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Abstract   The numerical study of combined thermo-magnetic convection and surface 

radiation is presented in this paper and computations are performed for a paramagnetic 

fluid filled square cavity whose four walls have the same emissivity, placed in a micro-

gravity environment (g ≈0), and subjected to various strong non-uniform magnetic field 

gradients. The vertical walls were isothermal, and the horizontal walls were adiabatic. 

Finite volume method based on the concepts of staggered grid and SIMPLER algorithm 

has been applied, and the view factors were determined by analytical formula. 

Representative results, illustrating the effect of magnetic field strength on streamlines, 

temperature contours and Nusselt numbers, show that temperature differences occur 

within the cavity giving rise to convectif motion of the paramagnetic fluid which takes 

place even in a zero-gravity environment. 

Keywords: thermomagnetic convection, surface radiation, Numerical simulation, micro-

gravity, Paramagnetism, Magnetizing force. 

Nomenclature 

iA  = radiative surface number i 

ijA  = Elements of matrix A 

Cp            = specific heat at constant pressure, 
1 1. .J kg k 

 

ijF  = geometry view factor 

KelvinF
 

= Magnetizing force, N  

g    = gravitational acceleration, 
2.m s 

 
H     = size of the enclosure, m 

iJ  
= dimensionless radiosity of surface Ai 

k  = thermal conductivity, 
1 1. .W m K 

 

N  = total number of radiative surfaces 

Nr  = Radiation-conduction number, 4

0 ( / )T k T H   

cNu    =  Convective Nusselt number 

                                                           
1
 Dr. Saber Hamimid, Faculty of Sciences and Applied Sciences, sa_hamimid@yahoo.fr. 

2
 Pr. Messaoud Guellal, Laboratory for Chemical Engineering, messaoud.guellal@gmail.com. 



 
 
 
 

138   Copyright © 2017Tech Science Press            FDMP, vol.12, no.4, pp.137-153, 2016 

 

rNu  
= Radiative Nusselt number 

tNu  
= total Nusselt number 

p   = fluid pressure , Pa  
p      = perturbation pressure , Pa  

0p   = static pressure , Pa  

P      = dimensionless pressure, 

Pr    = Prandtl number, /  . 

rq  = net radiative flux (
2.W m 

) 

rQ  = dimensionless net radiative-flux, 4

0/rq T  

mRa  = Magnetic Rayleigh number, 2 2

0 0 mB TH     

t       = Time, s 

T     = dimensional temperature, K  

( )H CT T  = temperature on left (right) vertical wall of cavity, K  

0T  = Reference temperature,   / 2C HT T ,  K  

 u     = Velocity in x-direction ,
1.m s 
 

 v    = Velocity in y-direction, 
1.m s 
 

 ,U V     = dimensionless velocity-components, 
1.m s 
 

,x y      = cartesian coordinates,  m  

,X Y    = dimensionless coordinates 

Greek symbols 

      = thermal diffusivity, 
2 1.m s 

 

      = thermal expansion coefficient: 
1k 
, 01/ ( / )T     


     = specific magnetic susceptibility,  

m  
= volumetric magnetic susceptibility,

 
3 /m kg  

T    = temperature difference, C FT T T    , K  

  = emissivity of surface 
    = dynamic viscosity of the fluid, 

1 1. .Kg m s 
 

m     = free space magnetic permeability, 
1.H m 
 

     = kinematic viscosity,  
2 1.m s 

 
  = dimensionless stream function 
    = fluid density, 

3.Kg m
 

  = Stefan–Boltzmann constant, 
1 4. .W m K 

 


 

= dimensionless temperature, 0/T T  

ij  
= Kronecker symbol 
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     = dimensionless temperature,  0 /T T T  . 

     = dimensionless time 

Subscripts 
avg        = average value 

max           = maximum value 

b          = bottom 

mid  = midplan 

min         = minimum value 

0      = reference state 

C           = cold 

c     = convective 

H       = hot 

r    = radiative 

t    = top 

1 Introduction 

The effects of surface radiation on free convection in enclosures exposed to terrestrial 

gravitational field, where differences in fluid density between hot and cold regions are 

due to buoyancy force, have been studied by many investigators and it has been a very 

widespread research topic for many years. In a zero-gravity environment, there can be no 

buoyancy forces and thus no natural (free) convection possible, so flames in many 

circumstances without gravity smother in their own waste gases. 

