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Three-dimensional Numerical Study of the Effect of
Heating Sources Dimension on Natural Convection in a

Cavity Submitted to Constant Heat Flux

L. Belarche1,2, B. Abourida1 and S. Smolen3

Abstract: Natural convection in a cubical cavity, discretely heated is studied nu-
merically using a three-dimensional finite volume formulation. Two heating square
portions are placed on the vertical wall of the enclosure, while the rest of the con-
sidered wall is adiabatic. The opposite vertical wall is maintained at a cold uniform
temperature and the other walls are adiabatic. Effects of the heating sections di-
mensions ε (0.15 ≤ ε ≤ 0.35) and the Rayleigh number Ra (103 ≤ Ra ≤ 107) on
the fluid flow and the heat transfer within the cavity are studied. The obtained re-
sults show that the flow intensity and the heat transfer can be significantly improved
by an optimal choice of the governing parameters. Streamlines, isotherms and vari-
ations of the average Nusselt number are shown for different sets of the considered
parameters.

Keywords: Three dimensional natural convection, heated sections dimension,
constant heat flux

Nomenclature

Ax aspect ratio, (L/H)
B depth of the cavity, (m)
D height of the square hot section, (m)
g gravitational acceleration, (m/s2)
H height of the cavity, (m)
k thermal conductivity, (W/m.K)
L cavity length, (m)
Nu total average Nusselt number
Pr Prandtl number, (v/α)
p non-dimensional pression
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P pression, (N/m2)
q′′ heat flux density, (W/m2)
Ra Rayleigh number, (gβq′′H4/vαk)
u,v,w dimensional velocities, (m/s)
U,V,W dimensionless velocities
x,y,z dimensional coordinates, (m)
X ,Y,Z dimensionless cartesian coordinates

Greek symbols
α thermal diffusivity, (m2/s)
θ non-dimensional temperature
β volumetric thermal expansion coefficient, (K−1)
ε non-dimensional side of the square hot section, (D/H)
µ dynamique viscosity, (kg/m.s)
v kinematic viscosity, (m2/s)
ρ density, (kg/m3)

Subscripts
max maximum value
c cold
1 section 1
2 section 2

1 Introduction

The problem of electronic components cooling is often encountered in practical
devices. In fact, in thermal control of electronic systems, a careful attention is
necessary to ensure an optimal evacuation of the heat surplus. Natural convec-
tion represents a simple and low cost mode of cooling, especially for low gradients
temperature. Besides this application, natural convection process is also encoun-
tered in many practical cases, like solar collectors, buildings design, radiators. . . .
Hence, the problem of natural convective heat transfer in enclosures has been s-
tudied extensively. A comprehensive review of this topic is given by Bejan and
Kraus (2003) and Goldstein (2006) for different combinations of geometrical and
thermal imposed conditions. However, in most of these works, the studied configu-
rations are two dimensional cavities, partially heated, with one or more heating por-
tions [Sharif and Mohammad (2005); Ben Cheikh, Ben Beya and Lili (2007ref1)].
Few works has considered the three-dimensional natural convection [Fusegi, Hyun,
Kuwahara and Farouk (1991); Seza and Mohamad (2000); Frederick and Quiroz
(2001); Ben-Cheikh, Campo, Ouertatani and Lili (2010)] which gives a more real-
istic presentation of the fluid motion and the heat exchange within the cavity. In ad-
dition, the considered thermal boundary conditions are generally constant heating
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temperature. However, the case of imposed heat flux, which is frequently encoun-
tered in practical devices, has been considered by very few studies [Ben Cheikh,
Ben Beya and Lili (2007ref2); Belarche, Abourida, Smolen and Mediouni (2014)]

Hence, the purpose of the present investigation is to study numerically the fluid
flow and heat transfer induced by two heat sources embedded on the left vertical
wall of a cubical cavity and submitted to constant heat flux density q′′. The rest
of the considered wall is adiabatic while the temperature of the opposite vertical
wall is maintained at a uniform lower temperature Tc. The governing parameters
are the Rayleigh number Ra (103 ≤ Ra ≤ 107) and the heating sections dimension
ε = D/H (0.15 ≤ ε ≤ 0.35). The Prandtl number and the aspect ratio Ax = L/H
are fixed respectively to 0.71 and 1.

2 Problem formulation

The schematic configuration of the considered three-dimensional cubical cavity,
coordinates and boundary conditions are shown in Fig. 1. Two heat sources are
integrated on the left vertical wall of the cavity and submitted to constant heat flux
density q′′. The rest of the considered wall is adiabatic while the temperature of the
opposite vertical wall is maintained at a uniform lower temperature Tc. The other
walls are adiabatic. The considered fluid is incompressible, steady-state, Newtoni-
an and verifying the Boussinesq approximation.

