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Effects of Internal Heat Generation and Variable Fluid
Properties on Mixed Convection Past a Vertical Heated
Plate

P. A. Dinesh', N. Nalinakshi 2 and D. V. Chandrashekhar >

Abstract: Heat and Mass transfer from a vertical heated plate embedded in a
sparsely packed porous medium with internal heat generation and variable fluid
properties like permeability, porosity and thermal conductivity has been investi-
gated numerically. In particular, the governing highly non-linear coupled partial
differential equations are transformed into a system of ordinary differential equa-
tions with the help of similarity transformations and solved numerically by using a
shooting algorithm based on a Runge-Kutta-Fehlberg scheme and a Newton Raph-
son method (to obtain velocity, temperature and concentration distributions). The
heat and mass transfer characteristics are analyzed and related physical aspects are
discussed in detail to interpret the effect of the various significant problem parame-
ters. The results show that the buoyancy ratio number, Prandtl number Pr, Schmidt
number Sc and other parameters play an important role. The obtained results are
compared with previously published works and they are found to be in very good
agreement. The effects of the considered parameters on the local skin friction coef-
ficient (viscous drag), Nusselt number (rate of heat transfer) and Sherwood number
(rate of mass transfer) are also discussed.

Keywords: Mixed Convection, porous medium, Internal heat generation, bound-
ary layer.
1 Introduction

Mixed Convection is the flow situation where both free and forced convection ef-
fects are of comparable order. Mixed Convection has been over recent years the
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subject of much interest due to its relevance to numerous and multivariate applica-
tions in the field of air conditioning, heating and refrigeration, in several industrial
and technical processes such as electronic devices cooling, nuclear reactors cooled
during emergency shut down and heat exchangers placed in a low-velocity envi-
ronment, geothermal energy extractions, drying of porous solid, thermal insulation
and so on. In several physical problems, such as fluids undergoing exothermic and
endothermic chemical reaction the study of heat generation is important. Possi-
ble heat generation effects may alter the temperature distribution and consequently,
the particle deposition rate in nuclear reactors, electric chips and semiconductor
wafers. Internal heat generation enhances melting and impedes freezing. This
phenomenon occurs in nuclear, geologic, cryogenic and material processing ap-
plications. The study of heat generation or absorption effects in moving fluids is
important in problem dealing with chemical reactions and those concerned with
dissociating fluids such as fluids undergoing exothermic or endothermic chemical
reaction.

Several studies have been conducted in this area over a vertical plate with inter-
nal heat generation. Vajravelu and Hadjinicolaou (1993) studied the heat transfer
characteristics in the laminar boundary layer of a viscous fluid over a stretching
sheet with viscous dissipation or frictional heating and internal heat generation.
Results of Seddeek (2005) showed that the particle deposition rates were strongly
influenced by thermophoresis and buoyancy force, particularly for opposing flow
and hot surfaces in his study of the effects of chemical reaction, thermophoresis
and variable viscosity on steady hydromagnetic flow with heat and mass transfer
over a flat plate in the presence of heat generation absorption. Patil and Kulkarni
(2008) studied the effects of chemical reaction on free convective flow of a polar
fluid through porous medium in the presence of internal heat generation. Double-
diffusive convection radiation interaction on unsteady MHD flow over a vertical
moving porous plate with heat generation and soret effects was studied by Mo-
hamed (2009). Ferdows (2011) studied the effect of an exponential form of in-
ternal heat generation and variable viscosity in double diffusion problem of MHD
from a porous boundary past a continuously moving semi-infinite vertical porous
plate. Heat transfer studies in a vertical channel filled with porous medium is anal-
ysed by Kamath et al (2013). Mahmoudi et al (2013) made a numerical study of
Natural convection in an inclined triangular cavity for different thermal Boundary
conditions. Heat transfer and Entropy Analysis for Mixed convection in Discretely
Heated Porous square cavity is made by Maougal et al (2013). Moufekkir et al
(2012) analysed Numerical study of Double Diffusive Convection in presence of
radiating gas in a square cavity.

The review of existing literature relevant to the present work is elaborated in the
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following.