Researches and applications in magnetic fields have significantly increased in recent 

years. The development of superconducting magnets has allowed the generation of 

magnetic fields up to 20 T (or higher with hybrid magnets). The magnetic field affects the 

convection of both electroconducting fluids (liquid metals) and non-electro-conducting 

fluids (the diamagnetic and paramagnetic fluids). 

A pioneering work in this area is of Braithwaite et al. (1991), who described the 

suppression or enhancement of gravitational convection of paramagnetic fluid by a 

magnetic field. Many experimental and numerical researches works have followed, e.g. 

Tagawa et al. (2002), Shigemitsu et al. (2003), and Bednarz et al. (2005). A major 

contribution of these studies was in providing the integral heat transfer (Nusselt number) 

behavior under strong magnetic fields and in reporting some basic flow visualizations. 

It has been demonstrated that strong magnetic fields modify the shape of candle flames 

and smokes in the air [Wakayama (1991), Wakayama (1993), Ueno (1989),] and can 

levitate water at 20T or over by diamagnetic levitation Beaugnon and Tournier (1991). 

Water can splits into two parts by the application of magnetic field, Ueno and Iwasaka 

(1994). 

Flow modes as well as heat transfer characteristics of natural convection of magnetic 

fluids have always attracted researchers’ attention in many fields of science and 

engineering. Particulary, magnetic fluids are promising in the space engineering where 

the gravity acceleration can be replaced by the magnetic body force. [Rosensweig (1954), 

https://en.wikipedia.org/wiki/Zero-gravity
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Berkovsky (1993)]. Maki et al. (2002) evidenced the similarity between gravity 

convection and magneto-gravity convection induced within air by a vertical magnetic 

field gradient. 

Yang et al. (2003) numerically studied the air free convection induced by a magnetic 

quadrupole field under microgravity, and indicated that free convection induced by the 

centrifugal- form magnetic force presents different flow and heat transfer behavior from 

the gravitational natural convection. In this work, the magnetic quadrupole field is used 

to enhance the forced convection of air. The flow and heat transfer behaviors in the 

presence of the magnetic quadrupole field are presented and discussed. 

Few studies have examined the interaction between natural convection and surface 

radiation in the case of a differentially heated cavity, particularly in terrestrial state either 

for a Boussinesq conditions,  Hamimid and M.Guellal (2014) or under non-Boussinesq 

conditions,  Hamimid et al. (2015). 

However, the interaction between thermomagnetic convection and surface radiation is 

rarely studied although surface radiation is inherent in natural convection; it appears that 

no work was reported on coupled thermomagnetic convection and radiation in the case of 

micro-gravity in a differentially-heated square cavity. Thereafter, due to its practical 

interest, the subject needs further effort to improve the knowledge in this field. 

In this study, we propose to extend the analysis of this interaction between a 

paramagnetic fluid convection and surface radiation in a square cavity with differentially 

heated vertical walls in case of micro-gravity conditions where the driving force is the 

Magnetizing force produced by the gradient magnetic field. The main objective of the 

present study consists of examining the effect of the emissivity of walls on fluid flow and 

heat transfer. 

2 Mathematical formulation 

2.1   Governing equations 

Details of the considered geometry are shows in fig.1. The flow is assumed to be 

incompressible, laminar and two dimensional in a square cavity; the two horizontal walls 

are perfectly insulated, while the two vertical walls are maintained at different 

temperatures HT  and CT , respectively. It will be further assumed that the cavity is 

placed inside a vertical superconducting magnet (Fig. 1). The temperature differences in 

the domain under consideration are small enough to justify the employment of the 

Boussinesq approximation. Moreover, the spatial variations of the magnetic fields are 

modeled using Gaussian profiles in the following forms in case of a vertical gradient of 

the magnetic field, Tonino et al. (2005):  
2( )

0( ) my y
b y b e

 
                                                                                (1) 

where:  

24 (10 )Ln                                                                                                          (2) 

my  represents the ordinate of the point where the magnetic field is maximum. 



 
 
 
 

Thermomagnetic Convection-Surface Radiation Interactions                                         141 

 

u = v = 0 , 0r

T
k q

y


  



0,

H

u v

T T

 



0,

C

u v

T T

 



u = v = 0 ,

X

Y

0r

T
k q

y


  



k x2x1

y1

y2
j

y1

y2
j

x2x1 i

magnet
magnet

 

Figure 1:  Flow configuration and coordinate system. 

