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Transient Electrohydrodynamics of a Liquid Jet:
Evolution of The Flow Field

A. Behjatian1 and A. Esmaeeli1

Abstract: Computational studies are performed to explore the underlying physics
behind the evolution of the flow field in an around a liquid jet that is immersed in
another liquid and is exposed to a uniform electric field. Here the focus is on finite
Reynolds and O(1) Ohnesorge number flows. This is achieved by solving the full
Navier-Stokes and electric field equations using a front tracking/finite difference
technique in the framework of Taylor’s leaky dielectric theory. It is shown that the
evolution of the flow field is determined by the relative magnitude of the ratio of
the electric conductivity R = σi/σo and permittivity S = εi/εo, where the subscripts
i and o denote the fluid inside and outside of the jet. For fluid systems for which
R > S or S > (1/3)(R2+R+1) the flow is established by formation of four vortices
inside the jet that gradually grow outward until their growth is limited by the jet in-
terface. On the other hands, for fluid systems for which R < S < (1/3)(R2 +R+1)
the flow evolves through evolution of four vortices that are formed in the ambi-
ent fluid and gradually penetrate into the jet until they are confined within the jet.
Examination of the electrohydrodynamics of the jets in creeping flows leads to sim-
ilar observations, and using the closed form analytical solution for these flows the
computational and analytical results are justified.

1 Introduction

This study is a follow up to our recent computational investigations [Halim and Es-
maeeli (2013)] concerning the transient electrohydrodynamics of a two-dimensional
liquid drop (jet) in a uniform DC electric field. There we explored the behav-
ior of the jets with different dielectric properties at Re = ρousa/µo = 1 and Oh =
µo/
√

ρaaγ = 0.5, us, a, and γ being an electrohydrodynamic-driven velocity scale
(see Section 2 for definition), the radius of the cross section of the jet, and the
surface tension, respectively. For all the cases considered the interface deformed
monotonically and acquired a prolate or an oblate shape (resembling an ellipse),
depending on the ratios of the dielectric properties of the jet fluid to those of the
1 Southern Illinois University Carbondale.
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Figure 1: The circulation-deformation map along with the schematics of the steady
state flow pattern (top-and-bottom-to-sides vs. sides-to-top-and-bottom) and modes
of interface deformation (oblate vs. prolate) in each region. Note that the internal
circulation is not shown in the schematics.

ambient fluid. While the structures of the velocity field at an early time and at
steady state were also examined, however, the details of the evolution of the flow
structure toward steady state were not discussed. Unfortunately, the transient elec-
trohydrodynamics of liquid jets will not be reasonably well understood without
gaining a fundamental understanding on the underlying physics of the evolution of
the flow pattern. This is because of the two-way coupling between the interface
dynamics and the fluid flow, where the interface deformation affects the strength
and structure of the flow, and the hydrodynamic stresses in turn affect the interface
dynamics. This understanding also finds relevance in a host of microfluidic appli-
cations such as enhancement of heat and mass transfer rates [Subramanian and Jog
(2005)] and chaotic mixing by electric field [Ward and Homsy (2006)].

To complete the analysis of the problem, therefore, the goal of this study is to
provide a detailed understanding of the evolution of the flow field for the cases that
were simulated by Halim and Esmaeeli (2013). Interestingly, it turns out that the
evolution of the flow pattern for those cases (i.e., Re = 1 and Oh = 0.5), where
inertia u ·∇u and local fluid acceleration ∂u/∂ t cannot be ignored, is similar to
that for a jet in an unbounded domain under the creeping flow regime (Re� 1)
and large Ohnesorge number squared (Oh2 � 1) flows, where both fluid inertia
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and local fluid acceleration are negligible. As the latter problem has a closed form
analytical solution [Esmaeeli and Sharifi (2011)], in this study we will use this
solution to interpret and justify the computational observations that will follow.

To put the work in perspective, in the next two paragraphs we provide a brief sum-
mary of the steady state [Reddy and Esmaeeli (2009)] and transient [Esmaeeli and
Sharifi (2011)] electrohydrodynamics of leaky dielectric liquid jets in a weak elec-
tric field.

