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Effects of Non-Newtonian Micropolar Fluids on the
Dynamic Characteristics of Wide Tapered-Land Slider

Bearings

J.R. Lin1, L.M. Chu2, T.L. Chou3, L.J. Liang3 and P.Y. Wang3

Abstract: We investigate the influence of non-Newtonian micropolar fluids on
the dynamic characteristics of wide tapered-land slider bearings. The study is car-
ried out on the basis of the micro-continuum theory originally developed by Erin-
gen (1966). Analytical expressions for the linear dynamic coefficients are provided
and compared with earlier results in the literature. In particular, direct compari-
son with the Newtonian fluid-lubricated tapered-land bearings by Lin et al. (2006)
indicates that the use of non-Newtonian micropolar fluids can lead to a significant
increase in the values of stiffness and damping coefficients. Such improvements are
found to be even more pronounced for larger values of the non-Newtonian param-
eters. Moreover, comparison with the non-Newtonian micropolar fluid-lubricated
bearings with an inclined plane film by Naduvinamani and Marali (2007), leads
to the conclusion that tapered-land bearings with large geometric parameters have
higher dynamic stiffness coefficients. Furthermore, such bearings can provide bet-
ter damping characteristics with respect to the case of inclined-plane bearings.
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1 Introduction

Slider bearings are generally designed to support axial thrust in rotor bearing sys-
tems. By using a Newtonian fluid as the lubricant, the steady state characteris-
tics of slider bearings have been investigated for different film shapes, such as
the study of Hamrock (1994) and Lin (2001). Taking into account the effects
of squeezing action, the dynamic characteristics of a tapered-land slider bearing
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are further analyzed by Lin et al. (2006). Expressions for dynamic stiffness and
damping coefficients varying with bearing parameters are derived though a small
perturbation method. Owing to the development of modern engineering, the use
of non-Newtonian fluids as lubricants to improve the lubrication performance of
bearing systems is becoming of great interest. Common lubricants displaying non-
Newtonian natures are the bio-fluids, liquid crystals, polymer-thickened oils, and
oils mixed with additives. In order to describe the flow behavior of these kinds
of non-Newtonian fluids, a micro-continuum theory of micropolar fluids has been
generated by Eringen (1964, 1966). This micropolar fluid model can describe the
inertial characteristics of the substructure particles and allow the presence of the
local rotational inertia, the body couples and the couple stresses. In addition, it can
also be applied to describing the flow behavior of animal bloods, colloidal fluids,
and oils with certain additives. Based on the Eringen’s theory of micropolar fluid-
s, Bayada and Lukaszewicz (1996) derived an analogue of the classical Reynolds
equation of the lubrication theory. Through the procedure of asymptotic analysis,
Bayada et al. (2005) derived a generalized micropolar Reynolds equation. Per-
formance characteristics of slider bearing are obtained. Many investigators have
also applied the Eringen’s theory of micropolar fluids to study the non-Newtonian
effects on the bearing characteristics, for example, the squeeze film bearings by
Nigam et al. (1982), Al-Fadhalah and Elsharkawy (2008), Ashraf et al. (2009),
Lin et al. (2010); the journal bearings by Zaheeruddin and Isa (1978) and Das et
al. (2005); and the slider bearings by Isa and Zaheeruddin (1978), Agrawal and
Bhat (1980), Naduvinamani and Marali (2007) and Lin et al. (2012). According to
their results, the non-Newtonian effects of micropolar fluids upon the bearing per-
formances are not negligible. In order to provide more information for engineers
in bearing selection, a further investigation is motivated on the non-Newtonian dy-
namic characteristics of slider bearings with a tapered-land film profile.