The fluid is air and its properties are assumed to be constant at the average temperature. 

The inner surfaces, in contact with the fluid, are assumed to be gray, diffuse emitters and 

reflectors of radiation with identical emissivities. 

The application of a magnetic field gradient produces a force (Kelvin force) given as 

follows, McGraw-Hill (1992): 

2 2( ) ( )

2 2

m
kelvin

m m

T T
F b b

 

 
                                                                         (3)                                

The magnetizing force is in the direction of gradient of b and does not coincide with the 

direction of b . 

This can be included as a body force in the Navier-Stokes equation for a vertical 

magnetic gradient as follows: 

2 2 2

2 2
( ) ( )

2 m

v v v b p v v
u v

t x y y y x y


 



      
     

      
                          (4) 

(here 0g  , zero gravity situation) 

where m  is the free space magnetic permeability (
74 10  H/m in SI units), b  is the 

magnetic field intensity, m  is the volumetric magnetic susceptibility and 

satisfies m     

 is the density and  is the specific magnetic susceptibility. According to Curie’s law, 

the magnetic susceptibility (  ) of a paramagnetic material is inversely proportional to its 

absolute temperature, W. E (1835). 

C

T
                                                                                                           (5) 

where C is the Curie’s constant. 
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If the Taylor expansion for the Curie’s law is introduced, Yang et al. (2003), we can 

derive a Boussinesq approximation for this force term, [Tagawa et al. (2003), Tagawa et 

al. (2002].  

20 0 0( )
kelvin

m

T T
F b

 



 
                                                                                         (6) 

Taking into account the assumptions mentioned above, the governing equations for this 

problem are the Navier-Stokes equations for fluid flow, including the magnetic 

force Kelvinf  given by equation 6; the complete set of equation is: 

. 0V                                                                                                                     (7) 

2 2

2 2

u u u p u u
u v

t x y x x y
 

        
       

        
                                      (8) 

2 2
20 0 0

2 2

( )

m

T Tv v v p v v
u v b

t x y y x y

 
 



         
         

        
           (9) 

2 2

2 2

T T T T T
u v a

t x y x y

     
    

     
                                                 (10) 

Where 0p p p    is the perturbation pressure. 

We used H ,
2H


, 
H


 , 

2

2H


 and 0b  as characteristic scales for length, time, velocity, 

pressure and magnetic field, respectively. The non-dimensional temperature is defined 

as 0T T

T






 . Accordingly, the dimensionless governing equations are: 

0
U V

X Y

 
 

 
                                                                                                     (11) 

2 2

2 2
Pr( )

U U U P U U
U V

X Y X X Y

     
     

     
                                      (12) 

2 2 2

2 2
Pr .Prm

V V V P V V B
U V Ra

X Y Y X Y Y




       
       

       
                                 (13) 

2 2

2 2
( )U V

X Y X Y

    



    
   

    
                                                                       (14) 

Where 

2 2

0 0
m

m

B TH
Ra

 

 


 is magnetic Rayleigh number.   

2.2 Radiative analysis 
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The radiative surfaces of the enclosure are divided into N elementary zones Ai, i = 1,. ..N. 

N is equal to the total control volume solid–air interfaces. In fact, the control volume 

faces were arranged so that a control volume face coincided with an interface solid–fluid. 

Surfaces Ai are assumed to be diffuse-gray and opaque. 

The number of zones retained was determined by the mesh used to solve the differential 

equations. Indeed, the grid was constructed such that the boundaries of physical domain 

coincided with the velocity grid lines. 

Determination of the net radiative flux density requires the knowledge of the surface 

temperature of each node. The equation of the thermal balance of each surface provides 

us with these temperatures. Thus, one assumes that the solid surfaces are in thermal 

equilibrium under the combined action of the convective and radiative contributions, 

which give: 

0r

T
k q

n


  


                                                                                                     (15) 

Where n denotes the normal direction to the interface under consideration. and rq the net 

radiative flux density along this interface. 

