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Analysis of Natural Convection in a Nanofluid-Filled Open
Cavity with a Sinusoidal Boundary Condition in the

Presence of a Magnetic Field

Imen Mejri1,2 and Ahmed Mahmoudi1

Abstract: This paper examines natural convection in an open cavity with a sinu-
soidal thermal boundary condition. The cavity is filled with a water-Al2O3 nanoflu-
id and subjected to a magnetic field. The Lattice Boltzmann method (LBM) is ap-
plied to solve the coupled equations of flow and temperature. The study has been
carried out considering parameters in the following ranges: Rayleigh number of the
base fluid, Ra = 103 to 106, Hartmann number varied from Ha = 0 to 60, phase
deviation (γ = 0, π/4, π/2, 3π/4 and π) and solid volume fraction of nanoparti-
cles between φ = 0 and 6%. Results show that the heat transfer rate decreases with
the Hartmann number and increases with Rayleigh number. At Ha = 30 and Ra
= 103–105, for all phase deviations the addition of nanoparticles increases the heat
transfer rate. Also, at low Rayleigh number (Ra ≤ 104) the highest heat transfer
rate is obtained for γ = π/2.

Keywords: Lattice Boltzmann Method, Magnetic field, Natural convection, Nanoflu-
id, Phase deviation

Nomenclature

B Magnetic field (T)
c Lattice speed (m/s)
cs Speed of sound (m/s)
ci Discrete particle speeds (m/s)
cp Specific heat at constant pressure (JKg−1 K−1)
F External forces (N)
f Density distribution functions (kg m−3)
f eq Equilibrium density distribution functions (kg m−3)
g Internal energy distribution functions (K)
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geq Equilibrium internal energy distribution functions (K)
~g Gravity vector (m s−2)
Ha Hartmann number
k thermal conductivity (Wm−1 K−1)
Ma Mach number
n Number of nodes
Nu Local Nusselt number
P Pressure (N m−2)
Pr Prandtl number
Ra Rayleigh number
T Temperature (K)
u(u,v) Velocities (m/s)
x(x,y) Lattice coordinates (m/s)

Greek symbols

∆x Lattice spacing (m)
∆t Time increment (s)
τα Relaxation time for temperature (s)
τν Relaxation time for flow (s)
ν Kinematic viscosity (m2 s−1)
α Thermal diffusivity (m2 s−1)
ρ Fluid density (kg m−3)
σ electrical conductivity (S/m)
ψ Non-dimensional stream function
φ Solid volume fraction
µ Dynamic viscosity (N s/m2)
γ phase deviation

