the first
term in Eq. (11) while it increase the second term. The final outcome depends on
the balance of the two terms. Judging by the results here, it can be conjectured that
the decrease in the magnitude of the first component has been larger than that of
the increase in the second component and, therefore, the overall effect has been to
reduce the net normal electric stresses. On the other hand, an increase in S can lead
to a reduction in the magnitude of the net tangential electric stresses up to a point
and a change of sign and increase (in an absolute sense) of the magnitude of these
stresses. Since kinetic energy calculation is silent about the change in the direction
of the flow field, we only can see the net effect which is an increase in the kinetic
energy.

5.2.3 Effect of Viscosity Ratio µ̃

Here, we performed five simulations, including the reference simulation, to explore
the effect of this parameter. Fig. (14) shows the results. The deformation parameter
increases with an increase in µ̃ , while the kinetic energy decreases. The increase in
deformation of a drop due to an increase in the viscosity ratio has been observed at
creeping flow studies in the context of shear-driven flows (see, for example, Stone,
1994). The decrease in the kinetic energy is as expected since an increase in the
overall viscosity µi + µo will lead to more flow dissipation. Here, the interesting
observation is the time scale of relaxation toward steady state, after the peak, in
the kinetic energy-time curve, where it is seen that the time scales are nearly the
same. Furthermore, the maximum kinetic energy decreases as the viscosity ratio
increases.

5.2.4 Effect of Density Ratio ρ̃

Here, we performed three simulations, including the reference simulation, to ex-
plore the effect of this parameter. Fig. (15) shows the results. As is evident, an
order of magnitude change in the density ratio essentially does not influence the
results for the range of nondimensional parameters considered. It is seen that this
parameter slightly affects the magnitude of the deformation during the transient
rather than the steady state. Also, increasing ρ̃ leads to a slight increase in the ki-
netic energy.

5.3 The Wall Effect

In the simulations so far, the drop was initially placed in the middle of the domain
and did not move because of the geometrical and physical symmetries. The ques-
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Figure 14: Effect of viscosity ratio (µ̃) on drop dynamics. Here the deformation is
scaled with τd = aµo/γ and the kinetic energy is scaled with ts = a/us.
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Figure 15: Effect of density ratio (ρ̃) on drop dynamics. Here the deformation is
scaled with τd = aµo/γ and the kinetic energy is scaled with ts = a/us.

tion that naturally arises is that what happens when the drop is not symmetrically
placed with respect to the electrodes.

To answer this question, we performed a number of simulations in the four different
regions of the map, where we followed the motion of a drop when it was initially
placed closer to one of the walls. The horizontal position of the center of the drop
was symmetric with respect to the left and the right boundaries, so that the drop
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Figure 16: Effect of vertical position on the drop dynamics for Region I and III,
respectively. Here the time is scaled with ts = a/us.

(a) Region I (b) Region III

Figure 17: Evolution of the velocity vectors for a drop placed at a distance of
yc = 1.25a from the bottom wall for Region I and III, respectively.

would not move in the horizontal direction. Here, we describe the results of two
sets of these simulations for a drop in regions (I) and (III). The nondimensional
numbers for these simulations were the same as those used earlier in this study.
Fig. (16) shows the evolution of the vertical position of the drops with time. It
is seen that the drop in region (I) is attracted toward the walls while the drop in
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region (III) is repelled from the wall. Simulations of drops in regions (II-upper)
and (II-lower) also showed that the drops would be attracted toward the wall. To
find the justification, we examined the velocity fields of the drops in these cases.
Figure (17) shows the velocity fields for the two cases. As is evident, for both
cases, the velocity field around the drop is stronger in the region that is further away
from the wall compared with the region that is near the wall. This yields a higher
hydrodynamic force in the former region compared with that in the latter. Thus, the
motion of the drop toward or away from the wall is dictated by the direction of the
ambient velocity field in the region away from the wall. For the drops in region (I),
(II-upper), and (II-lower), where the flow is from the poles to the equator, the drop
will be always attracted to the wall. For the drops in region (III), where the sense
of the flow is the opposite, the drop will be always repelled from the wall.

6 Conclusion

Transient EHD behaviors of solitary drops in a uniform DC electric field was stud-
ied using Direct Numerical Simulations. A front tracking/finite difference method
was used in conjunction with Taylor-Melcher’s leaky dielectric model. Represen-
tative simulations for the four regions of the deformation-circulation map showed
that steady state behavior of the drops is in line with the prediction of asymptotic
theory (Taylor, 1966, for a three-dimensional drop; Reddy and Esmaeeli, 2009, for
a two-dimensional drop). Initially four vortices appeared around the surface of the
drop in the ambient, and retreated toward the outside as the time progressed. Even-
tually, the core of vortices settled to equilibrium positions in the ambient fluids and
were matched by four counterpart vortices inside the drop. The sense of circulation
and deformation at steady state depended on the relative importance of R and S.
For R < S, the flow was from the poles toward the equator, while the reverse was
true for R > S. The sense of deformation at steady state was in line with the sense
of the characteristic deformation function Φ = R2+R+1−3S for two-dimensional
systems. The effects of the material properties were studied. Briefly, it was shown
that for the range of the parameters used here, kinetic energy KE increased with
an increase in R or S. However, while the deformation parameter D increased with
an increase in R, it decreased with an increase in S. These observations were jus-
tified by inspection of the net normal and tangential electric stresses. In line with
shear-driven or buoyancy-driven deformation of drops in creeping flows, here the
magnitude of deformation increased with an increase in the viscosity ratio. No tan-
gible changes were observed in the magnitudes of D and KE as a result of up to
one order of magnitude decrease in the density ratio. The effect of the wall on the
migration of the drop was studied and it was concluded that drops in region (I),
(II-upper), and (II-lower) will be attracted toward the wall, while those in region



458 Copyright © 2013 Tech Science Press FDMP, vol.9, no.4, pp.435-460, 2013

(III) will be repelled from the wall. Inspection of the velocity field showed that the
hydrodynamic forces were the main factor behind this observation.
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