The corresponding initial and boundary conditions are: 

0 U V  ,    i               for  0   

0U V   ,  0.5C       for  0 1Y   at 0X   

0U V   ,  0.5H       for  0 1Y   at 1X   

0U V   ,  0rNrQ
Y


 


  for  0 1X   at  0Y   

0U V   , 0rNrQ
Y


 


   for   0 1X   at 1Y     

For the insulated walls: 

0,1
0,1

0r r Y
Y

N Q
Y







 


                                                                                        (16) 

Where 4

0 /Nr T H k T  , is the dimensionless parameter of conduction-radiation and 

4

0/r rQ q T , is the dimensionless net radiative heat flux on the corresponding 

insulated wall defined as follows: 

,

1

N

r i i j i j

j

Q J J F 



                                                                                           (17) 

Ji is the dimensionless radiosity of surface Ai , obtained by resolving the following system: 

4

1

( (1 ) )
N

ij i i j j i i

j

F J  



                                                                               (18) 
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Where the dimensionless radiative-temperature i  is given by: 

0 0

1i i
i

T

T




                                                                                                               (19) 

2.3 Heat transfer 

The local non-dimensional heat transfer rate in terms of convective and radiative Nusselt 

numbers, cNu and rNu , are given by: 

cNu
Y





                                                                                                                  (20) 

r r rNu N Q                                                                                    (21) 

The average convective Nusselt number was calculated integrating the temperature 

gradient over surface A as 

0

1
avg

A

cNu dY
A Y


 

                                                                    (22) 

The average radiative Nusselt number was obtained integrating the dimensionless net 

radiative fluxes over surface A, by the following mathematical relationship 

0

1
avg

A

r r rNu N Q dY
A

                                                                                (23) 

The total average Nusselt number was calculated by summing the average convective 

Nusselt number and the average radiative Nusselt number 

0

1
A

avg r rNu N Q dY
A Y

 
   

 
                                                                (24) 

2.4 Numerical procedure  

The numerical solution of the governing differential equations for the velocity, pressure 

and temperature fields is obtained by using a finite volume technique. A power scheme 

interpolates the face value of a variable,Ф, using the exact solution to a one-dimensional 

convection-diffusion equation was also used in approximating advection–diffusion 

terms.This scheme is based on the analytical solution of the convection diffusion 

equation. This scheme is also very effective in removing false diffusion error [ Patankar 

(1980)]. The SIMPLER algorithm (Semi-Implicit Method for Pressure Linked Equations 

Revised) whose details can be found in Patankar (1980), with a staggered grid is 

employed to solve the coupling between pressure and velocity. The governing equations 

were cast in transient form and a fully implicit transient differencing scheme was 

employed as an iterative procedure to reach steady state. The discretised equations are 

solved using the line by line Thomas algorithm with two directional sweeps. The 

radiosities of the elemental wall surfaces are expressed as a function of elemental wall 

surface temperature, emissivity and the view factors. The radiosity (
jJ ) and temperature 
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( i ) are connected by a matrix of the type 

   4

,i j j i iA J                                               (25) 

The inverse of the matrix [Ai,j] is determined (only once) by the Gauss elimination 

method. The coefficients of [A] are constants and depend only on the emissivity and the 

view factors. They have no dependence on the temperatures. In 2D, the view factors are 

analytic, ( see details in fig.1) : 

2 2

1 1

2 2 2 2

2 2

2 1

1

2( )

y y

i j
y y

F x y x y
x x



  
      

                       (26) 

2 2

1 1

2 2 2 2

2 1

2 1

1
( ) ( )

2( )

x x x x

i k
x x x x

F x x H x x H
x x

 


 

 
         

                    (27) 

3 Validation  

The lack of the experimental and numerical data for thermomagnetic convection surface 

radiation coupling especially for micro gravity environment has motivated this study. 

There is little data in the literature dealing with zero-gravity thermomagnetic convection-

surface radiation interactions. We therefore considered two cases for validation; for the 

first validation test a case of natural convection coupled with surface radiation in 

differentially heated square cavity studied by Hong (2006) was used for this test case. 

For the second validation test, we have made calculation for the flow in the case of 

thermomagnetic convection in a differentially heated square cavity under conditions 

which resemble those used by Tonino et al (2005). 

Table 1: average values of convective, radiative and total Nusselt numbers on the hot 

wall for T0 = 293,5 K and 10T K  ,  Nut = Nuc + Nur. Comparison with the values 

published by Hong (2006). 

