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Lattice Boltzmann Method for Simulation of Nanoparticle 

Brownian Motion and Magnetic Field Effects on Free Convection 

in A Nanofluid-filled Open Cavity with Heat 

Generation/Absorption and Non Uniform Heating on the Left 

Solid Vertical Wall 

Mohamed Ammar Abbassi1, Bouchmel Mliki1 and Ridha Djebali1, 2 

Abstract: This article reports a numerical study of nanoparticle Brownian motion and 

magnetic field effects by natural convection in a nanofluid-filled open cavity with non 

uniform boundary condition. Lattice Boltzmann Method (LBM) is used to simulate 

nanofluid flow and heat transfer. The effective thermal conductivity and viscosity of 

nanofluid are calculated by KKL (Koo-Kleinstreuer-Li) correlation. In this model effect 

of Brownian motion on the effective thermal conductivity and effective viscosity is 

considered and examined. Simulations have been carried out for the pertinent parameters 

in the following ranges: Rayleigh number (Ra=103-106), Hartmann number (Ha=0-60), 

nanoparticle volume concentration (=0-0.04) and heat generation or absorption 

coefficient (q=−10, -5, 0, 5, 10). The numerical results show a decrease in heat transfer 

with an increase in particle volume fraction. In addition, it is observed that the Brownian 

motion greatly influences the heat transfer rate depending on the Hartmann number, 

Rayleigh number and nanoparticle solid volume fraction. Additionally, in the presence of 

the heat generation or absorption, the Brownian motion effect on heat transfer at Ra=103 

is more pronounced than other Rayleigh numbers and the least effect is observed at Ra= 

106. 

Keywords:  Brownian motion, nanofluid, heat transfer, non uniform heated cavity, lattice 

boltzmann method, natural convection. 

Nomenclature 

B Magnetic field, T 

c       

cs   

Lattice speed, m s-1 

Speed of sound, m s-1 

ci        Discrete particle speeds, m s-1 
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cp Specific heat at constant pressure, J K-1 kg-1 

F  External forces, N 

f                    Density distribution functions, kg m-3 

f eq                  Equilibrium density distribution functions, kg m-3 

g               Internal energy distribution functions, K 

geq                  Equilibrium internal energy distribution functions, K 

g                   Gravity vector, m s-2 

Ha
 

Hartmann number 

k Thermal conductivity, W K-1 m-1 

Ma                 Mach number 

Nu Local Nusselt number 

P                    Pressure, N m-2 

Pr     Prandtl number 

Qo                  Heat generation or absorption, Wm-3 

q Dimensionless heat generation or absorption 

Ra                  Rayleigh number 

T                  Temperature, K 

( , )u vu           Velocities, m s-1 

( , )x yx          
 Lattice coordinates, m 

Greek symbols 

α Thermal diffusivity, m2 s-1 

Δx Lattice spacing, m 

Δt  Time increment, s 

τα Relaxation time for temperature, s 

τν Relaxation time for flow, s 

  Kinematic viscosity, m2 s-1 

  Fluid density, kg m-3 

ψ 
 

Non-dimensional stream function  

  Solid volume fraction, Wm-3 

µ
 Dynamic viscosity, kg m-1 s-1 

γ  

θ  

Inclination angle of magnetic field 

Non-dimensional temperature 
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Subscript 

f 

nf 

p 

Fluid 

Nanofluid 

particle 

1 Introduction 

The study of heat transfer enhancement in open cavities has been widely investigated due 

to its relevance in some thermal engineering applications such as solar collectors having 

insulated strips [Sezai, Mohamad (1999)], domestic refrigerators and ovens [Skok, 

Ramadhyani and Schoenhals (1991)], electronic cooling devices [Lage, Lim and Bejan 

(1992)] and other industrial systems in various sectors. It must also be noted that the heat 

transfer enhancement by means of nanofluids is still an important subject. Much attention 

has been paid in the past decade to this new type of nanofluid because of its behaviour 

associated with heat transfer. Various investigations on Magnetohydrodynamic (MHD) 

natural convection were implemented by researchers. [Mliki, Abbassi and Omri (2015)] 

used the lattice Boltzmann method to simulate the nanofluid free double dispersion 

natural convection inside in a C-shaped enclosure. The nanofluid thermal conductivity is 

chosen in such a way that it takes into account the Brownian motion and temperature 

field effects in addition to the nanoparticle volume concentration. The effect of magnetic 

field on heat transfer in the C-shaped enclosure is studied.  