The key parameters that control the senses of fluid flow and interface deformation at
steady state are the ratios of the electric conductivity and permittivity of the jet fluid
to the corresponding properties of the ambient fluid; i.e., R = σi/σo and S = εi/εo,
respectively. Here the subscripts i and o denote the fluid inside and outside of the
jet. The sense of the fluid circulation in and around the interface at steady state is
determined by the relative importance of R and S. For R > S the external flow at
the interface runs from the sides to the top and the bottom, for R < S the direction
of the flow is reversed, and for R = S the flow ceases to exist [Reddy and Esmaeeli
(2009)]. Note that these observations are in line with those for the corresponding
problem of an axisymmetric liquid drop in a weak electric field [Taylor (1966)].
The sense of interface deformation at steady state is determined by a characteristic
function

Φ = R2 +R+1−3S. (1)

For Φ > 0 the interface becomes prolate (i.e., an ellipse with its major axis parallel
to the direction of the electric field), for Φ < 0 the interface becomes oblate (i.e., an
ellipse with its major axis perpendicular to the direction of the electric field), and for
Φ = 0 the interface remains circular. The steady-state electrohydrodynamics can
be best described by considering the so-called circulation-deformation map [Fig.
(1)]. This map is constructed by plotting the zero-circulation line [Φt ≡ R−S = 0;
dashed line] and the zero-deformation curve [Φ= 0; solid line] in S−R coordinates.
This results in the three regions shown in Fig. (1) as described below:

Region I: S >
1
3
(R2 +R+1);

Region II: R < S <
1
3
(R2 +R+1);

Region III: R > S.

(2)

In region (I), confined between the Φ = 0 curve and the lines bd and d f , the inter-
face becomes oblate and the external flow at its surface runs from the top and the
bottom toward the sides; in region (II), confined between the Φ = 0 curve and the
lines Φt = 0, ia, ab, and f g, the interface becomes prolate but the external flow at
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its surface still runs from the top and the bottom toward the sides; and in region
(III), confined between the Φt = 0 line and the lines gh and hi, the interface be-
comes prolate and the external flow at its surface runs from the sides toward the top
and the bottom. Note that Fig. (1) does not show the internal circulation.

The transient electrohydrodynamics of a jet in a weak electric field was studied by
Esmaeeli and Sharifi (2011) using a closed form analytical solution. Starting with
the momentum equation in nondimensional form

1
Oh2

∂u′

∂ t ′
+Reu′ ·∇′u′ =−∇

′p′+∇
′2u′, (3)

the authors considered a weak electric field and a fluid systems for which Oh2� 1
and Re� 1. Thus, they were able to simplify the momentum equation to quasi-
steady state form,−∇′p′+∇′2u′ = 0, and study the problem by analytical solution.
Subsequently they showed that the dynamic is governed by only one characteristic
time

τ =
(µi +µo)a

γ
, (4)

which is the time scale of the interface deformation, and that the interface deforms
monotonically and settles to its steady state deformation according to

D = D∞

[
1− exp(−t/τ)

]
, (5)

where the deformation parameter D is defined as

D =
ymax− xmax

ymax + xmax
. (6)

Here, ymax and xmax are the end-to-end length of the jet cross section in the direction
of the electric field and the maximum breadth in the traverse direction, respectively,
and the steady state deformation is

D∞ =
Ca
3

Φ

(R+1)2 . (7)

2 Problem Setup and Nondimensional Parameters

The problem setup is shown in Fig. (2), depicting the cross section of an initially
circular liquid jet in a pool of another liquid. The electric field is established by
assigning electric potentials φt and φb to the top and the bottom walls, respectively.
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Figure 2: The computational setup, depicting the cross section of a liquid jet of
radius a immersed in another liquid. Here ρ , µ , σ , and ε represents, respectively,
the density, the viscosity, the electric conductivity, and the electric permittivity. The
computational domain is wall-bounded in the vertical direction and periodic in the
horizontal direction.

The computational domain is periodic in the horizontal direction and wall-bounded
in the vertical direction. No-slip and no-through flow boundary conditions are used
for the velocity field at the walls and periodic boundary conditions are used in the
horizontal direction.