Mahrouche et al (2013) studied mixed convection in an opened partitioned Heated
cavity and concluded that heat exchange is essentially due to convective cells which
by turning bring cooled air from the cold wall to the horizontal faces of the parti-
tions. Numerical and Analytical Analysis of the thermosolutal convection in an
Heterogeneous Porous Cavity is studied by Choukairy and Bennacer (2012) and
found that heat and mass transfer are doubled while passing from the homogeneous
case to the heterogeneous case. Effect of a Porous layer on the flow structure and
Heat transfer in a square cavity is studied by Hamimid et al (2012) and concluded
that overall heat transfer increases with increasing permeability due to better pen-
etration of the porous layer by the convective flow. The critical conditions for the
onset of convection in a doubly diffusive porous layer with internal heat genera-
tion were documented by Selimos and Poulikakos (1985). Convective instability
study by considering the combined effects of internal heat generation and through
flow has been made by Khalili and Shivakumara (1998) who have modelled a so-
lar pond by allowing ¢ varying exponentially with depth, including the effect of
vertical through flow. The heat generation effects on steady combined free-forced
convection and mass transfer flow past a semi-infinite vertical porous flat plate em-
bedded in a porous medium was studied by Alam et al (2006) and concluded that
volumetric heat generation term exerts a strong influence on the heat transfer and
also on the fluid flow. They also observed that suction stabilizes the boundary layer
growth and sucking decelerated fluid particles through the porous wall reduce the
growth of the fluid boundary layer as well as thermal and concentration boundary
layers.

The effect of heat generation, viscous dissipation on free convection heat and mass
transfer from a vertical wall in a doubly stratified, fluid saturated, Darcy porous
medium was studied by Govardhan et al (2012). Vajravelu (1980) studied the ef-
fects of variable properties and internal heat generation on natural convection at a
heated vertical plate in air and observed that wall heat transfer coefficient in the
variable fluid property case is about 30% higher than in the constant fluid property
case. The presence of heat sources delays attainment of the steady-state condition.
Mixed convection from a convectively heated vertical plate to a fluid with internal
heat generation approach is made by Makinde and Aziz (2011), by considering the
cold fluid flowing over the right face of the plate containing a heat generation that
decays exponentially with a dimensionless distance from the wall. In the develop-
ment of a metal waste from spent nuclear fuel, phase change processes and thermal
combustion processes, convection with internal heat generation plays an important
role in the overall heat transfer process. Crepeau and Clarksean (1997) considered
the classical problem of natural convection from an isothermal vertical plate and
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added a heat generation term in the energy equation and found that for a true sim-
ilarity solution to exist, the internal heat generation must decay exponentially with
the classical similarity variable. Olanrewaju et al (2012) investigated the internal
heat generation effect on thermal boundary layer with a convective surface bound-
ary condition over a flat plate and concluded that because of strong internal heat
generation the plate surface temperatures exceed the temperature of the fluid on the
lower surface of the plate and the direction of heat flow is reversed. Ali Chamkha
(2007) studied heat and mass transfer for a non-Newtonian fluid flow along a sur-
face embedded in a porous medium with uniform wall heat and mass fluxes and
heat generation or absorption and found that increasing the heat generation or ab-
sorption parameter decreases the local Nusselt number and increasing the Lewis
number produced increases in the local Sherwood number.

In some industrial applications, such as fixed-bed catalytic reactors, packed bed
heat exchangers and drying, the value of the porosity is maximum at the wall and
minimum away from the wall, so the porosity of the porous medium should be
taken as non-uniform.

Porosity measurements by Shwartz and Smith (1953) and Benenati and Brosilow
(1962) show that porosity is not constant but varies from the wall to the interior
of the porous medium due to which permeability also varies. Chandrasekhara et
al (1985) has incorporated the variable permeability to study the flow past and
through a porous medium and have shown that the variation of porosity and perme-
ability has greater influence on velocity distribution and on heat transfer. Neverthe-
less, the inertia effects become important in a sparsely packed porous medium and
hence their effect on mixed convection problems needs to be investigated. Moham-
madein and El-shaer (2004) studied mixed convective flow past a semi-infinite ver-
tical plate embedded in a porous medium incorporating the variable permeability in
Darcy’s model. Recently, Pal and Shivakumar (2006) analyzed mixed convection
heat transfer from a vertical heated plate embedded in a Newtonian fluid sparsely
packed porous medium by considering the variation of permeability, porosity and
thermal conductivity. Dulal Pal (2010) studied magnetohydrodynamic non-Darcy
mixed convection heat transfer from a vertical heated plate embedded in a porous
medium with variable porosity, by taking the viscous dissipation term in the energy
equation. Nalinakshi et al (2013) analyzed numerically Double Diffusive mixed
convection with variable fluid properties.