On the basis of the micro-continuum theory generated by Eringen (1966), the
influences of non-Newtonian micropolar fluids on the dynamic characteristics of
wide tapered-land slider bearings are investigated in this study. Applying the tech-
nique of linear theory, analytical solutions for dynamic coefficients will be derived.
Comparing with the case of a Newtonian lubricant, the dynamic characteristics
of tapered-land slider bearings are provided and discussed through the variation
of non-Newtonian parameters. For engineering applications, the comparison of
the dynamic characteristics varying with the shoulder parameter for different film
shapes of slider bearings is also provided.
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2 Description of the problem

Figure 1 shows the physical configuration of a wide tapered-land slider bearing
lubricated with a non-Newtonian micropolar fluid including the effects of squeeze
motion ∂h/∂ t. The film thickness can be expressed as:

h(x, t) = hα(x)+hm(t) (1)

where hα(x) is the film shape function of the inclined part for the bearing, and hm(t)
is the minimum film thickness.

hα (x) =
{

d · [1− x/(αA)] , 0≤ x≤ αA
0, αA≤ x≤ A

(2)

The symbol d is the shoulder height denoting the steady inlet-outlet thickness dif-
ference, and α is the geometric parameter denoting the ratio between the inclined-
part length and the total length of the bearing.

d = h10−hm0 (3)

α = (αA)/A (4)

where the subscript “0” denotes the steady state.

Figure 1: Geometry of a tapered-land slider bearing lubricated with a micropolar
fluid.
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3 Analysis

The lubricant for the wide bearing is taken to be an incompressible micropolar fluid.
It is assumed that (a) the hydrodynamic thin-film lubrication theory is applicable;
(b) the film thickness h is small as compared to the length of the slider bearing
A; (c) the body forces and the body couples are absent; (d) the inertia terms are
small as compared to the viscous terms; and (e) the variation of pressure across
the film thickness is negligible, ∂ p/∂y = 0. According to the micro-continuum
theory of micropolar fluids of Eringen (1966), the field equations expressed in two
dimensional rectangular coordinates can be written as:

Linear momentum:
1
2
(2µ +χ)

∂ 2u
∂y2 +χ

∂υz

∂y
=

∂ p
∂x

(5)

ngular momentum: γ
∂ 2υz

∂y2 −χ
∂u
∂y
−2χυz = 0 (6)

Continuity equation:
∂u
∂x

+
∂v
∂y

= 0 (7)

where p is the fluid film pressure, u and v are the velocity components in the x−
and y−directions, vz is the micro-rotational velocity component in the z−direction,
µ is the classical viscosity coefficient, and γ and χ are the spin gradient viscosity
coefficient and the vortex viscosity coefficient of micropolar fluids, respectively.
As the value of the spin gradient viscosity coefficient is equal to zero, the effects of
non-Newtonian micropolar fluids vanish; and the momentum equations (5) and (6)
reduce to the classical momentum equation.

The boundary conditions for the velocity components and the micro-rotational ve-
locity component are

u =U, v = 0, υz = 0, at y = 0 (8)

u = 0, v =
∂h
∂ t

, υz = 0, at y = h (9)

The zero boundary conditions for v = 0 at y = 0 and for u = 0 at y = h satisfy the
non-slip conditions. The zero boundary conditions for υz = 0 at y = 0 and y = h
describe that the micro-rotational velocity of micropolar fluids vanishes at the solid
boundaries of bearing surfaces.

Equations (5) and (6) are solved simultaneously by applying the corresponding
velocity boundary conditions. The procedure is summarized as follows: (a) Taking
the partial derivative of equation (6) with y yields an equation including the term
∂ 2u/∂y2; (b) Using equation (5), the term ∂ 2u/∂y2 can be eliminated; (c) Then
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a third order equation containing the terms ∂ 3υz/∂y3 and ∂υz/∂y can solved; (d)
Substituting the expression of υz into equation (6), one can derive the expression of
u. After an arrangement, the expressions of velocity components can be obtained.

u =U +
y2

2µ

∂ p
∂x

+
C2

m

{
a · sinh

[
my
(

1− 1
C2

)]
−b · cosh(my−1)

}
(10)