Subscript

c cold
f fluid
h hot
nf nanofluid
p particle

1 Introduction

Magnetohydrodynamic (MHD) natural convection has received considerable atten-
tion in the recent years because of their wide variety of application in engineering
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areas, such as crystal growth in liquid, cooling of nuclear reactor, electronic pack-
age, microelectronic devices, and solar technology. Because traditional fluids used
for heat transfer applications such as water, mineral oils and ethylene glycol have a
rather low thermal conductivity, nanofluids (homogenous suspensions of nanopar-
ticles in a base fluid) with relatively higher thermal conductivities due to the high
thermal conductivity of the nanoparticles, have attracted enormous interest from re-
searchers due to their potential in enhancement of heat transfer. [Khanafer, Vafai
& Lightstone (2003)] investigated numerically natural convection heat transfer
in a two-dimensional vertical enclosure utilizing nanofluids. It was revealed that
the heat transfer rate increases with the increase of particle fraction at any given
Grashof number. [Jahanshahi, Hosseinizadeh, Alipanah, Dehghani & Vakiline-
jad (2010)] studied natural convection of water-SiO2 nanofluid using two different
models, in the first model they have employed a set of experimental data for thermal
conductivity of nanofluid and in the second model they have calculated the thermal
conductivity using the theoretical formulations. Their results showed an enhance-
ment in thermal conductivity due to the adding of nanoparticles at both models.
[Ghasemi, Aminossadati & Raisi (2011)] examined natural convection in an en-
closure that is filled with a water-Al2O3 nanofluid and is influenced by a magnetic
field. The found results show that the heat transfer rate increases with an increase
of the Rayleigh number but it decreases with an increase of the Hartmann number.
Also an increase of the solid volume fraction may result in enhancement or deteri-
oration of the heat transfer performance depending on the value of Hartmann and
Rayleigh numbers. [Fattahi, Farhadi, Sedighi & Nemati (2012)] applied Lattice
Boltzmann Method to investigate the natural convection flows utilizing nanofluids
in a square cavity. The fluid in the cavity was a water-based nanofluid containing
Al2O3 or Cu nanoparticles. The results indicated that by increasing solid volume
fraction, the average Nusselt number increased for both nanofluids. It was found
that the effects of solid volume fraction for Cu were stronger than Al2O3. [Ke-
fayati, Hosseinizaeh, Gorji, Sajjadi (2011)] simulated by the Lattice Boltzmann
method the natural convection in enclosures using water/SiO2 nanofluid. The re-
sults showed that the average Nusselt number increased with volume fraction for
the whole range of Rayleigh numbers and aspect ratios. Also the effect of nanopar-
ticles on heat transfer augmented as the enclosure aspect ratio increased. [Mah-
moudi, Mejri, Abbassi & Omri (2013)] applied the double-population Lattice
Boltzmann Method to solve the natural convective problem in an inclined trian-
gular cavity filled with air, two different boundary conditions are implemented.
Comparison with previously published results shows excellent agreement. also
It is observed that inclination angle can be used as a relevant parameter to con-
trol heat transfer in a triangular cavity. [Sheikholeslami, Gorji-Bandpy, Ganji &
Soleimani (2014)] investigated free convection heat transfer in an enclosure filled
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with nanofluid, the effects of Brownian motion and thermophoresis have been in-
cluded in the model of nanofluid. [Mejri, Mahmoudi, Abbassi & Omri (2014 a)]
studied the laminar natural convection and entropy generation in a square enclo-
sure, with sinusoidal temperature distribution, filled with a water-Al2O3 nanofluid
and is subjected to a magnetic field. [Mahmoudi, Mejri, Abbassi & Omri (2014
a)] studied the effect of magnetic field and it direction on water-Al2O3 nanoflu-
id filled cavity with a linear boundary condition, they exhibited that the magnetic
field direction has effects on the flow and heat transfer rates in the cavity. [Kefayati
(2013)] applied lattice Boltzmann method to simulate heat dissipation effect of a
ferrofluid on natural convection flow at the presence of an external magnetic source.
The cavity is filled with kerosene as the carrier fluid and nanoscale ferromagnet-
ic particle of cobalt. [Mejri, Mahmoudi, Abbassi & Omri (2014 b)] studied
the laminar natural convection in a square enclosure, with non-uniform heating on
both side walls, filled with a water-Al2O3 nanofluid and is subjected to a magnetic
field. The found results show that the heat transfer rate increases with an increase
in the Rayleigh number but it decreases with an increase in the Hartmann num-
ber. [Quere, Humphrey & Sherman (1981)] investigated open isothermal square
cavities using aspect ratio of unity. Chan et al. [Chan & Tien (1985)] essayed a
numerical study on an open square enclosure with isothermal heated side and adi-
abatic top and bottom walls. [Mohamad (1995)] studied isothermal inclined open
cavities with aspect ratios of 0.5–2. [Mohamad, Ganaoui & Bennacer (2009)] s-
tudied natural convection in an open enclosure numerically with Lattice Boltzmann
method. They investigated the effects of systematic analysis of aspect ratio on the
physics of the flow and heat transfer. They have showed that increasing the aspec-
t ratio for a given Rayleigh number decreases the rate of heat transfer up to the
conduction limit. [Mahmoudi, Shahi, Shahedin & Hemati (2011)] investigated
numerical modeling of natural convection in an open enclosure with two vertical
thin heat sources subjected to a nanofluid. They demonstrated that the average
Nusselt number increases linearly with the increase in the solid volume fraction
of nanoparticles. [Mohamad, Bennacer & Ganaoui (2010)] studied double dis-
persion in an open end cavities using Lattice Boltzmann Method. [Kefayati, Hos-
seinizadeh, Gorji & Sajjadi (2012)] studied natural convection in an open enclo-
sure which subjugated to water/copper nanofluid using Lattice Boltzmann Method.
the found results show that the average Nusselt number increases with augmen-
tation of Rayleigh number and the volume fraction of nanoparticles. Also, the
average Nusselt number decreases as the aspect ratio increases at various Rayleigh
numbers and different the nanoparticle volume fractions. [Mahmoudi, Mejri, Ab-
bassi & Omri (2014 b)] studied the MHD natural convection on nanofluid filled
open cavity with non uniform boundary condition in the presence of uniform heat
generation/absorption. The results show that the nanoparticles effect is more im-
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portant for heat generation condition than absorption generation condition.