Further studies along these lines, for different geometries will help to find the right
combination that promotes heat and mass transfer and thus better cooling. In the
present paper, in particular we study systematically and numerically the mixed con-
vection heat and mass transfer for a Newtonian fluid flow past a semi infinite ver-
tical heated plate embedded in a sparsely packed porous medium incorporating
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the variable porosity, permeability and thermal conductivity in the presence of In-
ternal Heat Generation (IHG). To achieve this objective our plan of work is, in
the analysis highly coupled non-linear partial differential equations governing the
physical system are first reduced by a similarity transformations to the ordinary
differential equations and then the resultant boundary value problem is converted
into the system of seven simultaneous equations of first-order for seven unknowns.
These equations are solved numerically by shooting technique by Runge-Kutta-
Fehlberg Methods to obtain velocity, temperature and concentration profiles for
various physical parameters.

2 Mathematical Formulation

Two-dimensional, laminar, steady- state boundary layer flows of an incompress-
ible fluid past a semi-infinite vertical heated plate embedded in a sparsely packed
Newtonian fluid saturated porous medium of variable porosity, permeability and
thermal conductivity with IHG is considered. The x-coordinate is measured along
the plate from its leading edge, and y-coordinate normal to it. Let Uy be the ve-
locity of the fluid in the upward direction and the gravitational field, g, is acting in
the downward direction. The plate is maintained at a uniform temperature 7,, and
at uniform concentration C,, which is always greater than the free stream values
existing far from the plate (i.e., T,, > T.. and C,, > C.).

Considering the theory of boundary layer effect for sparsely packed porous medium
with high porosity € (but less than unity), the general vectorial equations for the
conservation of mass, momentum, energy and species concentration for steady,
viscous, incompressible, Newtonian fluid flow can be written as:

Continuity equation:
V-g=0 1)

Momentum equation:

. . o 2o L
Po(G-V)G=—Vp+pg+paVv? —%q, (2)
Energy equation:
(PoCp) (G- V)T =V - (kVT) +®+4", 3)

Concentration equation:

(G-V)C=k.-VC+, 4)
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where § = (u,v), u and v are the velocity components along the x and y directions,
respectively. p is the density of the fluid, g is the acceleration due to gravity, p
is the pressure, T is the temperature of the fluid, C is the concentration of the
fluid, fi is the effective viscosity of the fluid, u is the fluid viscosity, C, is the
specific heat at constant pressure, k is the variable thermal conductivity, k. is the
solutal diffusivity, By is the coefficient of volume expansion, B¢ is the volumetric
coefficient of expansion with species concentration, ¢ is the exponential form of
(IHG) and ¢ is the viscous dissipation term.

With the assumptions: (a) The Bousinesque approximation is valid i.e., density is
constant everywhere in the momentum equation except in the buoyancy force. (b)
Permeability, porosity, thermal resistance solutal diffusivity are functions of the
vertical coordinate y (c) Local thermal equilibrium exists between fluid and solid
phase.

The governing basic equations (1) — (4) for steady two-dimensional flow can be
written in the form:

Continuity equation:

Ju du
a‘Fa*y:Ov ®)

Momentum equation:

Ju du  1dp m
Ma*x+va*y——Ea‘kgﬁT(T—Tw)_gﬁc(c_coo)‘kfi—*7% (0)

Energy equation:

O OT _ 9 (T gy B (9uY
M8x+v8y_3y(a(y) 8y>+q AT 7

Concentration equation:

8£+ 9C _ azl (8)
“ox vayiymayz’

_ 2

where, ® = pLC (g—;f) , T., is the ambient temperature, C is the ambient concen-
ol p

tration, k(y) the variable permeability of the porous medium is, £(y) is the variable

porosity of the saturated porous medium, o(y) is the variable effective thermal dif-

fusivity of the medium and %, is the effective solutal diffusivity of the medium. For

simplicity we consider p = p,.
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To determine the flow field the above governing equations need to be solved subject
to the boundary conditions. The different types of rigid surfaces boundary condi-
tions have been stated to describe flow characteristics at the boundary, near the plate
and far away from the plate embedded in a sparsely packed porous medium.

The following are the boundary conditions on velocity, temperature and concentra-
tion fields:

u=0, v=0, T=T,, C=C, at y=0, ©)]
u=U,, v=0, T=T,, C=Csx as y—oo (10)
Since the flow field is uniform at a sufficiently large distance from the porous sur-

face, the free stream U, where U, is the free stream velocity. The expression for
free stream velocity is obtained from Equation (2) and is given by,

1dp _ pe@),
pox  pk(y) ’