Investigations on natural convection in open cavities in the presence of a magnetic field 

were done by researchers with different numerical methods. Especially, in order to 

understand buoyancy-driven heat transfer of nanofluids in a cavity several investigations 

have been numerically and experimentally conducted. The numerical investigation of 

natural convection in an open ended rectangular cavity has been carried out by using 

lattice Boltzmann method (LBM) at various physical flow governing parameters such as 

Rayleigh number (104 ≤ Ra ≤ 106) and aspect ratio (0.5 ≤ AR ≤ 10) by [Mohamad, El-

Ganaoui and Bennacer (2009)]. They reported inverse dependence of the rate of heat 

transfer on the aspect ratio based on the use of D2Q4 and D2Q9 lattice models for the 

thermal and flow fields, respectively. [Mahmoudi, Mejri, Abbassi and Omri (2015)] 

investigated MHD natural convection flow and heat transfer in open cavity filled with 

nanofluids, utilizing non uniform boundary condition and in the presence of uniform heat 

generation/absorption by using lattice Boltzmann method. The presented results indicated 

the decrease in heat transfer rate with Hartmann number and linear variation with 

Rayleigh number. In the same period, [Mejri and Mahmoudi (2015)] have performed a 

numerical study using the Lattice Boltzmann method in a nanofluid-filled open enclosure 

with a sinusoidal boundary condition. The study was carried out by using physical flow 

governing parameters, such as, Rayleigh number (Ra=103-106), Hartmann number (Ha= 

0−60), the solid volume fraction of the nanoparticles between =0 and 6% and phase 

deviation (γ=0, π/4, π/2, 3π/4 and π). The presented results showed that for Ra=103 to 105 

and Ha=30, for all phase deviations the addition of nanoparticles increases heat transfer 

rate. In addition, the authors have concluded that, the highest heat transfer rate is obtained 

http://www.sciencedirect.com/science/article/pii/S1876107014003836#bib0001
http://www.sciencedirect.com/science/article/pii/S1876107014003836#bib0004
http://www.sciencedirect.com/science/article/pii/S1876107014003836#bib0004
http://www.sciencedirect.com/science/article/pii/S1876107014003836#bib0003
http://www.sciencedirect.com/science/article/pii/S1876107014003836#bib0003
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for low Rayleigh number (Ra ≤ 104) and phase deviation (γ=π/2). [Kefayati (2013)] 

investigated numerically natural convection in an open cavity in the presence of magnetic 

field at various physical flow governing parameters such as (Ra=103-106) the solid 

volume fraction of the nanoparticles between  = 0 and 6% and Hartmann number (Ha = 

0-90) by using Lattice Boltzmann method. The results presented show that the rate of 

heat transfer is an increasing function of Hartmann number. [Hussein, Ashorynejad, 

Shikholeslami and Sivasankaran (2014)] examined numerically natural convection in an 

open enclosure filled with nanofluids in the presence of magnetic field. In this study, the 

effective thermal conductivity and viscosity of nanofluid were calculated by the 

Maxwell-Garnetts (MG) and Brinkman models, respectively. The influence of pertinent 

parameters such as Rayleigh number, nanoparticle volume fraction, Hartmann number 

and the inclination of magnetic field on the flow and heat transfer characteristics have 

been examined. They demonstrated that the absolute values of stream function rise by 

increasing Rayleigh numbers while these values decline significantly by increasing 

Hartmann numbers. Also, it was found that the magnetic field orientation angle increases, 

the flow circulation intensity and the convection effect begins to decrease. Subsequently 

[Gangawane, Bharti and Kumar (2016)] simulated the TLBM MHD natural convection in 

an open ended rectangular cavity at various physical flow governing parameters such as 

Rayleigh number (Ra=103-106), heating location (bottom, middle, and top) on west wall 

and dimensionless heating length (L=0.25–0.75) on the flow and temperature fields. They 

found that the maximum heat transfer is observed in the case of middle heating. Also, 

they reported linear dependence of the average Nusselt number (Nu) on the Rayleigh 

number, irrespective of the heating locations and heater size. In another study, [Gangawane, 

Bharti and Kumar (2015)] numerically investigated the natural convection in an open 

ended rectangular cavity at various physical flow governing parameters such as Rayleigh 

number (Ra =103-106), heating location (bottom, middle, and top) and Prandtl number (Pr 

= 0.71) by using passive scalar thermal lattice Boltzmann method (PS-TLBM) with 

D2Q9 (two-dimensional and nine-velocity link) lattice model. They showed that the 

middle heating location gives higher heat transfer rate than that for the top and bottom 

heating cases. Also, it was found that the average Nusselt number increases with 

Rayleigh number. In addition, the influence of a Brownian motion of nanoparticules in a 

nanofluid has been explored well over the last few decades. [Ghasemi and Aminossadati 

(2010)] reported the Brownian motion effects in a triangular enclosure with natural 

convection. The effect of partial heating locations, Rayleigh number, solid volume 

fraction, enclosure aspect ratio and Brownian motion have been presented and discussed. 

