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Heat Transfer in FHD Boundary Layer Flow with
Temperature Dependent Viscosity over a Rotating Disk

Paras Ram1,2 and Vikas Kumar3

Abstract: The present study is carried out to examine the effects of temperature
dependent variable viscosity on the three dimensional steady axi-symmetric Ferro-
hydrodynamic (FHD) boundary layer flow of an incompressible electrically non-
conducting magnetic fluid in the presence of a rotating disk. The disk is subjected
to an externally applied magnetic field and is maintained at a uniform temperature.
The nonlinear coupled partial differential equations governing the boundary layer
flow are non dimensionalized using similarity transformations and are reduced to a
system of coupled ordinary differential equations. To study the effects of temper-
ature dependent viscosity on velocity profiles and temperature distribution within
the generated boundary layer, solution of the problem is obtained by employing Fi-
nite Difference and Shooting methods, subsequently. Beside the flow profiles, skin
friction coefficients, rate of heat transfer at the wall and the boundary layer dis-
placement thickness are also calculated. All of the obtained results are validated,
and discussed quantitatively and through graphs giving their physical interpreta-
tions.

Keywords: Ferrofluids, magnetic field, boundary layer flow, temperature depen-
dent viscosity, finite difference method.

1 Introduction

Ferrohydrodymanics (FHD) is the branch of fluid dynamics investigating the flow
behavior of magnetic fluids in the presence of magnetic field. An extensive research
work has been going on in the area of fluid dynamics of non-conducting magnet-
ic fluid since it was first discovered in 1960’s. Because of the potential industrial
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applications of ferrofluids, since last five decades, the investigation on them fas-
cinated the researchers and engineers, vigorously. Rosensweig (1985) has given
an authoritative introduction to the research on magnetic liquids in his monograph
and studied the effect of magnetization resulting in interesting information. How-
ever, general information on magneto-viscous effects in ferrofluids has been given
in Odenbach (2002). Verma and Ram (1993) studied the flow of magnetic fluids
through a helical pipe using space coordinates. Numerous applications of ferroflu-
ids have been proposed in engineering, physical and medical sciences in Berkowsky
et al. (1993). Hennenberg et al. (2007) examined the coupling between Cowley-
Rosensweig and stationary Marangoni instabilies in a deformable ferrofluid layer.
Ferrofluids are widely used in sealing of hard disc drives, rotating X-ray tubes and
underwater robotic vehicle under engineering applications (Kim et al. 2010). The
major applications of ferrofluid in electrical field is that controlling of heat in loud-
speakers. Control on heating makes the life of sound speakers longer and increases
the acoustical power without any change in its geometrical shape. Magnetic fluids
are used in the contrast medium in X-ray examinations and for positioning tampon-
ade for retinal detachment repair in eye surgery. Ferrofluids can be used to deliver
certain drugs to specific area of human body and in treatment of cancer by heating
the tumor soaked in ferrofluid by the way of alternating magnetic field. Therefore,
ferrofluids play an important role in the field of bio-medical science also.

In fluid dynamics, much attention has been paid through research in literature on the
fluid flow over a rotating disk. In fact, rotating disk flows of conducting and non-
conducting fluids are not only of theoretical interest, but they are also of practical
significance in many areas, such as rotating machinery, computer storage devices,
air cleaning machines, medical equipments, gas turbine rotors and specially aero-
dynamics applications. The pioneering study of ordinary viscous fluid flow due to
the infinite rotating disk was carried by Karman (1921). He introduced the famous
transformation, which reduces the governing partial differential equations into or-
dinary differential equations. His rotating disk problem is extended to the case of
flow started impulsively from rest, and also the steady state is solved to a higher de-
gree of accuracy than previously done by a simple analytical method which neglects
the resembling difficulties in Cochran (1934). Benton (1966) improved Cochran’s
solutions and also, solved the unsteady case. Chauhan and Agrawal (2010) stud-
ied the MHD flow in a parallel-plate channel partially filled with a porous medium
in a rotating system including Hall current. Ram et al. (2010) solved the non-
linear partial differential equations under Neuringer - Rosensweig model by using
power series approximations and discussed the effect of magnetic field-dependent
viscosity on velocity components and pressure profile. Shahmohamadi and Rashidi
(2011) used variation iteration method to solve steady three dimensional problem