Eliminating % in equation (6) by using equation (11), we finally obtain the mo-
mentum equation as:
du du = — Lo*u we(y)

ua“rva*y = gBT(T_T‘X’> - gﬁC(C_CM)—i_ETyZ—FEW(UU_M). (12)
Equations (5), (7), (8) & (12) are highly nonlinear partial differential equations,
in order to solve them the following dimensionless variables f, 8, ¢, and ¢"”" and
as well as the similarity variable 17 are introduced (see Hady et al [175], Moham-
madein and El-shaer [33]):

an

1/2 T—T
TI:<X> o , ¥= ~VU0xf(77)7 0= = )
X v Tw — 1. (13)
0= C—C. q,,, _ U, (TW — Tm)e_n
Cy —Cs’ 2x ’

where v is the kinematic viscosity of the fluid, y = y(x,y) is the stream function
defined by u = %’, V= —%’C/ is such that the continuity equation (5.5) is satisfied
automatically and the velocity components are given by

1 /vU,

u=Upf'(m), v=—=3\/—"(Fm=nfm). (14)

The variable permeability k(7), the variable porosity € (1) and the variable ef-
fective thermal diffusivity o/(n) are given by, following the study made by Chan-
drasekhara and Namboodiri [31]

k() =k, (14+de M), (15)
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e(n)=¢ (1+d*e M), (16)
a(mn)=a,e(1+de ) +o" {I—g (1+d*e")}], (17)

where k,, €,, 0, are the permeability, porosity and diffusivity at the edge of the
boundary layer respectively, o* is the ratio of the thermal conductivity of solid to
the conductivity of the fluid, d and d* are treated as fixed constants for variable
permeability (VP) and d = d* = 0 for uniform permeability (UP).

Equations (7), (8) & (12) are transformed into ordinary differential equations by

substituting the dimensionless variables introduced in equations (13) to (17), the
simplified local similarity equations are

1 Gr ot 1+d*e M
m_ et 2 g Ne)— L ,
! fo Rez( (P) oRe < 14-de " ) ( f), (18)
g _ ~2PrfO —PrEf”—3Pre " —g,d'e (07 ~1)6' (19)
80+0*(]_80)+8(,d*e—77(]_g*) ,
1
"=y Sefd (20)

where, Pr = ji/pa, is the Prandtl number, Sc = ji/pY, is the Schmidt number,
N, B*, a*/c Re, Gr/Re? is the ratio of viscosities, N = % is the Buoy-
ancy ratio, E = U?/C,(T,, — T..) is the Eckert number, o = k,/x°¢, is the lo-
cal permeability parameter, Re= U,x/v is the local Reynolds number and Gry =
gPBr (T, — T..)x* /v? is the thermal Grashof number, Gre = gBc(C,, — C.o)x* /v? is the
solutal Grashof number. % is the mixed convection parameter called as Richard-
son number and Gry = Gre.

The transformed boundary conditions are:
f=0, f/=0, 6=1, ¢=1 at n=0, (21)
/=1, 6=0, ¢=0 as N —oo. (22)

Once the velocity, temperature and concentration distributions are known, for many
practical applications, it is important to find an expression for the skin friction, the
rate of heat transfer and the rate of mass transfer. The Nusselt number is defined as
the ratio of the vertical heat flux to the conductive vertical heat flux. In the steady
state the vertical heat flux is independent of the vertical coordinate. Hence, they
can be calculated respectively by using (as discussed in chapter 4)

T=—f"(0)/vVRe, Nu=—+Re6' (0) and Sh=—VRe¢’(0), (23)

where 7 is the skin friction , Nu is the Nusselt number and Sh is the Sherwood
number.
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3 Method of Solution

The boundary value problem arising due to vertical heated plate are highly coupled
nonlinear ordinary differential equations (ODE’s) which are difficult to solve an-
alytically, we employ one of the numerical technique called the shooting method
to solve the obtained coupled ODE’s. By this method, first we try to transform
the coupled ODE’s (18) — (20) into the system of simultaneous first order ODE’s
and converting Boundary Value Problem (BVP) to Initial Value Problem (IVP) by
choosing a suitable guess value at the initial point. The obtained first order ODE’s
with the corresponding initial condition are solved by employing Runge-Kutta-
Fehlberg Integration method. The method is illustrated as given below:

1. Decision on oe.
2. Converting BVP to IVP by choosing suitable initial condition for f, 8, ¢.

3. f7(0), 6’(0) and ¢’(0) required for the solution of initial value problem are
chosen by the classical, explicit Runge-Kutta Fehlberg method of fourth or-
der.

The decision on an appropriate ‘oo’ for the problem depends on the proper parame-
ter values chosen. In view of this, for each parameter combination, the appropriate
value of ‘oo’ has to be decided. The algorithm for the shooting method with Runge-
Kutta fourth order approximating is used.