Ra H   Hong et al. (2005) Present study  

cNu  rNu  tNu  cNu  rNu  tNu  

10
4 

0.021 0 2.246 0 2.246 2.246 0 2.246 

10
4 

0.021 0.2 2.260 0.507 2.767 2.262 0.507 2.769 

10
4 

0.021 0.8 2.249 2.401 4.650 2.255 2.401 4.656 

10
5 

0.045 0 4.540 0 4.540 4.532 0 4.532 

10
5 

0.045 0.2 4.394 1.090 5.484 4.398 1.090 5.489 

10
5 

0.045 0.8 4.189 5.196 9.385 4.200 5.196 9.397 

10
6 

0.097 0 8.852 0 8.852 8.863 0 8.863 

10
6 

0.097 0.2 8.381 2.355 10.736 8.379 2.355 10.734 

10
6 

0.097 0.8 7.815 11.265 19.080 7.861 11.265 19.126 



 
 
 
 

146   Copyright © 2017Tech Science Press            FDMP, vol.12, no.4, pp.137-153, 2016 

 

Table 2: average nusselt number for 
510Ra   and different values of Gm . Comparison 

with the values published by Tonino (2006). 

Gm  0  52.5 10
 

610  
64 10

 

69 10
 

71.6 10
 

72.5 10
 

CNu :Tonino 

(2006) 

4.525 4.522 4.480 3.8 5.305 6.649 7.635 

CNu  : 

present study 

4.522 4.520 4.485 3.82 5,57 6.686 7.616 

Tonino (2006) 

 

Present study 

 

Gm            0                               
610                            

64 10                       
72.5 10  

Figure 2: streamlines for 
510Ra   and different values of Gm . 

Tonino (2006) 

 

Present study 
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Gm            0                               
610                            

64 10                       
72.5 10  

Figure 3: isotherms for 
510Ra   and different values of Gm . 

A comparison of our numerical data with results from the literature and for these test 

cases is shown in figures (2,3) shows the thermal and flow structure as obtained for the 

particular Rayleigh number, 
510Ra  and for different Gm where 

2 2

0

2

m

H b
Gm



 
   and 

Tables 1 and 2, showing the mean values of Nusselt numbers. The agreement between 

our results and others can be qualified as quite satisfactory since the relative maximum 

deviation was found to be less than 2%. 

We do firmly believe that the above agreement may give a confident assessment 

regarding our mathematical modelling as well as the numerical method adopted. 

To ensure that the results are mesh-size independent, different non-uniform x yn n  fine 

near wall grid, namely 120 60 and 120 100 , were thoroughly tested. The difference 

between results given by those grids was less than 1% for the average value of Nusselt 

numbers. Hence, most of the calculations presented in this article were performed using 

an 120 80  
grid. Such a grid system possesses very fine meshes near all boundaries. 

4 Results and discussion 

In this investigation, thermo-magnetic convection coupled with surface radiation is 

studied in the case of zero gravity situations. This required the specification of five 

dimensionless parameters ( , ,mRa Nr , H and mY  ) corresponding to the emissivity of 

walls, magnetic Rayleigh number,  the radiation number, the high of cavity and the 

magnet position; the others parameters such as Prandtl number, average temperature and 

temperature differences are respectively fixed to Pr = 0.71, T0 = 300 K and 10T  K. 

The simulation parameters are: 0 1   , 
610mRa  (corresponding to 162.88Nr   

and 
29.68 10H m  ) and (0.5,1)mY  . 

The Kelvin force, which arises from the interaction between the local magnetic field 

within the fluid and the molecular magnetic moments, tends to move paramagnetic fluids 

toward regions of higher magnetic field. 

When the cavity of a paramagnetic fluid heated from the side is placed in the non uniform 

magnetic field, the imposed horizontal thermal gradient induces a horizontal gradient of 
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the magnetic susceptibility (satisfying Curie’s law), yielding a spatially non uniform 

Kelvin body force. This thermal gradient induced by magnetic body force tends to 

destabilize the fluid in the cavity and convection of the paramagnetic fluid might take 

place even in a zero-gravity environment, (Fig.4, 5), as a direct consequence of 

temperature differences occurring within the fluid. The resulting flow is therefore, 

illustrated by natural convection cells and isotherms contours which show the existence 

of strong temperature gradients near the active walls to which the magnetic field is 

maximum(Fig.5). 