υz =
h

2µ

∂ p
∂x

{
y
h
− sinh(my)

sinh(mh)
+

1
2
[tanh(0.5my)− tanh(0.5mh)] · sinh(my)

}
(11)

where

a =
h

2µ

∂ p
∂x

+
U

h−2C2 tanh(0.5mh)/m
(12)

b =
h

2µ

∂ p
∂x

coth(0.5mh)+
U

hcoth(0.5mh)−2C2/m
(13)

m =
C
l

(14)

The symbol l can be regarded as the characteristic material length of micropolar
fluids, and C is defined as the non-dimensional coupling parameter relating the
vortex viscosity coefficient to the classical viscosity.

l = (γ/4µ)1/2 (15)

C = [χ/(2µ +χ)]1/2 (16)

Substitute the velocity component into the integrated continuity equation (7) across
the film thickness and use the corresponding boundary conditions.∫ h

y=0

∂u
∂x

dy =−
∫ h

y=0

∂v
∂y

dy (17)

One can derive the non-Newtonian dynamic Reynolds equation of the tapered-land
slider bearing lubricated with a micropolar-fluid.

∂

∂x

{[
h3 +12l2h−6Clh2 coth(0.5Ch/l)

] ∂ p
∂x

}
= 6µU

∂h
∂x

+12µ
∂h
∂ t

(18)

In addition, the volume flow rate in the x−direction can also be obtained after
integrating the velocity component u.

Q =
1

12µ

{
6µUBh−

[
h3 +12l2h−6Clh2 coth(0.5Ch/l)

]
B

∂ p
∂x

}
(19)
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where B denotes the width of the bearing. In order to conveniently analyze the bear-
ing characteristics, the non-dimensional variables and parameters are introduced as
follows.

x∗ =
x
A
, h∗ =

h
hm0

, h∗m =
hm

hm0
, t∗ =

Ut
A
, (20)

p∗ =
ph2

m0
µUA

, Q∗ =
Q

Uhm0B
, δ =

d
hm0

, I =
l

hm0
(21)

As a result, the non-dimensional Reynolds equation and the volume flow rate can
be written as:

∂

∂x∗

{
φ(h∗, I,C)

∂ p∗

∂x∗

}
= 6

∂h∗

∂x∗
+12V ∗ (22)

Q∗ =
1
12

{
6h∗−φ(h∗, I,C)

∂ p∗

∂x∗

}
(23)

where

φ(h∗, I,C) = h∗3 +12I2h∗−6CIh∗2 coth(0.5Ch∗/I) (24)

h∗(x∗, t∗) = h∗α(x
∗)+h∗m(t

∗) (25)

Region 1:

h∗α(x
∗) = δ · (1− x∗/α), 0≤ x∗ ≤ α (26)

Region 2:

h∗α(x
∗) = 0, α ≤ x∗ ≤ 1 (27)

The symbol V ∗ = dh∗m/dt∗ displays the non-dimensional squeezing velocity in the
vertical direction, δ is the shoulder parameter describing the ratio between the
shoulder height and the steady outlet film thickness, and I is the interacting pa-
rameter defining the ratio between the characteristic material length and the steady
outlet film thickness. The non-dimensional Reynolds equation (22) agrees with the
derivation of Lin et al. (2012) for a parabolic-film slider bearings with a microp-
olar fluid model. In addition, when the interacting parameter Ior and the coupling
parameter C approach zero, equations (22)-(27) reduce to the case of a Newtonian
fluid-lubricated tapered-land bearing by Lin et al. (2006).
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4 Dynamic Stiffness and Damping Characteristics

The boundary conditions and the continuity conditions for the film pressure and
volume flow rate are:

p∗1(x
∗ = 0) = 0 (28)

p∗1(x
∗ = α) = p∗2(x

∗ = α) (29)

Q∗1(x
∗ = α) = Q∗2(x

∗ = α) (30)

p∗2(x
∗ = 1) = 0 (31)