Heat Transfer in FHD Boundary Layer Flow 181

of condensation film on inclined rotating disk. Further, disk driven ferrofluid flow
saturating the porous medium is investigated by Ram and Kumar (2012). Effect
of rotation on a ferrofluid flow over a rotating disk is studied by Ram and Sharma
(2012). Swirling flow of co/-counter rotating disks in a cylindrical enclosure with
vertical temperature graident is examined by Mahfoud and Bessaih (2012). Hayat
et al. (2012) investigated the axi-symmetric flow of MHD third grade fluid between
two permeable disks by solving the involved differential equations using homotopy
analysis method. Ram and Bhandari (2012) examined the revolving ferrofluid flow
saturating a porous medium over a stationary disk.

In all these studies, the viscous property of the fluid was assumed to be indepen-
dent of temperature. But significant variation may be recorded in this physical
property due to change in temperature. So to characterize a realistic flow behav-
ior, it becomes necessary to consider this variation in viscosity. In history, many
researchers have considered the effect of this variation in vicosity in their studies.
Ramanathan and Muchikel (2006) studied the effect of temperature dependent vis-
cosity on ferroconvective instability in a porous medium. Hooman and Gurgenci
(2008) used the exponential viscosity temperature relation to discuss the effects of
temperature dependent viscosity on the forced convection of a liquid. The effect-
s of depth and temperature dependent viscosity and Hall current on an unsteady
flow of an electrically conducting fluid due to rotating disk have been investigated
by Maleque (2010). Yuan et al. (2009) developed a method to study the influ-
ence of temperature dependent viscosity on biodiesel fuels. Duangthongsuk and
Wongwises (2009) measured the thermo-physical properties, temperature depen-
dent viscosity and thermal conductivity for the water based nanofluids with an idea
to use these properties to enhance the rate of heat transfer. The behavior of sta-
bly stratified turbulent channel flow with temperature dependent fluid properties is
studied by Zonta et al. (2012). Vajravelu et al. (2013) examined the effects of
temperature dependent viscosity on flow and heat transfer in nanofluid over a flat
surface.

The study of heat transfer in boundary layer flows is of great significance in various
engineering applications such as drag reduction, transpiration, the design of thrust
bearings and radial diffusers etc. Attia (2006) studied the flow and heat transfer of
a conducting non-Newtonian fluid above a rotating disk with consideration of ion
slip. The disk driven steady flow and heat transfer of the power-law fluid is exam-
ined by Ming et al. (2011). Rashidi et al. (2012) employed the Homotopy Analysis
method to obtain the analytical approximate solutions of fluid flow in porous medi-
um and heat transfer. Flow in a square cavity with heat tranfer influenced by the
porous layer is investigated by Hamimid et al. (2012). Ram and Kumar (2013) in-
vestigated the heat transfer in ferrofluid boundary layer over a stretchable rotating
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disk.

In the present work, we have considered the forced convection heat transfer in the
boundary layer flow of ferrofluid due to a rotating disk with temperature dependent
variable viscosity. The non linear partial differential equations governing the flu-
id flow are non-dimensionalised using similarity transformations and then solved
using the Finite difference and Shooting Methods subsequently in MATLAB en-
vironment. All the results are discussed with their graphical representations under
section “Discussion of Results”. This problem concerning the effects of tempera-
ture dependent viscosity on ferrofluids boundary layer over a heated rotating disk,
to the best of our knowledge, has not been investigated yet.

2 Mathematical Formulation of the Problem

Here, an impermeable electrically non-conducting disk of infinite radius is placed
at z = 0. The disk is considered to be rotating with a constant angular velocity
ω about the z-axis, the axis of rotation and normal to plane of the disk. Also the
space z > 0 is filled with the viscous incompressible electrically non-conducting
ferrofluid. Cylinderical polar coordinates (r, φ , z) are used to represent the problem
mathematically. The velocity of fluid is −→q with u, v and w as the radial, tangential
and axial components, respectively. The disk is maintained at a uniform tempera-
ture Tw, and the fluid, far away from the disk is at constant termperature T∞. The
flow field is subjected to an externally applied magnetic field

−→
H , and the magne-

tization
−→
M is aligned with the field. The viscosity of the ferrofluid is taken to be

temperature dependent variable viscosity and the thermal conductivity as constant.
The rotation of the disk within a ferrofluid at rest gives rise to the boundary layer
on the surface of disk. Due to viscosity of the ferrofluid and no slip condition, the
fluid layer just in contact with the surface of disk also rotates with the same angular
velocity as that of the disk.