The physical properties of the fluids are the densities, ρi, ρo, the viscosities, µi, µo,
the electric permittivities, εi, εo, and the electric conductivities, σi, σo. The sur-
face tension is γ . The subscripts i and o denote the physical parameters inside and
outside of the jet, respectively. The gravity is set to zero. The governing nondimen-
sional numbers of this problem are Re f = ρousa/µo, Ca = µous/γ , α = πa2/WH,
R = σi/σo, S = εi/εo, ρ̃ = ρi/ρo, and µ̃ = µi/µo. Here, Re f , Ca, and α are, respec-
tively, the flow Reynolds number, the capillary number, and the volume fraction.
Here us = εoE2

0 a/µo is a velocity scale that is constructed by balance of the electric
and viscous shear stresses at the interface and E0 = |φt −φb|/H is a characteristic
scale for the electric field strength. It is also customary to consider the Ohne-
sorge number Oh = µo/

√
ρoaγ or the nondimensional strength of the electric field

E∗ =
√

Ca = E0/
√

γ/εoa in lieu of Re f and Ca, respectively. For leaky dielectric
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model to be valid, the time scale of charge relaxation from the bulk to the interface
τC = εo/σo should be much shorter than any process time of interest. As such,
Reel = τC/τP, which is called the electric Reynolds number, should be sufficiently
small. In this study, we consider the convective time scale as the process time of
interest, τP = a/us. Thus, the electric Reynolds number is Reel = εous/σoa.

3 Mathematical Formulation and Numerical Method

The mathematical formulation and the numerical method are based on the “one-
fluid” formulation and the front tracking/finite difference technique, respectively,
and the governing equations are solved in conjunction with the Taylor’s (1966)
leaky dielectric theory. We solve the full Navier-Stokes equations for both the
fluids in the jet and the ambient. Detailed information regarding the method can be
found in Halim and Esmaeeli (2013).

4 Results

4.1 Computer Simulations

For all the computations, we considered a jet of radius 0.2 in a computational do-
main of unit size and resolved the flow using a 2562 grid. This resulted in about
100 grid points per jet diameter, which is sufficient to accurately resolve the flow
based on the grid refinement studies. Here the goal was to explore the effect of
the electric properties of the fluids on the evolution of the flow field for the cases
that were considered by Halim and Esmaeeli (2013) and also to study the effect of
fluid inertia (as represented by Re f ) on the flow field and the jet dynamics. To this
end, we performed two sets of simulations for three representative fluid systems
(corresponding to the three regions of the map) at Re f = 1 and 10. For all the cases
considered, Oh = 0.45, Ca = 0.2, µ̃ = 1, ρ̃ = 1, α = 0.1256 and Reel = 5×10−3.
We first report the results for the Re f = 1 case.

We begin our analysis by following the evolution of the flow field for a fluid system
from the region (I) of the map by considering R = σi/σo = 2 and S = εi/εo = 8.
Figure (3) shows a few frames from this simulation at the selected nondimensional
times noted in the caption. The time is nondimensionalized by the characteristic
time τ = (µi + µo)a/γ . To show the fine structure of the flow, the streamlines are
drawn at the selected levels. Therefore, the strength of the flow fields, locally and
comparatively, cannot be discerned from this figure. The flow is initiated at the
interface as a result of the imbalance of the electric shear stresses and propagates to
the rest of the domain through a diffusion process. Shortly after the start of motion
(t/τ = 0.05; frame a) the flow field consists of four vortices inside the jet that are
matched by their counterpart vortices in the ambient fluid. As time progresses the
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inner vortices disappear and the outer vortices penetrate inside (t/τ = 0.125; frame
b). The disappearance of the inner vortices is due to the fact that the deformation-
driven flow, which is behind the streamlines that cross the interface, becomes more
dominant than the (electric) shear-driven flow, which is behind the formation of the
inner vortices. From this point onward, the streamlines that cross the interface start
to retreat from the jet as the interface gradually deforms, leading to the reappear-
ance of the inner vortices (t/τ = 0.263 and 2.31; frames c and d). The fact that in
frame (e), t/τ = 2.8, a few streamlines still cross the interface is an indication that
the interface deformation has not reached a steady state. The flow field eventually
settles to steady state as the crossing streamlines retreat further. The flow field at
steady state consists of four vortices in the jet that are matched by their counterparts
in the ambient fluid (t/τ = 7.5; frame f ). Here the fluid flow is solely driven by
the electric shear stress since the interface no longer deforms. As such, the velocity
at the interface is purely tangential. For nearly circular jets in weak electric fields,
Reddy and Esmaeeli (2009) showed that the tangential velocity at the interface is

