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Heat and Mass Transfer due to Natural Convection along a
Wavy Vertical Plate with Opposing Thermal and Solutal

Buoyancy Effects

M. Si Abdallah1 and B. Zeghmati2

Abstract: In the present work, a numerical analysis is performed of the combined
effects of (opposing) thermal and solutal buoyancy in the presence of a wavy (verti-
cal) surface. The boundary layer equations and related boundary conditions are dis-
cretized using a finite volume scheme and solved numerically using a Gauss-Seidel
algorithm. The influence of the wavy geometry (in terms of related wavelength
L and amplitude a) and the buoyancy ratio N on the local Nusselt and Sherwood
numbers and on the skin-friction coefficient are studied in detail. Results show that
when Pr<Sc, negative values of the buoyancy parameter, N tend to increase the
local Nusselt number and the skin-friction coefficient. An increase in the param-
eter a leads to a reduction in the heat and mass transfer and the local skin-friction
coefficient. For N<0 and Pr >Sc, the flow is completely perturbed; the thickness
of the mass boundary layer is larger than that of the thermal boundary layer.

Keywords: free convection, boundary layer, buoyancy force, vertical wavy sur-
face.

1 Introduction

Natural convection along a surface due to combined temperature and solutal varia-
tions has received considerable attention in recent years because of its importance
in a wide range of scientific fields such as biology, oceanography, astrophysics, ge-
ology, chemical processes and crystal-growth techniques, as reported by [Marcoux
et al. (1998); Mamou (2003); Markus (2004)].

Previous studies of natural convection and related heat and mass transfer mecha-
nisms have focused mainly on a flat plate or on uniform channels.
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[Adams et al. (1966)] experimentally studied free convection with opposing body
forces. [Bottemanne (1971)] developed some steady-state theoretical solutions for
Pr= 0.71 and Sc=0.63. [Gebhart and Pera (1971)] elaborated a general formulation
of the vertical two-dimensional boundary layer flows.

[Callahan and Marner (1976)] studied the free convection with mass transfer on a
vertical flat plate with Pr =1 and a realistic range of Schmidt numbers. [Chen and
Yuh (1980)] presented locally nonsimilar solutions for natural convection along a
vertical cylinder. [Mahajan and Angivasa (1993)] studied the natural convection
along a heated surface with opposing buoyancies.

These results demonstrated that boundary-layer solutions cannot yield accurate so-
lutions for natural convection flows with opposing buoyancies. Moreover, the heat
and mass transfer rates follow complex trends depending on the buoyancy ratio.

[Ching-Yang Cheng (2000)] analysed the free thermal and mass transfer near a ver-
tical wavy surface with a constant wall temperature and concentration in a porous
medium. These results showed that an increase in the buoyancy ratio tends to in-
crease both the Nusselt and Sherwood numbers.

[Jer-Huan J. et al (2003)] analysed this problem in the case of a vertical wavy sur-
face. The wavy surface was maintained at uniform wall temperature and constant
wall concentration. A marching finite-difference scheme was used for the analysis.
It was found that higher amplitude–wavelength ratios increase the fluctuation of ve-
locity, temperature and concentration fields. However, the local skin-friction , Nus-
selt number and Sherwood number are smaller for the larger amplitude–wavelength
ratios.