The constitutive equations for steady and axi-symmetric ferrofluid flow with tem-
peratrure dependent viscosity are given as follows:
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The boundary conditions for the flow are

u = 0, v = rω, w = 0, T = Tw at z = 0
u→ 0, v→ 0, T → T∞ & w tends to some finite neagative value as z→ ∞

}
(6)

In above equations, ρ is the fluid density, p is the reduced fluid pressure, µ0 is
free space magnetic permeability, µT is temperature dependent viscosity, Cp is the
specific heat at constant pressure and k is thermal conductivity.

For viscous fluids, Hooman and Gurgenci (2008) has suggested an exponen-
tial viscosity-temperature relation as µT = µ∞ exp(−bθ), where θ = (T −T∞)/
(Tw−T∞) is the dimensionless temperature, and Tw & T∞ are wall temperature and
temperature of free fluid stream, respectively.

This viscosity-temperature relation, on expansion, takes the form

µT = µ∞(1−bθ) (7)

where b, a non negative real number, is the viscosity variation parameter.

The flow of the ferrofluid rotating due to rotation of an infinite disk is in equilibrium
under the influence of centrifugal force which is balanced by the resultant of a
radial pressure gradient and radial component of the magnetic body force. So, the
boundary layer approximation to (2) is as follows:

−∂ p
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2 (8)

On considering negligible variation in the magnetic field in z-direction and using
the similarity transformations [Karman (1921)]

u = r ω E(α), v = r ω F(α), w =
√

υ∞ω G(α),
p = ρωυ∞P(α), T −T∞ = ∆T θ(α)

(9)

where ∆T = Tw−T∞, α = z
√

ω

υ∞
and υ∞ is the reference kinematic viscosity in the

set of equations (1) – (5), we get a system of non-linear differential equations in
dimensionless variables E,F,G, and θ as:

G′+2E = 0 (10)
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(1−bθ)E ′′−bE ′θ ′−E2 +F2−GE ′−1 = 0 (11)

(1−bθ)F ′′−bF ′θ ′−2EF−GF ′ = 0 (12)

P′− (1−bθ)G′′+bG′θ ′+GG′ = 0 (13)

θ
′′−Pr Gθ

′ = 0 (14)

where Pr = µ∞ Cp
k is the Prandtl number.

And, the boundary conditions (6) reduce to dimensionless boundary conditions as:

E(0) = 0, F(0) = 1, G(0) = 0, P(0) = 0, θ(0) = 1
E→ 0, F → 0, G→−c , P→ 0 and θ → 0 as α → ∞, (c > 0)

]
(15)

3 Numerical Solution

The system of nonlinear coupled differential equations (10) – (14) along with the
boundary conditions (15) is solved numerically in the semi infinite domain [0, ∞)
leaving the equation (13), as the dimensionless fluid pressure P can be found direct-
ly from it, once the dimensionless vertical component of velocity and temperature
is made known. We adopted the second order numerical scheme which combines
the features of Finite difference method and Shooting method (Ariel 1992; Ram
and Kumar 2012) where the centeral differences used in dicretization ensure the
accuracy of the method. For finiding numerical solution, the semi infinite integra-
tion domain α ∈ [0, ∞) is replaced by finite domain α ∈ [0, ∞). It is to be noted
that if this numerical infinity α∞ is not taken large enough, the numerical solution
will not only depend upon the parameters b and Pr, but also on this α∞. A finite val-
ue large enough is taken for this numerical infinity α∞which ensures that solution
is independent of this value and closely approximate the asymptotic boundary con-
ditions. The value α∞ = 7.5 is found suitable to simulate α = ∞ for all considered
values of physical parameters.