The aim of the present study is to investigate numerically the heat transfer rate and
the fluid flow in a nanofluid filled open cavity with a sinusoidal boundary condition
and subjected to a magnetic field. Lattice Boltzmann method (LBM) is applied
to solve the coupled equations of flow and temperature fields. The LBM results
are validated with previous numerical investigations and the effects of the main
parameters (Rayleigh number, Hartmann number, phase deviation and solid volume
fraction) on flow and thermal fields are researched.

2 Mathematical formulation

2.1 Problem statement

The geometry of the present problem is shown in Fig. 1. It displays a two-
dimensional cavity with the height of H. A sinusoidal temperature is imposed
along the left vertical wall. An external cold nanofluid enters into the enclosure
from the east opening boundaries while the Al2O3–water nanofluid is correlated
with the opening boundary at the constant temperature of Tc. The top and bottom
horizontal walls have been considered to be adiabatic. A magnetic field with uni-
form strength B0 is applied in the horizontal direction. The nanofluid is Newtonian
and incompressible. The flow is considered to be steady, two dimensional and lam-
inar, and the radiation effects are negligible. The base fluid and the nanoparticles
are in thermal equilibrium, the nanofluids were assumed to be similar to a pure flu-
id and then nanofluid qualities were gotten and they were applied for the equations
of the considered problem. The thermo-physical properties of the base fluid and
the nanoparticles are given in Table 1. The density variation in the nanofluid is
approximated by the standard Boussinesq model. It is assumed that the induced
magnetic field produced by the motion of an electrically conducting fluid is negli-
gible compared to the applied magnetic field. Furthermore, it is assumed that the
viscous dissipation and Joule heating are neglected.

Table 1: Thermo-physical properties of water and nanoparticles

ρ (kg /m3) Cp (J/kg K) K (W/mK) β (K−1)
Pure water 997.1 4179 0.613 21x10−5

Al2 O3 3970 765 40 0.85x10−5

Therefore, governing equations can be written in dimensional form as follows:

∂u
∂x

+
∂v
∂y

= 0 (1)
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Figure 1: Geometry of the present study with boundary conditions

ρn f (u
∂u
∂x

+ v
∂u
∂y

) =−∂ p
∂x

+µn f (
∂ 2u
∂x2 +

∂ 2u
∂y2 ) (2)

ρn f (u
∂v
∂x

+ v
∂v
∂y

) =−∂ p
∂y

+µn f (
∂ 2v
∂x2 +

∂ 2v
∂y2 )+Fy (3)

u
∂T
∂x

+ v
∂T
∂y

= αn f (
∂ 2T
∂x2 +

∂ 2T
∂y2 ) (4)

Where Fy is the total body forces at y direction and it is defined as follows:

Fy =−
Ha2µn f

H2 v+(ρβ )n f g(T −Tm) (5)

With

Ha = HB0

√
σn f

µn f
(6)

The classical models reported in the literature are used to determine the properties
of the nanofluid [Xuan & Roetzel (2000)]:

ρn f = (1−φ)ρ f +φρp (7)

(ρcp)n f = (1−φ)(ρcp) f +φ(ρcp)p (8)