Initially, we chose guess values as f”(0) = P, 6'(0) = Q and ¢'(0) =R. The process
of obtaining P, Q and R accurately involves iteration process and can be calculated,
repeating the same calculation we get another improved value, but these chosen
guess values are not the most accurate values and hence there is a need to redefine.
The better guess can be obtained by using the Newton-Raphson method. We solve
the equations (18)-(20) with initial conditions

(24)

Due to crude choice of f”(0), 6’(0) and ¢’(0), the solution at ‘e’ does not match
with those given in the problem using the classical explicit Runge-Kutta method of
fourth order. Thus, the coupled nonlinear boundary value problem (BVP) of third-
order in f(n) and second-order in 6(n) and ¢(n) has been reduced to a system
of seven simultaneous equations of first-order for seven unknowns as follows (see
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Vajravelu [176]):

_ dfi _ dfs _
f_flu ﬁ_f% dTI _f3)
dfs 1 Gr o (1+d e ™M)
an - —Eflfa — RT:ZU4_Nf6) - m(l —f2),
_ dfs _
0 _f47 E _f57 (25)
dfs  (1/2)Prfifs+PrEf+(1/2)Pre N +e,d e (6" 1) fs
dn g,+0* (1—¢,)+e,d*et(1—0%) ’
_ dfs df; 1
o = fo, %—f% %—*Escflf%

where fi=f, h=f . fs=f". f1=0, fs=0', fo= 0, fr = ¢' and a prime denotes
differentiation with respect to 1. The boundary conditions (21) and (22) will now
take the form.

f1(0)=0, £(0)=0, f0)=P fa(0)=1,
f50)=0, fs(0)=1, f(0)=R,

fa(e0) =1, fa(eo) =0, fo(o0) =0. (27)

To solve the system of first-order differential equations along with boundary con-
ditions, we need seven initial conditions, but we have only two initial conditions on
f(n), one initial condition on 6(n) and one initial condition on ¢(n). The third
condition of f(i.e.f”(0)), second condition on 6 (i.e.0’(0)) and second condition
on ¢(i.e.¢’(0)) are not prescribed, which are determined by employing numerical
shooting method and using the two ending boundary condition given in equation
(27). The selection of an appropriate finite value of 7). is to be made. A good
guess of the initial condition in the shooting technique is to be made on which the
convergence depends. The accuracy of the assumed initial conditions is checked
by comparing the calculated values of the dependent variable at the terminal point
with its given value at that point. If any difference exists, improved values of the as-
sumed initial conditions must be obtained and the process is repeated. The iterative
process is terminated when the difference between two successive values reached
1079, then the solution is said to have converged results. The slight deviation in the
values may be due to the use of Runge-Kutta-Fehlberg method which has fifth or-
der accuracy whereas; Mohammadein and El-Shaer (2004) have used fourth-order
Runge-Kutta method which has only fourth order accuracy who has analysed the
influence of variable permeability with heat transfer in the absence of IHG. Thus
the present results are more accurate compared to their results.

(26)
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4 Results and Discussion

The flow of steady, laminar, incompressible viscous fluid in a vertical heated plate
embedded in a saturated porous medium has been investigated in presence of inter-
nal heat generation in the energy equation. The Brinkman extended Darcy equa-
tion is used along with the continuity equation, energy and species concentration
equation to illustrate the flow behavior in sparsely packed porous medium. The
exponential form of internal heat generation is considered. The partial differential
equations are converted into ordinary differential equation using the similarity so-
lution method. The system of first-order differential equations (18)-(20) are solved
numerically using shooting technique with Runge-Kutta-Fehlberg method. In or-
der to know the accuracy of the method used, computed values of f”(0), 6(0) and
¢’(0) were obtained for buoyancy ratio N = 0 and compared with those obtained
by Mohammadein and El-Shaer (2004) with only the heat transfer, for the variable
permeability case and good agreement has been obtained with their results. The
values are tabulated in the Table 1, 2 for &, = 0.4, Ec = 0.1, Pr=0.71, Sc=0.22
with selected values of Gr/Re?, 6*, N and o* /6Re for both uniform permeability
(UP) (i.e.,d = d* = 0.0) and variable permeability (VP) (i.e.,d = d* # 0) cases.
For the purpose of numerical integration we have assumed d = 3.0 and d* = 1.5
(chandrashekhara et al (1985). The slight deviation in the values may be due to
the use of Runge-Kutta-Fehlberg method which has fifth order accuracy. Table 3, 4
shows the values of local Nusselt number and local Sherwood number (—6'(0) and
—¢'(0) ) for Ec = 0.1, o /oRe = 0.1, N=1.0, for both Uniform Permeability (UP)
and Variable Permeability (VP) cases for different values of Pr and Sc respectively.