Figure 1: Studied configuration and coordinates

The governing equations for laminar steady convection, using the Boussinesq ap-
proximation and neglecting the viscous dissipation, are expressed in the following
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dimensionless form:

∂U
∂X

+
∂V
∂Y

+
∂W
∂Z

= 0 (1)

∂U
∂τ

+
∂

∂X
(UU)+

∂

∂Y
(VU)+

∂

∂Z
(WU) =− ∂P

∂X
+Pr(

∂ 2U
∂X2 +

∂ 2U
∂Y 2 +

∂ 2U
∂Z2 ) (2)

∂V
∂τ

+
∂

∂X
(UV )+

∂

∂Y
(VV )+

∂

∂Z
(WV ) =−∂P

∂Y
+RaPrθ

+Pr(
∂ 2V
∂X2 +

∂ 2V
∂Y 2 +

∂ 2V
∂Z2 ) (3)

∂W
∂τ

+
∂

∂X
(UW )+

∂

∂Y
(VW )+

∂

∂Z
(WW ) =−∂P

∂Z
+Pr(

∂ 2W
∂X2 +

∂ 2W
∂Y 2 +

∂ 2W
∂Z2 )

(4)

∂θ

∂τ
+

∂

∂X
(Uθ)+

∂

∂Y
(V θ)+

∂

∂Z
(Wθ) = (

∂ 2θ

∂X2 +
∂ 2θ

∂Y 2 +
∂ 2θ

∂Z2 ) (5)

Where U , V and W are the velocity components in the X , Y and Z directions, respec-
tively, P is the pressure, τ is thetime and θ the temperature. The non-dimensional
variables used in these equations are defined by:
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Where α,v and k represent respectively the thermal diffusivity, the kinematic vis-
cosity and the thermal conductivity of the fluid.

In the above equations, the parameters Pr and Ra denote the Prandtl number, and
the Rayleigh number, respectively. These parameters are defined by :

Pr =
υ

α
and Ra =

gβq′′H4

αυk
(7)

The hydrodynamic boundary conditions are such as the velocity components are
zero on the rigid walls of the enclosure (U = V = W = 0). The dimensionless
thermal boundary conditions associated to the governing equations are:

• Left vertical wall:
∂θ

∂X
=−1 through the hot sections and

∂θ

∂X
= 0 elsewhere

on the wall

• Right vertical wall: θc = 0 at X = 1
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• Other vertical and horizontal walls:
∂θ

∂n
= 0 (n is the normal direction to the

considered wall).

The local Nusselt number and the total average Nusselt number are respectively
defined by:

Nu(y,z) =
q′′H

(T (x,y) |x=0−Tc)k
=

1
θ(Y,Z) |X=0

(8)

Nu = 2
∫∫

Nu(y,z)dydz (9)

Where θ(Y,Z) , in equation (8), is the local dimensionless temperature at a given
point of the heat source surface.

3 Numerical method

The governing equations (Navier-Stokes and energy equations) are discretized by
the finite volume method adopting the power low scheme. The Alternating Direc-
tion Implicit scheme (ADI) is then used for solving the obtained algebric system.
The tri-diagonal system obtained in each direction is solved using the THOMAS
algorithm. Convergence of the numerical code is established at each time step ac-
cording to the following criterion:

imax, j max,k max

∑
i, j,k=1

∣∣∣φ n+1
i, j,k −φ n

i, j,k

∣∣∣∣∣∣φ n
i, j,k

∣∣∣ ≤ 10−4 (10)

Where φ is one of the field variables (U,V,W,T,P) and i, j and k the grid positions.
n represents the time step number.

A study of the grid effect on the fluid flow and heat transfer was conducted for
different sets of the governing parameters. Finally, the non-uniform staggered grid
of 41× 41× 41 nodes was estimated to be appropriate for the present study since it
permits a good compromise between the computational cost (a significant reduction
of the execution time) and the accuracy of the obtained results. The optimal time
step was also found to be equal to 10−3 after multiple tests.

Thereafter, the code has been validated by comparing its results with those pub-
lished by previous studies in the case of natural convection in a differentially heated
cubical cavity. The tests were conducted by comparing with the results of Freder-
ick and Quiroz (2001) and Ben-Cheikh, Campo, Ouertatani and Lili (2010) with a
heating section of dimension ε = 0.5 placed on the vertical wall of the cavity. A
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comparison of the maximum values of the velocities U and V in the plane Z = 0.5
is given in Table.1 for Ra = 106. The results are found to be in excellent agreement
with the two references. Hence, the current solution differs by no more than 1.37%
for Umax and 2.35% for Vmax compared to Frederick and Quiroz (2001) and about
1.27% for Umax and 1.47% for Vmax compared to Ben Cheikh et al. (2010).