(ρβ )n f = (1−φ)(ρβ ) f +φ(ρβ )p (9)

αn f =
kn f

(ρcp)n f
(10)

In the above equations, φ is the solid volume fraction, ρ is the density, σ is the
electrical conductivity, α is the thermal diffusivity, cp is the specific heat at constant
pressure and β is the thermal expansion coefficient. The viscosity of the nanofluid
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containing a dilute suspension of small rigid spherical particles and the thermal
conductivity of the nanofluid can be modelled by [Brinkman (1956) & Maxwell
(1873)]:

µn f =
µ f

(1−φ)2.5 (11)

kn f = k f
kP +2k f −2φ(k f − kP)

kP +2k f +φ(k f − kP)
(12)

The governing equations are subject to the following boundary conditions:

Bottom wall u = v = 0
∂T
∂y

∣∣∣∣
y=0

= 0 (13)

Top wall u = v = 0
∂T
∂y

∣∣∣∣
y=H

= 0 (14)

Left wall u = v = 0 T (0,y) = TC +(Th−Tc)sin(2π
y
H

+ γ) (15)

Right wall

if u > 0 then
∂T
∂x

∣∣∣∣
x=H

= 0

if u < 0 then T (H,y) = Tc

(16)

2.2 Simulation of MHD and nanofluid with Lattice Boltzmann Method

For the incompressible non isothermal problems, Lattice Boltzmann Method (LB-
M) utilizes two distribution functions, f and g, for the flow and temperature fields
respectively.

For the flow field:

fi (x+ ci∆t, t +∆t) = fi (x, t)−
1
τν

(
fi (x, t)− f eq

i (x, t)
)
+∆tFi (17)

For the temperature field:

gi (x+ ci∆t, t +∆t) = gi (x, t)−
1

τα

(
gi (x, t)−geq

i (x, t)
)

(18)

Where the discrete particle velocity vectors defined by ci, ∆t denotes lattice time
step which is set to unity. τν , τα are the relaxation time for the flow and temperature
fields, respectively. f eq

i , geq
i are the local equilibrium distribution functions that

have an appropriately prescribed functional dependence on the local hydrodynamic
properties which are calculated with Eqs. (19) and (20) for flow and temperature
fields respectively.

f eq
i = ωiρ

[
1+

3(ci.u)
c2 +

9(ci.u)2

2c4 − 3u2

2c2

]
(19)
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geq
i = ω

′
i T
[
1+3

ci.u
c2

]
(20)

u and ρ are the macroscopic velocity and density, respectively. c is the lattice speed
which is equal to ∆x/∆t where ∆x is the lattice space similar to the lattice time step
∆t which is equal to unity, ωi is the weighting factor for flow, ω ′i is the weighting
factor for temperature. D2Q9 model for flow and D2Q4 model for temperature are
used in this work so that the weighting factors and the discrete particle velocity
vectors are different for these two models and they are calculated with Eqs (21–23)
as follows:

For D2Q9

ω0 =
4
9
,ωi =

1
9

for i = 1,2,3,4 and ωi =
1

36
for i = 5,6,7,8 (21)

The discrete velocities for the D2Q9 are defined as follows:

ci =


0 i = 0
(cos[(i−1)π/2],sin[(i−1)π/2])c i = 1,2,3,4√

2(cos[(i−5)π/2+π/4],sin[(i−5)π/2+π/4])c i = 5,6,7,8

(22)

For D2Q4
The temperature weighting factor for each direction is equal to ω ′i = 1/4.

The discrete velocities for the D2Q4 are defined as follows:

ci = (cos[(i−1)π/2],sin[(i−1)π/2])c i = 1,2,3,4 (23)

The kinematic viscosity ν and the thermal diffusivity α are then related to the
relaxation time by Eq. (24):

ν =

[
τν −

1
2

]
c2

s ∆t α =

[
τα −

1
2

]
c2

s ∆t (24)

Where cs is the lattice speed of sound witch is equals to cs = c/
√

3. In the simula-
tion of natural convection, the external force term F appearing in Eq. (17) is given
by Eq. (25)

Fi =
ωi

c2
s

F.ci (25)

Where F = Fy.