[Kefeng and Wen-Qiang (2006)] numerically analyzed the influence of the buoy-
ancy ratio N on the double-diffusive convection in a vertical cylinder with radial
temperature and axial solute gradients for different values of Gr, Pr and Sc. [Hos-
sain et al (1998)], analyzed the heat transfer response of free convection flow from
a vertical heated plate to an oscillating surface heat flux. [SiAbdallah et al (2011)]
studied natural convection in the boundary layer along a vertical cylinder with op-
posing buoyancies. Results showed that the Nusselt (Sherwood) number increases
with positive or negative buoyancies ratio. [Al-Ajmi and Mosaad (2012)] analyzed
heat transfer across a vertical solid wall separating natural convection in a cold
fluid-saturated porous medium and film condensation in a saturated-vapour medi-
um. They found that increasing the wall thermal parameter reduces the heat transfer
perfor-mance of both heat transfer modes. The Lattice Boltzmann method was ap-
plied on natural convection in an inclined triangular cavity for different thermal
boundary conditions by [Mahmoudi et al (2013)]. A numerical study of mixed
convection in an open partitioned heated cavity was performed by [Mahrouche et
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al (2013)]. Results showed that the flow and heat transfer depend significantly on
Reynolds number and the block height. [Dihmani et al (2012)] numerically in-
vestigated natural convection with surface radiation in a vented vertical channel
heated asymmetrically. The numerical solution was obtained using a finite vol-
ume method based on the SIMPLER algorithm. The increase of the rib width
was found to decrease the average hot wall Nusselt number, while the radiation
exchange increases the dimensionless temperature. Other interesting studies are
due to [Hamimid, Guellal, Amroune and Zeraibi, (2012); Moufekkir, Moussaoui,
Mezrhab, Naji and Bouzidi, (2012); Choukairy and Bennacer, (2012); Arid, K-
ousksou, Jegadheeswaran, Jamil, Zeraouli, (2012); Shemirani and Saghir (2013);
Maougal and Bessaïh, (2013); Kamath, Balaji and Venkateshan (2013); Rtibi,
Hasnaoui and Amahmid, (2013); Rana and Thakur (2013); Haslavsky, Mirosh-
nichenko, Kit, and Gelfgat (2013)].

2 Model description

Consider a semi-infinite vertical wavy plat as shown schematically in Fig.1. The
wavy surface of the plate is described by y=f(x) =a.sin(2πx), where a is the am-
plitude of the wavy surface and L is the characteristic wavelength. The surface is
maintained at a uniform temperature Tw and concentration cw which are different
than the ambient values, T∞ and c∞. The buoyancy forces induced by the gradients
of temperature and concentration give rise to the flow. The origin of the Cartesian
coordinates system (x, y) is placed at the leading edge of the surface. The values u
and v are the velocity components in the x and y direction respectively. The fluid
is assumed to have constant physical proprieties except for the density variation in
the buoyancy term of the momentum equation.

3 Mathematical governing equations

The governing equations for a steady, laminar and incompressible flow along a
vertical wavy surface with the Boussinesq approximation may be written as:

Continuity equation

∂u
∂x

+
∂v
∂y

= 0 (1)

Momentum equation

u
∂u
∂x

+v
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 Figure 1: Physical model and coordinate system.

Energy Equation

u
∂T
∂x

+v
∂T
∂y

= α

(
∂ 2T
∂x2 +

∂ 2T
∂y2

)
(4)

Concentration equation

u
∂c
∂x

+v
∂c
∂y

= D
(

∂ 2c
∂x2 +

∂ 2c
∂y2

)
(5)

The appropriate boundary conditions for the problem are:

y=f(x): u=0, v=0, T= TW , c=cw

y→ ∞: u=0, T= T∞, c=c∞

We now introduce the following dimensionless variables:

X =
x
L

; Y =
y
L

G1/4; A =
a
L
, F(X) = Asin(2πX)

U =
L

νGr1/2 u; V =
L

νGr1/4 v; P =
ρL2

µ2Gr
p,

Gr =
gβt(Tw−T∞)

ν2 L3

(6)

For the current problem, Eq. (3) indicates that the pressure gradient along the y
direction is of O(Gr−1/4), which indicates that the lowest order pressure gradient
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along x direction can be determined from the inviscid flow solution, however, since
there is no externally imposed free stream, this pressure gradient is zero. Therefore,
the term (∂p/∂y) may be eliminated from Eqs. (3) and (4), resulting the following
system of equations:

∂U
∂X

+
∂V
∂Y

= 0 (7)

U
∂U
∂X

+V
∂U
∂Y

=
∂ 2U
∂Y2 +θ +NC (8)

U
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=

1
Pr

∂ 2θ

∂Y2 (9)

U
∂C
∂X

+V
∂C
∂Y

=
1

Sc
∂ 2C
∂Y2 (10)

Equation (8) shows that when N is equal to zero, there is no mass diffusion body
force and the problem reduces to pure heat convection; when N becomes infinite,
there is no thermal diffusion; when N<0, the mass diffusion buoyancy forces op-
pose those of thermal diffusion and when N>0, the mass diffusion buoyancy forces
aid those of thermal diffusion.