(a) (b) (c)

(d) (e) (f)

Figure 3: Evolution of the streamlines for a fluid system chosen from region (I) of
the circulation-deformation map. Here, R = 2 and S = 8. The times are t/τ = 0.05,
0.125, 0.263, 2.31, 2.8, and 7.5, where τ = (µi + µo)a/γ is a characteristic time.
The time proceeds from the left to the right and the top to the bottom.
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uθ =Umax sin2θ , where θ is measured in counterclockwise direction from the top
of the jet and

Umax =
(S−R)us

2(1+ µ̃)(1+R)2 . (8)

Accordingly, the maximum surface velocity takes place at angles±π/4 and±3π/4.
Here, Umax = 0.0083 and D∞ = −0.11. Furthermore, it appears that the position
of the maximum velocity has shifted toward angles larger than |π/4| and |3π/4|.
It should be noted that Umax > 0 implies a fluid flow that runs from the top and
the bottom toward the sides and D > 0 implies prolate deformation, respectively.
Conversely, Umax < 0 and D < 0 imply fluid flow from the sides toward the top and
the bottom and oblate deformation, respectively.

We also examined the evolution of the flow field for a fluid system from region (III)
by considering R = 8 and S = 2. For this case, Umax = −0.001, D∞ = 0.028, and
the evolution was similar to that seen in Fig. (3), except for the fact that the direc-
tion of flow circulation was the opposite and the interface deformed to a prolate.
Furthermore, since the shear-driven velocity, as represented by |Umax|, was much
weaker than that for the first simulation, no internal circulation appeared inside the
jet at the early time. The small interface velocity for this case, compared to the first
case, is due to the relatively high electric conductivity ratio, as is evident from Eq.
(8) where it is seen that Umax ∼ 1/R2. This is, in turn, due to the fact that the net
electric shear stress [[τe

rθ
]] ∼ 1/R2, which is the driver behind the tangential veloc-

ity, becomes weak as the jet fluid becomes more conductive [Reddy and Esmaeeli
(2009)].

Next we examine the evolution of the flow field for a fluid system from region (II)
by considering R = 0.06 and S = 0.15 [Fig. (4)]. Here, Umax = −9.25× 10−4,
D∞ = 0.074, and the shear-driven velocity is much weaker than that for the first
simulation. Therefore, no vortices appear in the jet at the start of the motion (t/τ =
0.263; frame a). However, contrary to the previous two cases, here the vortices
gradually move inward (t/τ = 2.8, 3.07, and 3.5; frames b−d). At this point a new
set of vortices are generated in the outer flow to match the inner vortices (t/τ = 3.5;
frame d). As time passes, the inner vortices will be gradually confined within the
jet and the outer vortices grow further (t/τ = 3.7, 7.5; frames e and f ). At steady
state, no streamline crosses the interface as the interface cease to deform (t/τ = 7.5;
frame f ). In passing, we should mention that the weak tangential velocity scale
Umax seen for this case is typical for this region. This is evident from the circulation-
deformation map where it is seen that the points on this region are close to the
zero-circulation line (Φt ≡ R−S = 0).