The macroscopic quantities, u and T can be calculated by the mentioned variables,
with Eq. (26–28).

ρ = ∑
i

fi (26)
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ρu = ∑
i

fici (27)

T = ∑
i

gi (28)

2.3 Boundary conditions

The implementation of boundary conditions is very important for the simulation.
The distribution functions out of the domain are known from the streaming process.
The unknown distribution functions are those toward the domain.

2.3.1 Flow

Bounce-back boundary conditions were applied on all solid boundaries, which
mean that incoming boundary populations are equal to out-going populations af-
ter the collision. At the east open boundary, the following condition is used:

f6,n = f6,n−1, f3,n = f3,n−1 and f7,n = f7,n−1 (29)

2.3.2 Temperature

The bounce back boundary condition is used on the adiabatic wall. Temperature at
the west and east walls are known. Since we are using D2Q4, the unknown internal
energy distribution functions are evaluated as:

Right wall:

{
if u > 0 then g3,n = g3,n−1

if u < 0 then g3 = Tc−g1−g2−g4
(30)

Left wall: g1 = T (y)−g2−g3−g4 (31)

2.4 Non-dimensional parameters

By fixing Rayleigh number, Prandtl number and Mach number, the viscosity and
thermal diffusivity are calculated from the definition of these non dimensional pa-
rameters.

ν f = N.Ma.cs

√
Pr
Ra

(32)

Where N is number of lattices in y-direction. Rayleigh and Prandtl numbers are
defined as Ra =

gβ f H3(Th−Tc)
ν f α f

and Pr = ν f
α f

, respectively. Mach number should be
less than Ma = 0.3 to insure an incompressible flow. Therefore, in the present s-
tudy, Mach number was fixed at Ma = 0.1. Nusselt number is one of the most
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important dimensionless parameters in the description of the convective heat trans-
port. The local Nusselt number (Nuy), the average Nusselt number (Nu) and the
dimensionless average Nusselt number (Nu*) on the left wall are calculated as:

Nuy =−
kn f

k f

H
Th−Tc

∂T
∂x

∣∣∣∣
x=0

(33)

Nu =
1
H

∫
heating hal f

Nuydy (34)

Nu∗(φ) =
Nu(φ)

Nu(φ = 0)
(35)

Table 2: Comparison of average Nusselt number at hot wall.

Ra present LBM [Mohamad et al. (2009)] FVM [Mohamad (1995)]
104 3.250 3.377 3.264
105 7.237 7.323 7.261
106 14.222 14.380 14.076

Figure 2: Average Nusselt number on the hot wall for different uniform grids (γ =
π/2, Ha = 0 and φ = 0)

3 Validation of the numerical code:

Lattice Boltzmann Method scheme was utilized to obtain the numerical simulation-
s in an open cavity with a sinusoidal boundary condition filled with water/Al2O3
nanofluid and submitted to a magnetic field. Fig. 2 demonstrates the effect of grid
resolution and the lattice sizes (20x20), (40x40), (60x60), (80x80), (100x100) and
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(a)

(b)

Figure 3: Comparison of the streamlines and isotherms for Ra = 105 and Pr = 0.7
between (a) numerical results by [Mohamad, Ganaoui & Bennacer (2009)] and
(b) the present result