Integrating the non-dimensional Reynolds equation (17) and applying the above
conditions, the dynamic film pressure can be obtained.

p∗ = p∗1 + p∗2 (32)

p∗1 = 6 · f1(x∗,h∗m)+12V ∗ · f2(x∗,h∗m)+ c(h∗m,V
∗) · f3(x∗,h∗m), 0≤ x∗ ≤ α (33)

p∗2 = 12V ∗ · f4(x∗,h∗m)+ c(h∗m,V
∗) · f5(x∗,h∗m), α ≤ x∗ ≤ 1 (34)

where the associated functions f1, . . . , f5 and the integrating function c are de-
fined in Appendix A. Integrating the dynamic film pressure yields the dynamic
film force.

F =
∫ A

x=0
p ·Bdx =

∫
αA

x=0
p1 ·Bdx+

∫ A

x=αA
p2 ·Bdx (35)

In terms of a non-dimensional form, one has

F∗ =
Fh2

m0
µUA2B

=
∫ 1

x∗=0
p∗dx∗ =

∫
α

x∗=0
p∗1dx∗+

∫ 1

x∗=α

p∗2dx∗ (36)

After performing the integrations, the dynamic film force is obtained.

F∗(h∗m,V
∗) = 6 ·F1(h∗m)+12V ∗ · [F2(h∗m)+F4(h∗m)]

+ c(h∗m,V
∗) · [F3(h∗m)+F5(h∗m)]

(37)

where the functions F1, . . . , F5 are shown in Appendix A. The film force F∗ varies
with the outlet film thickness h∗m and the squeezing velocity V ∗. According to the
linear theory, the dynamic stiffness and damping coefficients are calculated from
the partial derivatives of F∗ with respect to h∗m and V ∗ respectively, and then take
the results under the steady state “0”: h∗m0 = (h∗m)0 = const and V ∗ = 0. As a result:

K∗ =
Kh3

m0
µUA2B

=−
(

∂F∗

∂h∗m

)
0

(38)
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D∗ =
Dh3

m0
µA3B

=−
(

∂F∗

∂V ∗

)
0

(39)

As a result, one can obtain

K∗ =−6 ·
(

∂F1

∂h∗m

)
0
− [(F3)0 +(F5) 0] ·

(
∂c

∂h∗m

)
0
− (c)0 ·

[(
∂F3

∂h∗m

)
0
+

(
∂F5

∂h∗m

)
0

]
(40)

D∗ =−12 · [(F2)0 +(F4)0]− [(F3)0 +(F5)0] ·
(

∂c
∂V ∗

)
0

(41)

where the associated functions are described in Appendix A.

5 Results and Discussion

According to the above analysis, and the tapered-land bearing characteristics are
influenced by the shoulder parameter defined in equation (21): δ = d/hm0, the
geometric parameter defined in equation (4): α = αA/A, the interacting parameter
defined in equation (21): I = l/hm0, and the coupling parameter defined in equation
(16): C = [χ/(2µ +χ)]1/2.

(1) For the values of δ 6=0, α , I=0 or C=0: the present study reduces to the Newto-
nian fluid-lubricated tapered-land bearing case by Lin et al. (2006).

(2) For the values of δ 6=0, α=1, I 6=0 and C 6=0: the present study reduces to the
case of inclined-plane bearings lubricated with a micropolar fluid by Naduvinamani
and Marali (2007).

Figure 2 illustrates the variation of the dynamic stiffness coefficient K∗ with with
the geometric parameter α for different values of the interacting parameter I and
the coupling parameter C under δ=1 and h∗m0=0.5. The stiffness coefficient increas-
es gradually with the geometric parameter until a critical value is obtained and
thereafter decreases with the geometric parameter. Comparing with the case of a
Newtonian lubricant, the influences of micropolar fluids (I=0.1, C=0.5) provide an
increase the bearing stiffness. Increasing values of the interacting parameter and
the coupling parameter (I=0.5, C=0.5; I=0.5, C=0.8) increases the non-Newtonian
effects on the value of the stiffness coefficient.