Now discretizing the nonlinear coupled differential equations (10) – (12) and (14)
by approximating the first and second order differential coefficients with central
differences for the meshes defined by αi = ih (i = 1, 2, ...., n), h being the mesh
size, we get

Gi+1 = Gi−h(Ei +Ei+1) (16)

1
h2 (1−bθi)(Ei+1−2Ei +Ei−1)−

b
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−E2
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1
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In the process of discretization, equations (11), (12) & (14) are written at ith mesh
point by approximating the first and second derivatives with central differences
centered at ith mesh point, while equation (10) is written at (i+1/2)th mesh point by
approximating first derivative with the difference quotient at ith and (i+1)th mesh
points, and right hand side is approximated by the respective averages at the same
two mesh points.

Now in order to start recursion in equations (17) – (19) which are three term recur-
rence relations in variables E, F &θ , besides the values of E0, F0 &θ0, the values
of E1, F1 &θ1 are also required. These values can be obtained by Taylor’s series
expansion of E, F &θ near α = 0 and assuming

E ′(0) = l1, F ′(0) = l2, θ
′(0) = l3 (20)

Thus, we have

E1 = E(0) + hE ′(0) + h2

2 E ′′(0) + · · · , F1 = F(0) + hF ′(0) + h2

2 F ′′(0) + · · · and
θ1 = θ(0)+hθ ′(0)+ h2

2 θ ′′(0)+ · · · .
Here the values of E(0) , F(0) & θ(0) are given in equation (15) and the values of
E ′′(0), F ′′(0) & θ ′′(0) can be obtained directly from equations (11), (12) & (14)
with the help of equation (20). After getting the values of E1, F1 &θ1, the inte-
gration can be performed as: first of all, G1 is obtained from equation (16), and
then this value of G1 can be used in equations (17) – (19) to get the values of
E2, F2 & θ2, respectively. In the next cycle, G2 is obtained from equation (16), and
using the value of G2 in equations (17) – (19), we get the values of E3, F3 & θ3,
respectively. This order of computation is followed in the subsequent cycles until
the values of E, F, G &θ are obtained at all of the mesh points.

Here, we need to satisfy the asymptotic boundary conditions (15), for which the val-
ues of l1, l2 &l3 are obtained by shooting method along with Runge-Kutta method
of fourth order, so as to fulfill the boundary conditions at α = α∞. In this process,
the guesses on E ′(0) , F ′(0) & θ ′(0) can be improved by some suitable zero find-
ing algorithm like variation of Secant method, Newton’s method etc. But, these
methods are quite sensitive to initial guess and require a lot more iterations. So, we
have used the method given by Broyden (1965, 2000) as zero finding algorithms,
in which Richardson’s extrapolation method is used to hike the order of accuracy
to o(h4).
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Along with the solution of coupled differential equations, boundary layer displace-
ment thickness, skin friction coefficients and the rate of heat transfer at the surface
of rotating disk are also calculated. The viscous property of fluid layer adjacent
to the plate sets up a stress which opposes the revolution of the fluid. Newtonian
formulae are used to calculate the radial stress (τr) and the tangential shear stress
(τt) as:

τr =

[
µ(T )
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So, the radial and tangential skin frictions are, respectively given by

(1−b)−1R1/2
e C fr = E ′(0) (21)

(1−b)−1R1/2
e C ft = F ′(0) (22)

where C fr and C ft are the coefficients of radial and tangential skin friction, respec-

tively, and Re = r2ω
/
υ∞

is the local rotational Reynolds number.

Also the rate of heat transfer from the surface of the disk to the ferrofluid is calcu-
lated by using the Fourier’s law given as:
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(
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=−k ∆T
√

ω

υ∞

θ
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So, the Nusselt number (Nu) is given by

R1/2
e Nu =−θ

′(0) (23)

The skin friction coefficients and the rate of heat transfer from surface of the disk
are presented in Tab.1.