Table 1: Validation of the numerical code with published results in terms Umax and
Vmax for Z = 0.5 and Ra = 106

Frederick and Quiroz Ben-Cheikh, Campo, Present work
(2001) Ouertatani and Lili (2010)

Umax Vmax Umax Vmax Umax Vmax
35.9146 63.2177 35.9436 65.6693 36.4020 64.7033

4 Results and discussions

The results presented in this section were obtained for Rayleigh numbers Ra rang-
ing between 103 and 107 and the heating sections dimension ε between 0.15 and
0.35. The Prandtl number Pr and the aspect ratio Ax = H/L are respectively fixed
at 0.71 and 1.

4.1 Isotherms and streamlines

In order to visualize the flow and the temperature distribution within the studied
configuration, streamlines and isotherms in 3D as well as isotherms on the heating
sections are respectively shown in figures 2a and 2c, for ε = 0.35 and Ra = 106. It is
seen that the fluid flow consists of a big and unique cell occupying the entire cavity.
The fluid motion leads the heat from the active sections through the cavity. High
values of the temperature are normally observed in the upper part of the enclosure.
This trend is also encountered in the isotherms presented over the heating sections,
as shown in figure 2c.

A presentation of isotherms and streamlines for different plans (0≤ Z ≤ 1) shows a
good symmetry with respect to the plane Z = 0.5, due to the adopted geometry and
thermal boundary conditions as shown in Fig. 3 in the case of ε = 0.35. Hence,
for all the considered values of ε , the plane Z = (2− ε)/6, perpendicular to the
middle of the section 1 and characterized by high thermal activity, is considered as
a representative plan of the fluid motion and the heat transfer and is used for the
following presentations. In addition, streamlines and isotherms in this plan presents
a perfect symmetry relative to the plane Z = 0.5 and are therefore identical to those
obtained in the plane Z = (4+ ε)/6 perpendicular to the middle of the section 2.
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Figure 2: Streamlines 3D (a), isotherms 3D (b) and isotherms on the sections (c)
for Ra = 106 and ε = 0.35

Figure 3: Streamlines, isotherms for different plans Z for ε = 0.35 and Ra = 106.
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Figure 4: Streamlines (a) and isotherms (b) in the plane Z = (2− ε)/6 and
isotherms on the sections (c) for Ra = 107 and 0.15 ≤ ε ≤ 0.35

In order to highlight the effect of the heating sections dimensions ε (0.15 ≤ ε ≤
0.35), the hydrodynamic and thermal fields in the cavity are shown in fig. 4 for
Ra = 107 and different dimensions ε = 0.15, ε = 0.20, ε = 0.25 and ε = 0.35.
For the four cases, figures 4a and 4b present respectively the streamlines and the
isotherms in the plane (2− ε)/6 perpendicular to the middle of the section 1. Fig-
ures 4c present the isotherms over the two heating sections. For all the considered
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Figure 5: Streamlines (a) isotherms (b) obtained in the plane Z = 0.275 and
isotherms at sections (c) for ε = 0.35 and 103 ≤ Ra ≤ 107
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cases, the flow consists of a unique cell with cores intensity depending on the sec-
tions dimension. In addition, the temperatures at sections increase passing from the
value θmax = 0.0505 for ε = 0.15 to the value θmax = 0.0733 for ε = 0.35. These
maximum values are reached at the midpoints of the upper edges of the sections.

Figure 5 presents the effect of the Rayleigh number (103 ≤ Ra ≤ 107) on hydro-
dynamic and thermal fields for ε = 0.35. Streamlines and isotherms, shown by
figures 5a and 5b respectively, are presented in the plane Z = 0.275, while figure
5c presents the isotherms over the two heating sections. For Rayleigh number Ra
ranging between 103 and 104, the figure 5a shows that the flow consists of a single
cell occupying the whole of the cavity, rotating in the clockwise direction, to evac-
uate the heat from the heating sections to the right cold vertical wall of the cavity.
The core of the cell is located in the center of the cavity. The viscous forces are then
more dominant than the buoyancy ones and diffusion remains the most important
mode of heat transfer. The corresponding isotherms show the same trend (figure
5b). Temperatures on the heating sections are very high and maximum tempera-
tures are located near the centers of these sections (figure 5c). For higher values
of Ra (106 and 107), convection becomes the dominant mode of heat transfer. The
cell cores moved to the active walls (figure 5a) involving very important heat ex-
change as shown in the isotherms figures (figure 5b). The maximum temperatures
positions on the sections are moved upwards (figure 5c). Note that for all studied
Rayleigh number Ra, the maximum temperatures are identical for the two heating
sections (θmax1 = θmax2).