To explore the effect of Re f on the evolution of the flow, we considered the same
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(a) (b) (c)

(d) (e) (f)

Figure 4: Evolution of the streamlines for a fluid system chosen from region (II) of
the deformation map. Here, R = 0.06 and S = 0.15. The steady state deformation
parameter is D = −9.25× 10−4. The times are t/τ = 0.263, 2.8, 3.07, 3.5, 3.7,
and 7.5 and proceed from the left to the right and the top to the bottom.

fluid systems as before, corresponding to regions (I), (II), and (III), and performed
a set of simulations with Re f = 10. Frame by frame analysis of the flow field
for these cases showed that the evolution of the flow was essentially the same as
the corresponding simulations for Re f = 1, with the exception that the penetration
of the crossing streamlines into the jet and their retreat was repeated a few times
because of the nonmonotonic deformation of the interface. Figure (5) presents the
effect of Re f on the deformation-time history of the interface for the representative
fluid systems from region (I) and (II). As is evident, an order of magnitude increase
in the Reynolds number leads to nonmonotonic evolution of the deformation-time
history. However, it does not affect the steady state deformation D∞. Similarly, Fig.
(6) presents the effect of Re f on the kinetic energy of the fluid for the same cases.
The kinetic energy is calculated using KE = (1/2)

∫
A ρ(u2 + v2)dA, where u and v

are the components of the velocity field in the horizontal and the vertical direction,
and A is the area of the computational domain. The kinetic energy is scaled with
ρou2

s A, where us = εaE2
0 a/µo is the velocity scale. The time is nondimensionalized
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Figure 5: Effect of Re f on the deformation-time history of the interface. The top
and the bottom frames correspond, respectively, to fluid systems from region (I) and
(II), respectively. The time is scaled by the characteristic time τ = (µi +µo)a/γ of
the Re f = 1 cases.
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Figure 6: Effect of Re f on the evolution of the kinetic energy of the fluids. The top
and the bottom frames correspond, respectively, to the fluid systems from regions
(I) and (II). The time is scaled by the convective time scale tc = a/us.
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with tc = a/us which is the convective time scale. For both Re f = 1 and 10, the
evolution of the kinetic energy is nonmonotonic. However, while for the Re f = 1
case kinetic energy goes through a peak and settles to its steady state value, for
the Re f = 10 the kinetic energy is oscillatory. The nonmonotonic behavior of the
kinetic energy is due to the fact that for finite Reynolds number (Re f ≥ O(1)) the
time scale of momentum diffusion td = a2/ν cannot be ignored compared to the
convective time scale tc = a/us; i.e., Re f = ρaus/µ = td/tc.

4.2 Justification of the Observations Using Creeping Flow Solution

Having explored the evolution of the flow field using the solution of the full Navier-
Stokes equation, we now turn our attention to the evolution of the flow field for the
same fluid systems using the creeping flow analytical solution of Esmaeeli and
Sharifi (2011). The goal is to take advantage of the insight provided by the analyt-
ical formulation to further understand the underlying physics behind the previous
observations. It should be emphasized that the analytical solution is based on the
assumption of Re� 1 and Oh2� 1.

Figure (7) shows the evolution of the flow field for a fluid system corresponding to
region (I) at the selected times noted in the caption. Here the domain is unbounded
and, therefore, the flow field consists of open-ended streamlines that extend to in-
finity. Since for Oh2� 1 the time scale of diffusion of the momentum is negligibly
small compared to the time scale of interface deformation, here the flow starts im-
pulsively (t = 0 frame a). As time passes, the extended vortices gradually retreat
from the jet, leaving behind four inner vortices (frame b). Here the dashed-line
marks the dividing streamline (separatrix) that separates the inner vortices from the
original extended vortices. Further outward displacement of the extended vortices
leads to the continuous growth of the inner vortices until they occupy the jet (frame
c). At steady state, the separatrix resides at the interface and the steady state flow
pattern is similar to the corresponding schematic streamlines in Fig. (1). Further-
more, the interface deforms to an oblate.

We also examined the evolution of the flow field for the fluid systems corresponding
to regions (II) and (III). For the latter, the evolution was essentially the same as that
seen in Fig. (7). However, for the former, we could clearly see a trend similar to that
observed in Fig. (4). Figure (8) shows a few frames about this case. Here as in Fig.
(7) the flow is established impulsively and the initially extended vortices cross the
interface. However, as time passes, the original extended vortices move gradually
inward while the curvature of the streamlines that comprise the vortices continually
increases (frame b). This transforms the open-ended vortices to closed vortices that
are separated from a newly formed open-ended counterpart vortices by a dividing
streamline. Here the scale of the figure obscures this development to be seen in
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frame (b). However, further inward motion of the initially extended vortices makes
the dividing streamline and the counterpart (extended) vortices visible (frame c).
As time progress, the closed vortices are eventually confined inside the jet and the
dividing streamline resides at the interface (frame c). At steady state, the sense of
fluid flow is the same as the pertinent one depicted in Fig. (1). Furthermore, the
interface deforms to a prolate.