In order to remove the singularity at the leading edge [Yao L.S. (1983)], the fol-
lowing transformations are used

ξ = X; η =
Y−F(X)

(4X)1/4 (11)

In the new coordinate system (O, ξ ,η) the equations (7-10) become:
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The corresponding boundary conditions are:

η = 0; U =V = 0; θ = 1; C = 1η → ∞ : U = 0; θ = 0, C = 0 (16)

After obtaining the velocity, temperature and concentration fields along the wavy
surface. The Nusselt number, Sherwood number and the local skin-friction coeffi-
cient are the important parameters in this problem. These parameters are defined in
the new coordinate (0, ξ , η) system as:

Nu =− Lqw

k(Tw−T∞)

where k is thermal conductivity and qwis the heat flux at the wall given by:

qw = k−→n ∇T

here

−→n =

{
− Fx√

1+F2
x
,

1√
1+F2

x

}
(17)

where n is the unit vector normal to the wavy surface. Using boundary layer vari-
ables (6) and (16), we obtain

Nux =−(1+F2
x)

1/2
(

Gr
4X

)1/4(
∂θ

∂η

)
η=0

(18)

and the local Sherwood number can be written as follow:

Shx =−(1+F2
x)

1/2
(

Gr
4X

)1/4(
∂C
∂η

)
η=0

(19)

the local skin-friction coefficient is defined by:

Cfx = 2
τw

ρŨ2
(20)

τw =

[
µ(

∂u
∂y

+
∂v
∂x

]
y=0

(21)

Substituting Eq. (22) into Eq. (21) in terms of dimensionless quantities, we obtain

Cfx = 2
(

4X
Gr

)1/4(
∂U
∂η

)
η=0

(22)
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4 Numerical method

In this work, a marching finite volume scheme was used to discretize the coupled
equations (12-15) for U, θ and C. Moreover, grid independency checks were made.
Some of the calculations were tested using 200×250 nodes in the X and Y direc-
tions respectively but no significant improvement over the use of 120×150 grid
points was found. The algebraic system of equations are solved using Gauss-Seidel
algorithm with a relaxation coefficient equal to 0.7 for the variable U and to 0.5 for
θ and C. During the program test, the convergence criterion used was |(Φk+1−Φk

)/∑Φk+1 | ≤10−5 , where Φk and Φk+1are the values of the kth and (k+1)th

iterations of U , θ and C. Furthermore, the numerical scheme used in this work is
checked.

Our computational results for aiding and opposing buoyancies for the mean Nus-
selt and Sherwood numbers were compared with the experimental data (Pr=0.7,
Sc=2.23) for opposing flow which were obtained for a vertical smooth surface
(A=0) by [Adams and Mc.Fadden (1966)] as well as with the numerical results
obtained by [Mahajan and Angirasa (1993)] as reported in Table 1.

Table 1: Comparison of Nu and Sh numbers for a vertical surface for N=- 0.43.

Nu Sh
Present work 25.24 41.30

[Adams and Mc.Fadden (1966)] 24.38 42.10
[Mahajan and Angirasa (1993)] 23.03 41.44

5 Results and discussion

The controlling parameters of the fluid flow and heat and mass transfer rates for
this problem are the Prandtl number Pr, Schmidt number Sc, buoyancy ratio (N =
Grc/Grt)) and the amplitude wavelength A for the wavy surface as described by
f(x)= Asin(2πX). The numerical results for the velocity, temperature and concen-
tration fields are presented. Hence, the inadequacies of the boundary layer analysis
are specified. Moreover, we present comprehensive results of the local friction co-
efficient, local Nusselt (Sherwood ) number for some values of the buoyancy ratio,
N, and the amplitude, A.

The velocity profiles for a smooth surface (A=0), for Pr=0.7, Sc=5 (Pr<Sc) and for
both negative and positive values of N at a given X position (X=0.5) are presented
in Fig. 2. As shown in this figure, while N= -1, the two buoyancies oppose each
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other and the flow is quiescent. When N= 4, the velocity is positive and the flow
is wholly upward. This suggests that for these values of N, although the boundary
layer analysis predicts a reasonably solution. Moreover, for N < 0, the U-velocity
is negative for Y < 0.2 and positive for Y > 0.2. Fig. 3 shows that the flow reversal
near the surface and this exaggerates the magnitude of the upward velocities; this
cannot be accounted as a boundary layer type flow.