    

    

0                      0.2                   0.6                    1   

Figure 4: Streamlines for 0.5mY   (top) and 1mY   (bottom) at 610mRa   

    

    

0                      0.2                   0.6                    1   

Figure 5: Isotherms for 0.5mY   (top) and 1mY   (bottom) at 
610mRa   

In the presence of surface radiation, as soon as the walls emit, the radiation changes the 
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temperature distribution along the adiabatic walls: For a position 1mY  of the magnet, 

the fluid is heated along the lower wall and cools along the upper wall, (Fig. 6b). While 

these two walls undergo the same change in temperature for a position 0.5mY   of the 

magnet, (Fig.6a), owing to the symmetrical boundary conditions on the vertical Walls in 

terms of temperature and magnetic field gradient. The flow and temperature fields are 

symmetrical about the mid-high of the enclosure. This behavior is explained by the fact 

that for 1mY   the top wall receives heat while the bottom wall loses heat, for 

0.5mY  the two walls receive the same amount of heat. 
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Figure 6: Distribution of upper and lower wall temperatures for 0.5mY   (a) and 

1mY   (b) at 610mRa   

There are no significant changes in the profiles of the streamlines, (Fig.4), except a small 

modification in maximum values for positions 0.5mY   and 1mY   of the magnet, 

(Fig.7). Contrary to isotherms, (Fig.5), where a large change is observed especially near 

the adiabatic walls where the isotherms becomes more and more inclined by increasing 

the emissivity of the walls whereas they are perpendicular in pure thermomagnetic 

convection. Near the cold wall, the isotherms are not too much affected by the radiation 

of the walls, especially for the case 0.5mY  . 
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Figure 7:  maximum value of the stream function for different emissivity values 

Concerning the convective exchanges on the hot wall, they are greatly influenced by the 

radiation especially on the upper part of the wall for a position 1mY  of the magnet, 

(Fig.8b). Increasing the wall emissivity   produces a decreasing of ( )cNu h and 

( )cavgNu h for  1mY  , (Fig.8b , Fig. 10a), whereas it is less significant for 

0.5mY  where a small increase is observed by increasing the emissivity of the walls, 

(Fig.8a , Fig. 10a). 

For local ( )rNu h and average ( )ravgNu h  radiative exchange, an opposite trend is 

observed. Increasing leads to an strong increase of ( )rNu h and ( )ravgNu h  on the hot 

wall for the two cases: 1mY  and 0.5mY  , (Fig.9a and Fig. 10b). 

For position ( 0.5mY  ) of magnet, the distribution of the convective or radiative Nusselt 

number accepts the mid-height of the cavity as an axis of symmetry. 
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Figure 8: Distributions of local Nusselt numbers on the hot wall for 0.5mY   (a) and 

1mY   (b) at 610mRa   
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Figure 9: Variations of radiative Nusselt number at the hot and cold walls for 0.5mY   

(a) and 1mY   (b) at 610mRa   
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Figure 10: Variation of the average convective (a) and radiative (b) Nusselt number at 

the heated surface at 610mRa   

Due to the symmetry of boundary conditions in terms of temperature and magnetic field, 

the radiative exchange to the two adiabatic walls for 0.5mY  , (Fig.11a), undergoes the 

same evolution and an increase in the radiative nusselt number  in the greater part of 

walls is observed by increasing the emissivity of the walls. 

For 1mY  , increasing   leads to an increase of ( )rNu b on the bottom wall and a 

decrease on the top wall, (Fig.11b), and shows that the net radiative heat flux essentially 

positive at the bottom and negative at the top wall. 
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Figure 11: Distribution of radiative Nusselt number on upper and lower walls for 

0.5mY   (a) and 1mY   (b) at 610mRa   

5 Conclusions 

In the present paper, calculations have been made for the combined thermomagnetic 

convection and radiation in a differentially-heated cavity. In view of the presented results, 

the main points can be summarized as follows: 

 In presence of the strong magnetic gradient field thermal convection of the 

paramagnetic fluid might take place even in a zero-gravity environment as a direct 

consequence of temperature differences occurring within the fluid.  

 Thermal radiation affects the isotherms near solid adiabatic surfaces, since the 

inclination of the isotherms indicates the importance of the thermal radiation heat 

transfer, the modification starts at low surface emissivity and increases gradually 

with it. 

 Varying the emissivity walls, the convective heat exchange depends on the position 

of the magnet, where the radiative Nusselt numbers increase with the surface 

emissivity. 
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