The boundary layer displacement thickness is calculated [Ref. Benton 1966] as

d =
1

rω

∞∫
0

vdz =
∞∫

0

F(α)dα (24)

After all above computation, we got the boundary layer thickness presented in
Tab.2.
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Table 1: Skin friction coefficients and Rate of heat transfer.
For Pr = 1 For Pr = 7

E ′(0) −F ′(0) −θ ′(0) E ′(0) −F ′(0) −θ ′(0)
b = 0 0.51234 0.61542 0.32756 0.50981 0.62124 0.32102

b = 0.25 0.55178 0.66387 0.37846 0.54887 0.66952 0.37314
b = 0.5 0.58549 0.69221 0.41322 0.58023 0.69894 0.41112
b = 1 0.60125 0.71827 0.44225 0.59427 0.72123 0.44028

Table 2: Boundary Layer Displacement Thickness (d)

b = 0 b = 0.25 b = 0.50 b = 1
For Pr = 1 2.11357 1.86966 1.60206 1.31982
For Pr = 7 2.19234 1.92326 1.65126 1.35128

4 Discussion of Results

The present problem involves a number of parameters influencing the ferrofluid
flow due to a rotating disk. On the basis of the variation in these parameters, a
number of results have been drawn, of these derived results a brief summary is pre-
sented here. The viscosity variation parameter b ranges from 0 to 1, where 0< b <1
is the case is when rate of change in viscosity is less than that of temperature and b
= 1 is the case when rate of changes are equal for both. And following, Anderson
and Valnes (1998), the values of the Prandtl number has been taken Pr=1 and 7,
which represents the cases of weak and strong convective heat transfer, respective-
ly, at the surface of the disk. On taking b = 0 (the case when viscosity of ferrofluid
is constant i.e. independent of variation in temperature) and removing the magnetic
body force term µ0(

−→
M·∇−→H ) from the momentum equation, the problem reduces to

the case of an ordinary viscous fluid flow due to rotating disk (Schilichting 1960),
numerical results so obtained here are in quite agreement with them, which vali-
dates the present numerical scheme.

For the Prandtl number Pr = 1 (case of weak convective heat transfer), the effects of
viscosity variation parameter b on the radial component of the velocity are demon-
strated in Fig. 1. It is observed that radial velocity increases in the beginning and
after reaching its peak point in each case it starts decreasing and finally tends to
zero. On increasing the values of viscosity variation parameter, radial velocity in-
creases near the surface of the disk, but towards the end it decreases. Also, the rate
of its convergence is more for larger value of the viscosity variation parameter. The
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peak value of the radial velocity is minimum while the rate of convergence to its
limiting value ( i.e. zero) is maximum for b = 1.

Fig. 2 represents the radial velocity profiles for the variation in the Prandtl number
at a fixed value of the viscosity variation parameter b = 0.5. It is noticed that for
increase in the value of the Prandtl number, the radial velocity remains unaffected
near the wall, but at distant points the radial velocity gets decreased. Also on in-
creasing the Prandtl number, radial velocity converges to zero at a comparatively
faster rate.

 

Figure 1: Effect of viscosity variation parameter b on radial velocity for Pr = 1.

Fig. 3 visualizes the effects of change in viscosity variation parameter b on tangen-
tial velocity profiles for Pr = 1. It is clearly seen that tangential velocity decreases
smoothly form 1 to 0 with increasing α distance from the disk in each case. Also,
it decreases on increasing the viscosity variation parameter. However, this decrease
in tangential velocity is smaller near the surface of the disk as compared to the
decrease towards the end. Also for a larger value of the variation parameter b,
tangential velocity decreases and converges to zero at a faster rate.

The effects of change in the Prandtl number on the tangential velocity for a speci-
fied value of the viscosity parameter b = 0.5 are shown in Fig. 4. An increase in the
value of the Prandtl number (i.e. strong convective heat transfer at the surface of
the disk) decreases the tangential velocity, and this decrease is comparatively more
towards the converging point.

The effects of change in the viscosity variation parameter on the axial velocity for
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Figure 2: Effect of the Prandtl number on radial velocity for viscosity variation
parameter b = 0.5.

 

Figure 3: Effect of viscosity variation parameter b on tangential velocity for Pr = 1.
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Figure 4: Effect of the Prandtl number on tangential velocity for viscosity variation
parameter b = 0.5.