As a result of the numerical calculations, the dimensionless velocity, temperature
and concentration distributions for the flow under consideration are obtained and
their behaviour have been discussed for various non-dimensional parameters.

The velocity distributions for various values of buoyancy ratio N have been de-
picted in Fig.1. It is observed that increase in the value of buoyancy ratio N there is
a slight increase in the velocity profile and the boundary layer also varies slightly.
The temperature distributions are shown for various values of buoyancy ratio N in
Fig. 2, it is observed that increase in value of buoyancy ratio N there is a decrease
in the temperature profile. When the buoyancy ratio the boundary layer smoothly
deviates very slowly, when the buoyancy ratio starts with N = 1, there is a decrease
in the temperature boundary layer very faster and further increase continues with
the same behaviour. This shows that heat transfer is faster as we increase buoyancy
ratio parameter due to the presence of the internal heat generation term which is
an exponential term. The concentration profiles are shown for various values of
buoyancy ratio N in Fig. 3, it is observed that increase in value of buoyancy ratio
N there is a decrease in the concentration profile similar to the temperature profile,
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whereas the rapid decrease starts when N = 5.

Table 1: Results for f”(0), —0’(0) and ¢’(0) for Pr=0.71, Sc=0.22, Ec=0.1 and
£,=0.4 for Uniform Permeability (UP) cases with Internal Heat Generation.

N | o* | Gr/Re* | a*/oRe Uniform Permeability (UP)
f"0) | —60) | —¢'(0)
0.0 0.354671 | 0.246540 | 0.248640
0.0 0.1 0.446543 | 0.293567 | 0.298751
0.5 0.771564 | 0.382654 | 0.388657
0.0 0.786550 | 0.426550 | 0.429850
2 0.2 0.1 0.856509 | 0.567800 | 0.574200
0 0.5 0.998750 | 0.587650 | 0.593450
0.0 1.345650 | 0.790045 | 0.796650
2.0 0.1 1.396500 | 0.889950 | 0.905500
0.5 1.654550 | 0.987540 | 0.993540
4 0.2 0.1 0.946789 | 0.601546 | 0.608756
0.0 0.400350 | 0.294503 | 0.299900
0.0 0.1 0.465650 | 0.324565 | 0.329550
0.5 0.778550 | 0.425500 | 0.429650
0.0 0.790054 | 0.543500 | 0.549500
2 0.2 0.1 0.824535 | 0.567430 | 0.572340
1 0.5 0.984565 | 0.651789 | 0.641456
0.0 1.437868 | 0.658976 | 0.659880
2.0 0.1 1.521784 | 0.689450 | 0.694550
0.5 1.734256 | 0.789450 | 0.795550
4 0.2 0.1 0.996754 | 0.589341 | 0.561132
51 9 02 0.1 1.036789 | 0.675431 | 0.650034
’ 0.5 1.456782 | 0.681432 | 0.670134
0l 2 02 0.1 1.558978 | 0.743451 | 0.731342
’ 0.5 1.778956 | 0.781322 | 0.779432
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Table 2: Results for f”(0), —0’(0) and ¢’(0) for Pr=0.71, Sc=0.22, Ec=0.1 and

£,=0.4 for Variable Permeability (VP) with Internal Heat Generation.

N | o* | Gr/Re? | a*/oRe Variable Permeability (VP)
f"0) | —60) | —¢'(0)
0.0 0.353800 | 0.282750 | 0.280750
0.0 0.1 0.435670 | 0.325750 | 0.328590
0.5 0.675800 | 0.400580 | 0.400780
0.0 0.425600 | 0.400990 | 0.401205
) 0.2 0.1 0.534500 | 0.541456 | 0.545672
0 0.5 0.778500 | 0.561578 | 0.567652
0.0 1.345670 | 0.781453 | 0.794323
2.0 0.1 1.378900 | 0.881132 | 0.901256
0.5 2.004500 | 0.980023 | 0.988976
4 0.2 0.1 0.552345 | 0.584573 | 0.571562
0.0 0.356590 | 0.287500 | 0.286500
0.0 0.1 0.426789 | 0.300670 | 0.300470
0.5 0.777850 | 0.456700 | 0.456100
0.0 0.784565 | 0.489650 | 0.486950
) 0. 0.1 0.813453 | 0.498540 | 0.497530
1 0.5 0.945675 | 0.685933 | 0.683915
0.0 1.456873 | 0.756800 | 0.755800
2.0 0.1 1.531562 | 0.785933 | 0.782134
0.5 1.739874 | 0.876540 | 0.874786
4 0.2 0.1 0.912354 | 0.523456 | 0.552004
5| 2 02 0.1 0.995432 | 0.657875 | 0.651053
’ 0.5 1.405673 | 0.677892 | 0.670001
10! 2 02 0.1 1.554322 | 0.734561 | 0.729324
’ 0.5 1.740345 | 0.775641 | 0.767891