Figure 3 describes the variation of the dynamic damping coefficient D∗ with the ge-
ometric parameter α for different values of the interacting parameter I and the cou-
pling parameter C under δ=1 and h∗m0=0.5. It is shown that the damping coefficient
decreases with increasing values of the geometric parameter. Comparing with the
Newtonian-lubricant case, the effects of non-Newtonian micropolar fluids (I=0.1,
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Figure 2: Variation of the dynamic stiffness coefficient K∗ with α for different I
and C.

Figure 3: Variation of the dynamic damping coefficient D∗ with α for different I
and C.
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C=0.5; I=0.5, C=0.5) yield higher values of the damping coefficient. The improve-
ments in damping characteristics are more emphasized especially for a larger value
of the interacting parameter and the coupling parameter (I=0.5, C=0.8).

Figure 4 shows the variation of the stiffness coefficient K∗ and the damping coef-
ficient D∗ with the coupling parameter C under δ=1, and α=0.82. Under the film
thickness h∗m0=0.5, the effects of the interacting parameter (I=0.5) are observed to
result in higher values of the stiffness and damping coefficients for the bearing
with larger values of the coupling parameter C. Furthermore, decreasing the film
thickness down to h∗m0=0.4 provides larger increments of the stiffness and damping
coefficients arising from the non-Newtonian influences of micropolar fluids.

Figure 4: Variation of the dynamic stiffness and damping coefficients with C.

Figure 5 describes the variation the stiffness coefficient K∗ and the damping coef-
ficient D∗ with the interacting parameter I under δ=1, and α=0.82. Under the film
thickness h∗m0=0.5, the effects of the coupling parameter (C=0.5) are seen to pro-
vide an apparent increase in the stiffness and damping coefficients as compared to
the case of a Newtonian lubricant. Decreasing the film thickness down to h∗m0=0.4,
the influences of non-Newtonian micropolar fluids on the dynamic coefficients are
more pronounced.
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Figure 5: Variation of the dynamic stiffness and damping coefficients with I.

Recently, the dynamic performances of inclined-plane slider bearings with microp-
olar fluids have been contributed by Naduvinamani and Marali (2007). Using their
derivations and using the same non-dimensional definitions of the present study,
bearing characteristics can be evaluated. Figures 6 presents the comparison of the
dynamic stiffness coefficient K∗ with the inclined-plane slider bearing under C=0.5,
I=0.5 and h∗m0=0.5. It is observed that the values of the stiffness coefficient K∗ for
tapered-land bearings with α=0.55 are close to those of the inclined-plane bearings.
However, the tapered-land bearings with α > 0.55 result in higher values of the dy-
namic stiffness coefficient. Figures 7 describes the comparison of the dynamic
damping coefficient D∗ with the inclined-plane slider bearing under C=0.5, I=0.5
and h∗m0=0.5. It is shown that the tapered-land bearings provide better damping
characteristics even with small values of the geometric parameter α as compared
to the inclined-plane bearings.
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Figure 6: Comparison of the dynamic stiffness coefficient K∗ with the inclined-
plane slider bearing under C=0.5, I=0.5 and h∗m0=0.5.

Figure 7: Comparison of the dynamic damping coefficient D∗ with the inclined-
plane slider bearing under C=0.5, I=0.5 and h∗m0=0.5.
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6 Conclusions

Based on the micro-continuum theory of Eringen (1966), the non-Newtonian ef-
fects of micropolar fluids on the dynamic characteristics of wide tapered-land s-
lider bearings have been investigated. By applying the linear theory, analytical
expressions for the dynamic coefficients have been derived. Comparing with the
Newtonian fluid-lubricated tapered-land bearings by Lin et al. (2006), the non-
Newtonian micropolar lubricants provide an increase in the values of stiffness and
damping coefficients. The improvements on the bearing dynamic characteristics
are further emphasized for larger interacting parameters and coupling parameters.
Comparing with the non-Newtonian micropolar fluid-lubricated bearings with an
inclined plane film by Naduvinamani and Marali (2007) the tapered-land bearings
with larger geometric parameters result in higher values of the dynamic stiffness
coefficient. In addition, the tapered-land bearings provide better damping char-
acteristics even with small values of the geometric parameter as compared to the
inclined-plane bearings.
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Appendix A