4.2 Nusselt number

Figure 6 represents the total average Nusselt number, calculated at the two heat-
ing sections for Ra ranging between 103 and 107 and different values of ε (0.15
≤ ε ≤ 0.35). Note that the average Nusselt numbers, calculated for all the consid-
ered cases, are found to be identical for the two heating section. As expected, the
total average Nusselt number increases with the Rayleigh number and especially
when Ra reaches the value 104. In addition, figure 6 shows that for fixed Rayleigh
number, the average Nusselt number decreases with increasing ε . For example,
for Ra = 106 and ε = 0.15, the average Nusselt number is 9.75%, 17.42% and
29.38% higher than the values corresponding to ε = 0.20, ε = 0.25 and ε = 0.35
respectively. This trend was also encountered in previous works of Sharif and Mo-
hammad (2005) and Ben Cheikh, Ben Beya and Lili (2007 ref1). Values of the total
average Nusselt number, Nu, maximum temperatures over each component, θmax1
and θmax2 and their location (Y,Z) are reported in Table 2 and 3 for all the studied
cases. These tables show that the maximum temperatures are always identical for
the two sections and increases with increasing ε . Their locations on the sections
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also vary slightly with changing ε .

Figure 6: Variation of the total average Nusselt number with Rayleigh number for
0.15≤ ε ≤ 0.35.

Table 2: Total average Nusselt number, Nu and maximum temperatures, θmax1 and
θmax2 and their location (Y,Z) on the heated surfaces ε = 0.15 and 0.2

Rayleigh Dimensionless heat source length, ε

number, Ra 0.15 0.2
103 Nu = 16.15714

θmax1 = 0.1387
(Y,Z) = (0.5000,0.2949)
θmax2 = 0.1387
(Y,Z) = (0.5000,0.7051)

11.56593
0.1923 (0.5000,0.2949)
0.1923 (0.5000,0.7051)

104 16.40754
0.1368 (0.5000,0.2949)
0.1368 (0.5000,0.7051)

12.25177
0.1835 (0.5256,0.2949)
0.1835 (0.5256,0.7051)

105 22.12066
0.1068 (0.5256,0.2949)
0.1068 (0.5256,0.7051)

18.51133
0.1309 (0.5513,0.2949)
0.1309 (0.5513,0.7051)

106 33.71120
0.0757 (0.5513,0.2949)
0.0757 (0.5513,0.7051)

29.70371
0.0878 (0.5769,0.2949 )
0.0878 (0.5769,0.7051)

107 52.64849
0.0505 (0.5769,0.2949)
0.0505 (0.5769,0.7051)

47.51788
0.0563 (0. 6026,0.2949)
0.0563 (0. 6026,0.7051)
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Table 3: Total average Nusselt number, Nu and maximum temperatures, θmax1 and
θmax2 and their location (Y,Z) on the heated surfaces ε = 0.25 and 0.35

Rayleigh Dimensionless heat source length, ε

number, Ra 0.25 0.35
103 Nu = 8.736535

θmax1 = 0.2524
(Y,Z) = (0.5000,0.2949)
θmax2 = 0.2524
(Y,Z) = (0.5000,0.7051)

5.563587
0. 3892 (0.5256,0.2949)
0. 3892 (0.5256,0.7051)

104 9.829109
0.2296 (0.5513,0.2949)
0.2296 (0.5513,0.7051)

7.162944
0. 3201 (0.6026,0.2692)
0. 3201 (0.6026,0.7308)

105 16.12001
0.1533 (0.5769, 0.2949)
0.1533 (0.5769, 0.7051)

12.87356
0. 1971 (0.6282,0.2436)
0. 1971 (0.6282,0.7564)

106 26.70839
0.0987 (0.6026,0.2949)
0.0987 (0.6026,0.7051)

22.23456
0. 1199 (0.6538,0.2436)
0. 1199 (0.6538,0.7564)

107 43.47707
0.0618 (0.6282,0.2949)
0.0618 (0.6282,0.7051)

37.18048
0. 0733 (0.6795,0.2692)
0. 0733 (0.6795,0.7308)

5 Conclusion

Three dimensional natural convection in a cavity discretely heated from the side
has been studied for different sets of the governing parameters (Rayleigh number
and heating sections dimensions) and leads to the following conclusions:

• The fluid flow consists of a big cell occupying the entire cavity for all the
considered cases (103 ≤ Ra ≤ 107) and (0.15 ≤ ε ≤ 0.35);

• The total average heat transfer, calculated in the two heating sections, in-
creases with the Rayleigh number Ra and very significantly beyond Ra =
104;

• For fixed Rayleigh number, the average Nusselt number decreases with in-
creasing ε .
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