For Pr=5, Sc= 0.63 (Pr >Sc), in this case, Fig. 4 shows that the boundary layer
analysis gives a reasonable solution for all the values of the buoyancy ratio N, both
positive and negative.

Figure 2: Velocity profile for different buoyancy ratio N (Pr<Sc).

Figure 5 shows the effects of negative buoyancy ratio number N on the local Nusselt
(Sherwood) number and the skin-friction coefficient, respectively, along the wavy
surface (A=0.3). It is seen from this figure that the decreasing of the negative
buoyancy ratio N leads to a general increase in the heat and mass transfer as well
as the local skin-friction coefficient at a given X position. Furthermore, it is noted
from this figure that the maximum values of Nu(x), Sh(x) and Cf(x) occur on the
crests of the surface while the minimum values occur in the troughs.

Figure 6 illustrates the distribution of the dimensionless temperature and concentra-
tion profiles for negative buoyancy ratio N, where it is seen that the mass boundary
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Figure 3: Stream function contours for N= -2, Pr=0.7, Sc=5 (Pr< Sc).

Figure 4: Velocity profile for different buoyancy ratio N; (Pr=5, Sc=0.63).
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Figure 5: Effects of the buoyancy ratio N on the axial distributions of Nusselt
number; (b) Sherwood number; (c) skin-friction coefficient.

layer thickness is greater than the thermal boundary layer thickness and this is be-
cause the thermal diffusion is stronger than the mass diffusion.

The effects of the amplitude wavelength on the heat and mass transfer as well as
on the local skin-friction coefficient are reported in Figs. 7 and 8. It is observed
that the values of Nu(x), Sh(x) and Cf(x) are lower than those of the corresponding
flat surface (A=0). This may be explained by the observation that an increase in
the amplitude decreases both the thermal and the mass buoyancy forces which then
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Figure 6: Temperature and concentration profile for N= -4, (Pr>Sc).

 

                                         

Figure 7: Effects of the amplitude wavelength A on the axial distributions of : (a)
Nusselt number; (b) Sherwood number; (c) skin-friction coefficient.
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cause a decrease in the values of Nu(x), Sh(x) and Cf(x) in the troughs of the wavy
surface.

Figures 8 and 9 depict the effects of the wave amplitude on the development of the
isotherms and iso-concentrations. They show a roughly sinusoidal behavior and
it is clearly seen that the mass boundary layer thickness is greater than that the
thermal boundary layer thickness when Pr >Sc.
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Figure 8: Isotherms for A=0.2 ; (Pr>Sc).
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Figure 9: Iso-concentration for A=0.2 ;
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Figure 10: Velocity profile for different wavelength L. N= -3 , 3 and (Pr<Sc).
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The effect of the wavelength on velocity profiles is plotted in Fig. 10. In this
case, the effect depends to the pair and odd of the wavelength, it is seen that when
the wavelength is pair the absolute value of the velocity is week for positive and
negative buoyancy ratio, while, when the wavelength is odd the absolute value of
the velocity is higher for both the positive or negative buoyancy force. Here, this
is because the values of the velocity calculated are in the crests while, when the
wavelength is pair, the values of the velocity calculated are in the troughs according
to the dimensionless X (X=x/L) as shown in Fig.11.

In addition, for Pr<Sc , A=0.2 and N=-3, it is seen from Fig.12 that the wavy sur-
face perturbs the flow in the crests and in the troughs and we observe recirculation
zones in the troughs near the surface.

6 Conclusion

Free convection in the boundary layer related to a wavy surface, which is main-
tained at a constant wall temperature and concentration, has been studied numer-
ically. The physical domain has been transformed using a homotopic function to
change the sinusoidal surface into a flat one. The boundary-layer equations have
been discretized using a finite volume scheme and solved via Gauss-Seidel itera-
tions.

The results show that boundary layer solutions cannot give exact solutions for
Pr<Sc as already found by some authors. In this case, the flow undergoes reversal
near the surface and increases the magnitude of the upward velocities. Concersely,
for Pr>Sc, the boundary layer analysis gives a reasonable solution for all the values
of positive or negative buoyancy ratio.

Decreasing the negative buoyancy ratio can be used to increase the heat and mass
transfer along the surface. Moreover, an increase in the wavelength leads to a
general decrease in the values of the local Nusselt (Sherwood) number and the
local skin-friction coefficient.
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