(120x120) for Ha = 0 and φ = 0 by calculating the average Nusselt number for Ra
= 103 and 105, it was found that a grid size of (100x100) ensures a grid independent
solution. In order to check on the accuracy of the numerical technique employed
for the solution of the considered problem, the present numerical code was vali-
dated with the published study of [Mohamad, Ganaoui & Bennacer (2009)] for
the same cavity for Ra = 105 and Pr = 0.7. The results are presented in Fig.3,
the streamlines and isotherms have a good agreement between both compared re-
sults. Table 2 shows the comparison of average Nusselt number at hot wall of
present study with prediction of LBM [Mohamad, Ganaoui & Bennacer (2009)]
and Finite Volume Method (FVM) [Mohamad (1995)]. These comparisons show
that the present study has a good agreement with previous studies. Another vali-
dation with results by [Khanafer, Vafai & Lightstone (2003)] and [Jahanshahi,
Hosseinizadeh, Alipanah, Dehghani & Vakilinejad (2010)]for natural convec-
tion in an enclosure filled with water/Cu nanofluid for Ra = 6.2x105 and φ = 0.1
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as shown in Fig.4, excellent agreement is also found. The present code is also vali-
dated with the results of [Ghasemi, Aminossadati & Raisi (2011)] at the presence
of nanofluid and magnetic filed (Fig. 5), it shows the dimensionless temperature
along the horizontal axial midline of the enclosure for three values of the Hartmann
number, for Ra = 105 and for a solid volume fraction φ = 0.03, Fig. 5 shows good
agreement between the present code and the published results.

Figure 4: Comparison of the tem-
perature on axial midline between
the present results and numerical re-
sults by [Khanafer, Vafai & Light-
stone (2003)] and [Jahanshahi, Hos-
seinizadeh, Alipanah, Dehghani &
Vakilinejad (2010)] (Pr = 6.2, φ =
0.1, Gr = 104)

Figure 5: Comparison of the tem-
perature on axial midline between the
present results and numerical results
by [Ghasemi, Aminossadati & Raisi
(2011)] (φ = 0.03, Ra = 105)

4 Results and discussion

4.1 Effect of Hartmann and Rayleigh numbers

Fig. 6–7 illustrate the effect of Rayleigh number for three values of Hartmann
number (Ha = 0, 50 and 100) and for γ = π/2 on the isotherms and streamlines
of nanofluid (φ = 0.04) and pure fluid (φ = 0). It is shown that the thickness of
the boundary layer at the left wall increases with Hartmann number and decreases
with Rayleigh number. Therefore the temperature gradient and subsequently heat
transfer increases with Rayleigh numbers and decreases with Hartmann numbers.
For the streamlines, in the absence of the magnetic field, for low Rayleigh number
(Ra≤ 104) the flow is characterized by a main driven anticlockwise flow circulation
occupying the cavity, weak cells may develop at the corners of the cavity, the cells
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intensity increases with Rayleigh number. For high Rayleigh number (Ra ≥ 105),
the cell at the top of the cavity is transformed to a secondary driven clockwise
flow circulation occupying the upper region of the cavity. In the presence of the
magnetic field, the fluid flow intensity decreases with Hartmann number, whereas
the size of the secondary cells increases with the Hartmann number.

Figure 6: Isotherms for different Hartmann and Rayleigh numbers for γ = π/2, (—)
φ = 0.04 and (- - -) φ = 0

Fig.8 shows the variation of average Nusselt number as function of Hartmann num-
ber at different Rayleigh number for γ = π/2 and φ = 0. It is observed that the
increase of Rayleigh number increases the heat transfer rate, on the contrary, the
increase of the Hartmann number decreases the heat transfer rate. For low Rayleigh
number (Ra≤ 104) the heat transfer rate is constant for all values of Hartmann num-
ber, the conduction is dominant. For Ra≥ 105, the heat transfer rate decreases with
Hartmann number, indicating that the convection is more and more disadvantaged
with the Hartmann number.
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Figure 7: Streamlines for different Hartmann and Rayleigh numbers for γ = π/2,
(—) φ = 0.04 and (- - -) φ = 0

Figure 8: Variation of the average Nusselt number with Hartmann number for dif-
ferent Rayleigh number for γ = π/2 and φ = 0
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Fig. 9a–b show the local Nusselt number on the left wall respectively for Ha =
0 and 60 for several Rayleigh number at γ = π/2 and φ = 0. For both cases,
the local Nusselt number increases with Rayleigh number. The curves drawn for
the Nusselt numbers against y/H are approximately of sinusoidal shape like the
thermal boundary. This indicates that the local heat transfer is directly affected
by the temperature distribution on the surface. In other words, larger heat transfer
occurs when the temperature is higher.