The associated functions involved for p∗, F∗, K∗ and D∗

f1(x∗,h∗m) =
∫ x∗

x∗=0

δ · (1− x∗/α)

φ(h∗, I,C)
dx∗ (A1)

f2(x∗,h∗m) =
∫ x∗

x∗=0

x∗

φ(h∗, I,C)
dx∗ (A2)

f3(x∗,h∗m) =
∫ x∗

0

1
φ(h∗, I,C)

dx∗ (A3)

f4(x∗,h∗m) =
∫ x∗

x∗=1

x∗

φ(h∗, I,C)
dx∗ (A4)
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f5(x∗,h∗m) =
∫ x∗

x∗=1

1
φ(h∗, I,C)

dx∗ (A5)

F1(h∗m) =
∫

α

x∗=0

∫ x∗

x∗=0

δ · (1− x∗/α)

φ(h∗, I,C)
dx∗dx∗ (A6)

F2(h∗m) =
∫

α

x∗=0

∫ x∗

x∗=0

x∗

φ(h∗, I,C)
dx∗dx∗ (A7)

F3(h∗m) =
∫

α

x∗=0

∫ x∗

0

1
φ(h∗, I,C)

dx∗dx∗ (A8)

F4(h∗m) =
∫ 1

x∗=α

∫ x∗

x∗=1

x∗

φ(h∗, I,C)
dx∗dx∗ (A9)

F5(h∗m) =
∫ 1

x∗=α

∫ x∗

x∗=1

1
φ(h∗, I,C)

dx∗dx∗ (A10)

c(h∗m,V
∗) =

12V ∗ · [ f4(α,h∗m)− f2(α,h∗m)]−6 · f1(α,h∗m)
f3(α,h∗m)− f5(α,h∗m)

(A11)

∂ f1α

∂h∗m
=−

∫
α

x∗=0
δ · (1− x∗/α) ·φ−2 ∂φ

∂h∗m
dx∗ (A12)

∂ f3α

∂h∗m
=−

∫
α

x∗=0
φ
−2 ∂φ

∂h∗m
dx∗ (A13)

∂ f5α

∂h∗m
=−

∫
α

x∗=1
φ
−2 ∂φ

∂h∗m
dx∗ (A14)

∂F1

∂h∗m
=−

∫
α

x∗=0

∫ x∗

x∗=0
δ · (1− x∗/α) ·φ−2 · ∂φ

∂h∗m
dx∗dx∗ (A15)

∂F3

∂h∗m
=−

∫
α

x∗=0

∫ x∗

0
φ
−2 · ∂φ

∂h∗m
dx∗dx∗ (A16)

∂F5

∂h∗m
=−

∫ 1

x∗=α

∫ x∗

x∗=1
φ
−2 · ∂φ

∂h∗m
dx∗dx∗ (A17)

(
∂c

∂h∗m

)
0
=

{
−6

( f3α − f5α)2 ·
[
( f3α − f5α) ·

∂ f1α

∂h∗m
− f1α ·

(
∂ f3α

∂h∗m
− ∂ f5α

∂h∗m

)]}
0
(A18)(

∂c
∂V ∗

)
0
=

12 · [−( f2α)0 +( f4α)0]

( f3α)0− ( f5α)0
(A19)

∂φ

∂h∗m
= 12I2−12CIh∗ coth

(
Ch∗

2I

)
+3h∗2

[
1+C2 csch2

(
Ch∗

2I

)]
(A20)