 

Figure 5: Effect of viscosity variation parameter b on axial velocity for Pr = 1.
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Figure 6: Effect of the Prandtl number on axial velocity for viscosity variation
parameter b = 0.5.

the Prandtl number Pr = 1, are presented in Fig. 5. As discussed under Mathe-
matical Formulation of the Problem, to compensate the radially outward flow of
ferrofluid near the surface of disk, fluid flows in axially downward direction and
finally converges to a finite negative value i.e. the axial velocity remains negative
in the generated boundary layer. Thus, the axial velocity is negative for each value
of the viscosity variation parameter. However, on increasing the value of viscosity
variation parameter, the axial velocity decreases near the disk (approximately for
α = 1.5), but towards the end it increases. In the figure velocity curves seems to
cross at a single point, however it is worth to mention that they are crossing at dif-
ferent points in a closer range. Also for b = 1, axial velocity is minimum near the
disk while towards the end it is maximum. Fig. 6 shows the effects of change in
the value of the Prandtl number on axial velocity for a fixed value of the viscosity
variation parameter b = 0.5. Like radial and tangential component of velocity, the
axial component also decreases on increasing the Prandtl number.

Fig. 7 reflects the effects of the variation in viscosity parameter on the temperature
profiles for the Prandtl number Pr = 1. It is noticed that temperature decreases
form one to zero for each value of the viscosity variation parameter and the rate
of decrease in temperature near the surface of the disk is more in comparison to
that towards the end. Also, temperature distribution within the boundary layer
decreases on increasing the value of the viscosity variation parameter i.e. thermal
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Figure 7: Effect of viscosity variation parameter b on temperature distribution for
Pr = 1.

 

Figure 8: Effect of the Prandtl number on temperature distribution for viscosity
variation parameter b = 0.5.
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boundary layer generated over the disk becomes relatively thinner for large values
of the parameter b. The effects of change in the Prandtl number on temparature
distribution are presented in Fig. 8. Here, for an increase in the value of the Prandtl
number the temperature remains unaffected in the beginning but towards the end it
increases significantly i.e. an increase in the Prandtl number thickens the thermal
boundary layer.

Tab. 1 shows the effects of viscosity variation parameter b on radial, tangential skin
frictions and rate of forced convective heat transfer on the surface of the disk for
specific values of the Prandtl number Pr =1 & 7 representing the weak and strong
convection, respectively. It is noticed that both of the skin frictions and rate of heat
transfer get increased on increasing the variation parameter b. Also tangential skin
friction increases on increasing the Prandtl number, whereas radial skin friction
and rate of heat transfer behave conversly i.e. these get decreased for each value of
the parameter b. Further, the effects of changes in the parameter b and the Prandtl
number on the boundary layer displacement thickness are presented in Tab. 2. The
displacement thickness decreases on increasing the viscosity variation parameter b,
while shows opposite trend in case of incrase in the Prandtl number i.e.the thickness
increases.

5 Concluding Remarks

The FHD boundary layer flow due to a heated rotating disk with temperature depen-
dent viscosity has been investigated. The followings are the concluding remarks:

1. On increasing the value of the viscosity variation parameter b, radial velocity
increases in the beginnings and towards the end it decreases whereas the
axial velocity behaves conversely, tangential velocity and temperature just
decreases through the whole region.

2. On increasing the Prandtl number (i.e. for strong convective heat transfer),
each of the three components of velocity viz. radial, tangential and axial
component decreases while the temperature increases within the boundary
layer.

3. The thermal boundary layer becomes thinner on increasing the viscosity vari-
ation parameter, while an increase in the Prandtl number thickens it.

4. The boundary layer displacement thickness decreases on increasing the vis-
cosity variation parameter, and behaves conversly for the Prandtl number.

5. Skin frictions and rate of heat transfers increases on increasing the variation
parameter. And, tangential skin friction also increases with an increase in the
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Prandtl number, whereas radial skin friction and rate of heat transfer behve
conversly.

In a nut shell, dependence of fluid viscosity on temperature is a significant factor
affecting the boundary layer flow over a heated disk and helps to present a more
realistic nature of flow and various flow characteristics. Thus, the present investi-
gation is a theoretical motivation and provides the basis to scientists and engineers
for experimental work on magnetic fluids.
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