(a) (b)

Figure 9: Variation of the local Nusselt number on the left wall for different
Rayleigh number for (a) Ha = 0 and (b) Ha = 60 for γ = π/2 and φ = 0

Fig. 10a–b show the local Nusselt number on the left wall respectively for Ra =
104 and 105 for several Hartmann number at γ = π/2 and φ = 0. For both cases,
the local Nusselt number decreases with Hartmann number. For Ra = 104 the heat
transfer gets no remarkable change by varying the Hartmann number, the opposite
is true for Ra = 105. The magnetic field effect is more significant for high Rayleigh
number.

4.2 Phase deviation effect

Fig. 11–12 illustrate the Hartmann number effect (Ha = 0, 30 and 60) for different
phase deviation (γ = 0, π/4, π/2, 3π/2 and π) and for Ra = 103 on the isotherms
and streamlines of nanofluid (φ = 0.04) and pure fluid (φ = 0). For all phase de-
viation it is shown that the effect of nanoparticles on the isotherms decreases with
the augmentation of Hartmann number. Isotherms are regularly distant indicating
that the conductive regime is dominant. Streamlines show that the phase devia-
tion affects the flow through the cavity, for all phase deviation, the flow intensity
decreases with Hartmann number. For γ = 0, two symmetric main flows occupy-
ing the cavity and flowing in the opposite directions are formed. The flow at the
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(a) (b)

Figure 10: Variation of the local Nusselt number on the left wall for different Hart-
mann number for (a) Ra = 104 and (b) Ra = 105 for γ = π/2 and φ = 0

bottom of the cavity is clockwise, while the flow at the top of the cavity is in the
counterclockwise direction (The opposite directions for γ = π). The increase of
Hartmann does not break the symmetry but slows the flow. For γ = π/4, A main
flow occupying the majority of the cavity and flowing in the counterclockwise is
formed. A weak cell is formed at the bottom corner of the cavity (at the top corner
of the cavity for γ = 3π/4) which the size increases with the Hartmann number,
order to ensure a flow through the cavity in the clockwise direction.

Fig. 13–14 illustrate the Hartmann number effect (Ha = 0, 30 and 60) for different
phase deviation (γ = 0, π/4, π/2, 3π/2 and π) and for Ra = 105 on the isotherms
and streamlines of nanofluid (φ = 0.04) and pure fluid (φ = 0). For all phase devi-
ation, it is shown that the thickness of the boundary layer at the left wall increases
with Hartmann number. Therefore the temperature gradient and subsequently heat
transfer decreases with Hartmann numbers. For γ = 0 (respectively γ = π/4) and
Ha = 0, A main flow occupying the majority of the cavity and flowing in the clock-
wise (counterclockwise) is formed. A cell exists at the top (bottom) corner of the
cavity which the size increases with the Hartmann number, order to ensure a flow
through the cavity in the counterclockwise (clockwise) direction. For γ = 3π/4 (re-
spectively γ = π) two main flows occupying the cavity and flowing in the opposite
directions are formed. The flow at the bottom of the cavity is counterclockwise,
while the flow at the top of the cavity is in the clockwise direction.

Fig.15 shows the variation of the average Nusselt number as function of Hartmann
number at different phase deviation for Ra = 105 and φ = 0. For all phase deviation,
it is observed that the increase of Hartmann number decreases the heat transfer rate.
For γ ≥ π/2, the heat transfer rate increases with the phase deviation. For Ha = 0,
the heat transfer rate is the same for γ = 0 and π , also for γ = π/4 and 3π/4.
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Figure 11: Isotherms for different Hartmann number and phase deviations for Ra
= 103 (—) φ = 0.04 and (- - -) φ = 0