Table 3: Values of local Nusselt number with fixed Ec = 0.1, €,=0.4, a* /cRe=0.1
and N=1.0, for Uniform Permeability (UP) and Variable Permeability (VP) cases

for different values of Pr.

Pr=0.71 Pr=3.0 Pr=7.0
Gr/Re? —0'(0) —0(0) —0'(0)
UP VP UP VP UP VP
0.0 [ 0.42768 | 0.43578 | 0.45987 | 0.49567 | 0.54655 | 0.55675
0.2 | 043568 | 0.45168 | 0.48679 | 0.52343 | 0.56123 | 0.58345
2.0 | 0.44659 | 0.49687 | 0.53673 | 0.57145 | 0.58145 | 0.63564
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Table 4: Values of local Sherwood number with fixed Ec = 0.1, &,=0.4,

o* /oRe=0.1 and N=1.0, for Uniform Permeability (UP) and Variable Permeability

(VP) cases for different values of Sc.

Gr/Re2 Sc=0.22 Sc=0.44 Sc=0.60
—9'(0) —9'(0) —9'(0)

UP VP UP VP UP VP

0.0 0.43168 | 0.44578 | 0.47987 | 0.51567 | 0.55655 | 0.57675

0.2 0.43568 | 0.45168 | 0.48679 | 0.52343 | 0.56123 | 0.58345

2.0 0.44659 | 0.49687 | 0.53678 | 0.57145 | 0.58145 | 0.63564

1 1 T T
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Figure 1: Velocity distributions for various values of buoyancy ratio N for VP case.
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Figure 2: Temperature distributions for various values of buoyancy ratio N for VP
case.
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Figure 3: Concentration distribution for various values of buoyancy ratio N for VP
case.
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Figure 4: Velocity distributions for various values of Gr/Re? for both UP and VP
cases.
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Figure 5: Temperature distributions for various values of Gr/Re? for both UP and
VP cases.
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Figure 6: Concentration profiles for different values of Gr/Re? for both UP and VP
cases.
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Figure 7: Velocity profiles for various values of a*/cRe for UP and VP cases.
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Figure 9: Concentration profiles for various values of a*/oRe for UP and VP
cases.
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Figure 10: Velocity profiles for various values of Prandtl number for UP and VP

cases.
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Figure 11: Temperature profiles for various values of Pr for UP and VP cases.
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Figure 13: Temperature profiles for various values of o* for UP and VP cases.
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Figure 14: Variations in local Nusselt number with Gr/Re? for various values of Pr
for UP and VP cases.

The velocity profiles for various values of mixed convection parameter Gr/Re?
is shown in Fig. 4, it is observed that increase in value of Gr/Re? there is an in-
crease in the velocity boundary layer, for higher value of Gr/Re? that is at Gr/Re*=
2.0, the velocity boundary layer increases rapidly near the plate and slowly moves
down towards away from the plate. The temperature and concentration profiles
for various values of Gr/Re? are shown in the Figs. 5 and 6. It is observed that
increase in the value of the Gr/ ReZ, the profiles decreases, and for each value of
Gr/Re? increasing, temperature profiles decreases faster compared to the concen-
tration profiles. Here it is observed that uniform permeability dominates more than
the variable permeability in velocity, temperature and concentration profiles.

Decrease in the value of local permeability parameter multiplied with the Reynolds
number leads to increase in the value of a*/oRe, the velocity profiles increases as
we increase the value of o* /oRe as shown in the Fig. 7, this is due to Reynolds
number leading to high viscous forces which has very high relative importance for
giving the flow conditions and high porosity, with the moderate ratio of viscosities.
Also it is observed that uniform permeability is more prominent than the variable
permeability. The temperature and concentration profiles are shown in Figs. 8 and
9, it is observed that increase in the value of a* /oRe decreases the temperature and
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Figure 15: Variations in local Sherwood number with Gr/Re? for various values of
Sc for UP and VP cases.

concentration profiles. It is also observed that uniform permeability and variable
permeability flow behavior are same compared to any magnitude of a* /oRe.