To explore the reason for the observed differences, we examine the possibility of
formation of the separatrix inside the jet ( j = i) and in the ambient ( j = o) by setting
f j(r) = 0 in the expressions for the streamfunction ψ j = f j(r)sin2θ ( j = i,o); i.e.,
Eq. (9) and (10) of Esmaeeli and Sharifi (2011).

We first consider the streamfunction inside the jet. Setting fi(r) = 0 leads to two
roots, however, only one of them can possibly represent the radius of the circle
0≤ rsi ≤ 1 that constitutes the separatrix

rsi = a
[Ai +Bi exp(−t/τ)

Ai +Ci exp(−t/τ)

]1/2
≡ aΛi,

where

Ai =−
Φt

Φ
, Bi = 1, Ci =

1
3
, Φt ≡ R−S.

(9)

In region (II), Φt/Φ < 0 according to Fig. (1) and, therefore, Ai > 0. Since Bi >
Ci > 0 always, then Λi > 1 at all times. This implies that it is impossible to have a
separatrix inside the jet. For regions (I) and (III), Φt/Φ > 0 according to Fig. (1)

(a) (b) (c)

Figure 7: Evolution of the streamlines for a fluid system chosen from region (I) of
the circulation-deformation map. Here, R= 2, S = 8, ρ̃ = 1, µ̃ = 1.0, and Oh= 4.5.
The times are t = 0, 1.6τ , and 8τ , where τ = (µi+µo)a/γ is the characteristic time
of the problem. Here the steady state deformation parameter is D =−0.005. Other
nondimensional numbers are Re f = 4×10−4, Ca = 0.008, and Reel = 2×10−4.
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and, therefore Ai < 0. Thus, we need to evaluate the various possibilities concerning
the signs and magnitudes of the Ni≡Ai+Bi exp(−t/τ) and Di≡Ai+Ci exp(−t/τ).
Since Bi > Ci > 0, then Ni is always greater than Di. However, we cannot draw a
definite conclusion regarding the signs of Ni and Di. Three possibilities exist: (1)
if [Ni < 0, Di < 0], then Λi ≡

√
Ni/Di < 1 for all times. Therefore, there exists a

dividing streamline inside the jet at t = 0; (2) if [Ni > 0, Di < 0] or (3) [Ni > 0,
Di > 0], then the dividing streamline does not exist initially but it can form at some

(a) (b)

(c) (d)

Figure 8: Evolution of the streamlines for a fluid system chosen from region (II)
of the deformation map. Here, R = 0.06, S = 0.15, ρ̃ = 1, µ̃ = 1, and Oh = 4.5.
The steady state deformation parameter is D = 0.0015. The times are t = 0, τ ,
2.35τ , and 8τ . The time proceeds from left to right and top to bottom. Other
nondimensional numbers are Re f = 4×10−4, Ca = 0.008, and Reel = 2×10−4
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later time with infinitesimally small radius (rsi → 0):

t0i = τ ln
(

Φ

Φt

)
. (10)

Here, drsi/dt > 0 and, therefore, the radius of the dividing streamline increases
monotonically until it resides at the interface, supporting the observation (seen in
Fig. (7)) that the inner vortices will be formed inside the jet and then grow outward
to occupy the jet.

Turning our attention to the streamfunction for the ambient flow and setting fo(r) =
0 yields the radius of the circle rso ≥ 1 that can possibly represent the separatrix:

rso = a
[Ao +Bo exp(−t/τ)

Ao +Co exp(−t/τ)

]1/2
≡ aΛo,

where

Ao =
Φt

Φ
, Bo =

1
3
, Co = 1.