Fig.16a–b show the effect of the phase deviation respectively for Ra = 103 and
104 on the local Nusselt number for Ha = 0 and φ = 0. For low Rayleigh number
Ra ≤ 104 (for both cases) it is observed that the local Nusselt number curves are
approximately of sinusoidal shape like the thermal boundary along the left vertical
walls. The local heat transfer is directly affected by the temperature distribution
on the surface. Therefore, the higher heat transfer occurs in the higher temperature
regions.
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Figure 12: Streamlines for different Hartmann number and phase deviations for Ra
= 103 (—) φ = 0.04 and (- - -) φ = 0

Fig.17a–b show the effect of the phase deviation respectively for Ha = 0 and 60
on the local Nusselt number for Ra = 105 and φ = 0. By comparing Fig. 16 and
17a, it is shown that the local Nusselt number is greatly affected by high Rayleigh
number (Ra = 105). Also, it is observed that the local Nusselt number increases
with Rayleigh number. Fig.17b shows that the locale Nusselt number decreases
with Hartmann number.
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Figure 13: Isotherms for different Hartmann number and phase deviations for Ra
= 105 (—) φ = 0.04 and (- - -) φ = 0

4.3 Effect of solid volume fraction

Fig. 18 shows the variation of the average Nusselt number as function of Hart-
mann number at different solid volume fraction, for Ra = 105 and γ = π/2. For all
Hartmann number, the addition of nanoparticle increases the heat transfer rate.

Fig. 19 show the effect of the solid volume fraction on the average Nusselt number
and the dimensionless average Nusselt number for Ha = 30, for different phase
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Figure 14: Streamlines for different Hartmann number and phase deviations for Ra
= 105 (—) φ = 0.04 and (- - -) φ = 0

deviation and Rayleigh number. For low Rayleigh number (Ra ≤ 104) the highest
heat transfer rate is obtained for γ = π/2, the heat transfer increases from γ = 0 to
π/2 and decreases from γ = 3π/4 to π . For Ra = 103the dimensionless average
Nusselt number has the same behavior for the different phase deviations. While,
for Ra = 104 the nanoparticle effect increases with the phase deviation. For Ra =
105, for γ ≥ π/4 heat transfer increases with the phase deviations, the highest heat
transfer rate is obtained in γ = π . The best effect of nanoparticles is obtained for
γ = π/2.
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Figure 15: Variation of the average Nusselt number with Hartmann number for
different phase deviation for Ra = 105 and φ = 0

(a) (b)

Figure 16: Variation of the local Nusselt number on the left wall for different phase
deviations for (a) Ra = 103 and (b) Ra = 104 at Ha = 0 and φ = 0

5 Conclusions

In this paper the effects of the phase deviation, Rayleigh number, Hartmann number
and solid volume fraction has been analyzed with Lattice Boltzmann Method. This
study has been carried out for the pertinent parameters in the following ranges:
Rayleigh number of base fluid, Ra = 103–106, Hartmann number between 0 and
60, phase deviation γ = 0, π/4, π/2, 3π/4 and π and solid volume fraction from
φ = 0 to 0.06. This investigation was performed for various mentioned parameters
and some conclusions were summarized as follows:

• A good agreement valid with previous numerical investigations demonstrates
that Lattice Boltzmann Method is an appropriate method for different appli-
cable problems.
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(a) (b)

Figure 17: Variation of the local Nusselt number on the left wall for different phase
deviations for (a) Ha = 0 and (b) Ha = 60 at Ra = 105 and φ = 0

Figure 18: Variation of the average Nusselt number with Hartmann number for
different solid volume fraction for Ra = 105 and γ = π/2

• The heat transfer rate decreases with the Hartmann number and increases
with Rayleigh number.

• At Ra = 105, for γ ≥ π/2, for Ha = 0 to 60, the heat transfer rate increases
with the phase deviation.

• For all phase deviations the addition of nanoparticles increases heat transfer
rate.

• For low Rayleigh number (Ra≤ 104) the highest heat transfer rate is obtained
for γ = π/2.

• At Ra = 105, for γ ≥ π/4 heat transfer increases with the phase deviations.

• At Ra = 105, the best effect of nanoparticles is obtained for γ = π/2.
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Figure 19: Variation of the average Nusselt number and dimensionless average
Nusselt number with solid volume fraction for Ha = 30
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