Increase in Prandtl number, the velocity profiles decreases which is shown in Fig.
10. It is observed that for low Pr = 0.71, the velocity boundary layer is high, and
lowers for higher Prandtl number. Temperature distributions are shown for various
values of Prandtl number in Fig. 11, it is observed that increase in Prandtl num-
ber leads to decrease in the temperature boundary layer. The temperature profile
decreases rapidly for higher Prandtl number such as Pr = 7.0 and Pr = 10.0. It is
also observed that the variable permeability is more prominent than the uniform
permeability. Concentration distributions are shown for various values of Schmidt
number in Fig. 12, it is observed that increase in the value of Schmidt number
there is a decrease in the concentration profile and decays smoothly. The uniform
permeability and variable permeability are showing the same behavior in the con-
centration boundary layer.

Variation of ¢* for temperature profiles is shown in Fig. 13. It is observed that

decrease in the value of ¢* leads to decrease in the temperature profile. Both uni-
form permeability and variable permeability decays smoothly for all the values of
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o*. An interesting factor can be observed here is when ¢*=2.0 both uniform per-
meability and variable permeability behaves same, whereas for 6*=4.0 and 6*=6.0
the uniform permeability slows down and not much prominent when compared to
variable permeability cases.

The variations of the Nusselt number and Sherwood number as a function of Gr/Re?
for various values of Prandtl number and Schmidt number respectively are shown
in Figs. 14 and 15 for both uniform permeability and variable permeability cases.
It is observed from Fig. 14 that the effect of increasing Gr/Re? is to decrease the
Nusselt number for higher values of Prandtl number. It is also observed that from
Fig. 15, the effect of increasing Gr/Re? is also to decrease the Sherwood number.
It is clearly seen that from Gr/Re®= 0.0 to 0.2, there is a faster decrease and from
0.2 to 2.0 there is a moderate decrease in the Sherwood number.

5 Conclusions

In this chapter, a numerical model is developed for the study of effects of internal
heat generation on mixed convection heat flow and mass transfer of an incompress-
ible, laminar, viscous fluid past a semi infinite vertical heated plate in a saturated
porous medium by considering the variable fluid properties like variable perme-
ability, porosity and thermal conductivity. The boundary layer flow in the porous
medium is governed by Lapwood-Brinkman extended Darcy model. Using the
similarity variables, the governing equations are transformed into a set of highly
coupled nonlinear ordinary differential equations. These equations are then solved
numerically by Runge-Kutta Fehlberg method with shooting technique. The com-
puted results in the presence of IHG are presented to illustrate the details of flow
and heat and mass transfer characteristics and also their dependence on the physical
parameters, the following conclusions are drawn:

1. Increase in Buoyancy ratio N is to increase the velocity distribution signif-
icantly, decrease in the temperature and concentration distribution for VP
case. Initially when N = 0 the heat transfer is slow with the temperature
boundary layer. As N increases from O to 1 and to 10 the heat transfer is
faster in temperature distributions. Whereas, the heat transfer is slow for
N =0 and 1 faster for N = 5 and 10 in case of concentration distributions.

2. Increasing the Buoyancy force, the number Gr/Re? increases which lead to
increase the velocity closer to the vertical heated plate. The velocity dis-
tributions are more prominent for UP when compared to VP. Increase in the
parameter Gr/Re? enhances the temperature and concentration in the bound-
ary layer for both UP and VP cases, and hence the fluid velocity increased.
The temperature and concentration profiles for VP and UP are almost same.
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3. With an increase of a* /oRe the velocity profile increases, decrease in the pa-
rameter o* /oRe enhances the temperature and concentration in the bound-
ary layer for both cases. The profiles are less for VP compared to UP.

4. The Prandtl number shows a decreasing effect on the velocity profile as Pr
increases and a rapid decreasing effect on the temperature profile as Pr in-
creases. The boundary layer is more prominent for VP case compared to UP
case. Increase of Sc enhances the concentration. For any Sc the concentration
profiles for both UP and VP cases are almost same.

5. Increase in the ratio of thermal conductivity of solid to fluid ¢* decreases the
temperature profiles for both UP and VP cases.

6. Increase of Pr, increases the Nusselt number and maintains the uniformity
with the increase in Gr/Re?. This is because of the temperature difference
in the Grashof number and the suitable low Reynolds number. The heat
transport is more prominent for VP case when compared to UP case.

7. Increase of Sc, increases the Sherwood number. As Gr/Re? increases from
0.0 to 0.2 the Nusselt number increases and maintains the uniformity from
0.2 to 2.0. The mass transport is more prominent for VP case when compared
to UP case.
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