(11)

Here the analysis is straightforward for regions (I) and (III), where always Ao > 0
and Co > Bo > 0. Then, Λo < 1 at all times, which implies that it is impossible to
have a dividing streamline in the ambient flow for these two regions. For region
(II), we need to evaluate the various possibilities concerning the signs and magni-
tudes of No ≡ Ao +Bo exp(−t/τ) and Do ≡ Ao +Co exp(−t/τ), since Ao < 0. Two

r

Φn < 0Φt < 0

r

Φn > 0Φt < 0

r

Φn > 0Φt > 0

Figure 9: A schematic figure depicting the superposition of the shear-driven (Φt)
and deformation-driven (Φn) flows along the north pole. The first and the third
frames correspond, respectively, to the flows in regions (Ib) and (III), and the sec-
ond frame corresponds to the flow in regions (Is) and (II). The lower and the upper
horizontal lines represent, respectively, the y coordinates of the center and the sur-
face of the jet (at the top) and the dashed line shows the approximate position of
the dividing streamline in the shear-driven flow.
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possibilities exist: (1) if [No < 0 and Do < 0], then Λo =
√

No/Do > 1 and there
exists a dividing streamline outside the jet at t = 0 with finite radius; (2) if [No > 0
and Do < 0] or [No > 0 and Do > 0], then the dividing streamline does not exist
at the beginning of the evolution but it will form at some later time far away (i.e.,
rso → ∞) from the interface:

t0o = τ ln
(
− Φ

Φt

)
(12)

Here drso/dt < 0 and, therefore, the radius of the dividing streamline decreases
monotonically until it resides at the interface, supporting the observation (seen in
Fig. (8)) that the originally extended vortices gradually transform to closed vortices
and move into the jet.

From the analysis so far, it is clear that the evolution of the flow field is closely
related to the formation of the dividing streamline. As such, understanding the un-
derlying mechanism behind the formation of the dividing streamline will be helpful
in predicting the flow evolution. Here we lay out a methodology that is based on
physical reasoning and can be used to analyze the current problem as well as the
more complex circumstances where mathematical reasoning will be tedious. To
this end, we note that the drivers behind the fluid flow (as well as the interface de-
formation) during the transient are the net normal and tangential electric stresses,
[[τe

rr]] and [[τe
rθ
]], as given by Eq. (7) and (8) of Esmaeeli and Sharifi (2011), where

the double bracket denotes the jump in a physical parameter at interface. Since the
sense of fluid flow driven by the individual stresses ([[τe

rθ
]] and [[τh

rr]]) can be figured
out qualitatively, the superposition of the two flow fields can help to understand the
overall flow pattern; i.e. u ∼ ut +un. Here we denote the flow due to [[τe

rθ
]] and

[[τh
rr]] as the shear- and the deformation-driven flows, respectively. During the tran-

sient, the senses of the shear- and deformation-driven flows are determined by the
signs of Φt = R−S and Φn = Φ−Φt , respectively, and their strengths are propor-
tional to |Φt | and |Φn|. Furthermore, the shear-driven flow pattern for all the fluid
systems is similar to the flow pattern seen for region (I) in frame (b) of Fig. (7),
with the exception that the senses of the flow for fluid systems chosen from region
(III) will be the opposite to that depicted in this panel. Similarly, the deformation-
driven flow pattern will be similar to the first frame of Fig. (7) or (8), except that the
streamlines will be more bent; thus, for fluid systems chosen from regions (II) and
(III), where the interface is deformed to a prolate, the initially extended vortices
cross into the interface at the sides and exit at the top and the bottom. Conversely,
for a fluid system chosen from region (I), where the interface deforms to an oblate,
the direction of the flow is the opposite.

To examine the results of the superposition of the shear- and deformation-driven
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flow patterns, rather than considering the whole flow field, we focus on the super-
position of a representative streamline from each flow in the upward direction along
the vertical line that passes through the center of the jet. This makes the analysis
much simpler and is valid since the dividing streamline is circular. We further note
that along the dividing streamline the radial component of the velocity ur is zero.
Thus, the dividing streamline will form whenever the radial velocity vanishes be-
cause of the superposition of the two flow fields; i.e., urt + urn = 0. To proceed
further, we need to include the Φn = 0 curve in the circulation-deformation map so
that the map will be well-suited for transient flows. As shown in Fig. (1), this leads
to the division of region (I) to a big (Ib) and a small (Is) region, but does not affect
the structure of regions (II) and (III). The new regions can be defined:

Region Is :
1
3
(R2 +R+1)< S <

1
2
(R2 +1);

Region Ib : S >
1
2
(R2 +1).

(13)

Geometrically, region Ib is confined between Φn = 0 curve and lines cd and de
and region Is is confined between Φ = 0 and Φn = 0 curves and the lines bc and
e f . Here four possible senses of flow patterns and interface deformation exists
according to the signs of Φt and Φn.

Figure (9) shows schematically the radial components of the shear-driven and the
deformation-driven velocities; urt and urn , respectively. The analysis is relatively
simple for regions (III) and (Ib). For these regions, the senses of shear-driven and
deformation-driven flows are the same in the ambient fluid and, therefore, there
is not a possibility for the formation of a dividing streamline there. However, the
direction of the Φn-driven velocity is the opposite to that of the Φt-driven velocity
in part of the jet. Thus, it is possible for a dividing streamline to form in the jet
because of competition of the opposing streamlines. These conclusions are in line
with the results of Eq. (9) and (11). On the other hand, for regions (II) and (Is)
the directions of the Φn-driven and Φt-driven velocities are the opposite both in the
ambient and part of the jet. This suggests that there is a possibility of formation of
a dividing streamline “both” in the ambient and the jet. This observation seems in
contradiction with the results of Eq. (9) and (11), where we showed that for regions
(II) and (I) the dividing streamline is possible “either” in the ambient or inside the
jet, respectively. This apparent discrepancy can be resolved easily considering the
following facts. First, inside the jet, the dividing streamline will exist if the Φn-
driven radial velocity is sufficiently weak so that it will only nullify “part” of the
opposing Φt-driven radial velocity or it does not nullify it at all. On the other hand,
if Φn-driven radial velocity is sufficiently strong so that it nullifies the “whole” op-
posing Φt-driven radial velocity, the dividing streamline will be pushed out from
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the jet into the ambient. Inspection of Fig. (1) shows that this is indeed the case for
region (II). For this region, |Φn| is dominant over |Φt | since here the fluid veloc-
ity, running from the top and the bottom to the sides, tends to deform the interface
to an oblate but the interface actually deforms to a prolate. Considering the fact
that |urn | ∼ |Φn| and |urt | ∼ |Φt |, then |urn | can override |urt |, pushing the dividing
streamline into the ambient. On the other hand for region (Is), |Φn| is weak since
it tends to deform the interface to a prolate, but the interface actually deforms to
an oblate. Thus, for this region, |urn | can at most nullify part of the opposing |urt |,
leading to possible displacement of the dividing streamline in the jet.
In summary, the results of flow superposition are in line with those of the mathe-
matical derivation for all the regions. This is encouraging since for more complex
flows where the mathematical derivation becomes tedious, the superposition tech-
nique will likely to be an effective means for gaining insight into the flow pattern.

5 Conclusion

The evolution of the flow field during the transient electrohydrodynamics of a liquid
jet can find relevance in microfluidic applications that are aimed to enhance heat
and mass transfer or chaotic mixing using electric field. The phenomenon has not
been explored in detail before and was subject of this study. The computational
results showed that the flow evolution is determined by the relative importance of
the ratio of electric conductivity R and permittivity S. For fluid systems that belong
to region (I) and (III) of the circulation-deformation map, the flow evolves as a
result of growth of vortices that are formed inside the jet. On the other hand, for
fluid systems that belong to region (II), the flow evolves as a result of the growth
of vortices that are formed in the ambient and penetrate into the jet until they are
confined within the jet.

Examination of the results of the analytical solution of the problem [Esmaeeli and
Sharifi (2011)] for flows with Re� 1 and Oh2� 1 showed that the flow evolution
was similar to the corresponding computational one for finite Reynolds and O(1)
Ohnesorge number. Inspection of the analytical results and the pertinent equations
showed that the flow field evolves as a result of the interplay of the deformation-
driven and (electric) shear-driven flows and that through the superposition of these
flows one can qualitatively predict the evolution of the flow field.
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