They observed that the heat transfer of the nanofluid increases when considering the 

Brownian motion. Moreover, when Brownian motion is considered, an optimum solid 

volume fraction can be found, which results in the maximum heat transfer rate. This is in 

contradiction to the results of the analysis in which Brownian motion is neglected when 

the heat transfer rate continuously increases with the solid volume fraction. [Haddad, Abu 

Nada and Oztop (2012)] numerically investigated the convection fluid flow and heat 

transfer and fluid flow of CuO-water nanofluid in a cavity heated from the bottom. In this 

study, the effect of Brownian motion on the effective thermal conductivity and effective 

viscosity is considered. Results indicated that the enhancement in heat transfer is 
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observed at any Rayleigh numbers and nanoparticle volume fraction by considering the 

role of Brownian motion. 

The main aim of the present work is to discuss the effect of Brownian motion on heat 

transfer in a nanofluid-filled open cavity with non uniform boundary condition. The 

results will be presented in this work via streamlines, isotherms, average Nusselt number 

at different nanoparticle volume fractions, Hartman and Rayleigh numbers. 

2 Mathematical formulation 

2.1  Problem statement and mathematical modeling 

 

Figure 1: Geometry of the present study with boundary conditions 

The considered physical geometry of the present problem with related parameters and 

coordinates are shown in Figure 1. It consists of a two-dimensional open cavity with the 
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height of H. The left wall is maintained to a non uniform boundary 

condition    1 1hT y y H y H   . An external cold nanofluid enters into the enclosure from 

the east opening boundaries while the Al2O3-water nanofluid is correlated with the 

opening boundary at the constant temperature of Tc. The bottom and top walls of cavity 

are thermally insulated. A uniform magnetic field of magnitude B is applied in the 

horizontal direction. The cavity walls are electrically insulated. The thermo-physical 

properties of the base fluid and the nanoparticles are given in Table 1. The magnetizing 

force due to the weak magnetic dipoles moment is neglected compared to the Lorentz 

force. Furthermore, it is assumed that the viscous dissipation and Joule heating are 

neglected. 

Table 1: Thermo physical properties of fluid and nanoparticles [Sheikholeslami (2013)] 

Physical 

Properties 

Fluid phase 

(Water) 

Al2O3 

(nanoparticles) 

Cp(J/kgK) 4179 385 

 (kg/m3) 997.1 8933 

k (W/mK) 0.631 400 

10-5 (1/K) 21 1.6 

1( )m   0.05 1 10-10 

The equations governing the Magnetohydrodynamic (MHD) natural convection flow and 

heat transfer, namely, continuity, Navier–Stokes, and the thermal energy equations in 

nondimensional form, are given as follow: 

0
u v

x y

 
 

 
                                                      (1) 

2 2

2 2
( ) ( )nf nf

u u p u u
u v

x y x x y
 

    
    

    
                          (2)

 
2 2

2

2 2
( ) ( ) ( ) ( ) .nf nf T nf c nf

v v p v v
u v g T T B v

x y y x y
   

    
       

    
                       (3) 

 
2 2

2 2
( )

( )
nf C

p nf

T T T T Q
u v T T

x y x y C




   
    

   
                                     (4) 

where σnf is electrical conductivity of nanofluid, B is the magnitude of the magnetic field 

and Q is the heat generation or absorption coefficient. 

The effective density (ρnf), the thermal expansion coefficient (βnf), heat capacitance 

(ρCp)nf  and thermal diffusivity of the nanofluid are respectively defined by [Xuan and 

Roetzel (2000) ]: 

(1 )nf f p                                               (5)
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( ) (1 )( ) ( )p nf p f p pC C C                                              (6) 

( ) (1 )( ) ( )nf f p                                                           (7) 

( )

nf

nf

p nf

k

C



                                                       (8) 

For thermal conductivity, we used the model developed by [Koo and Kleinstreuer (2004)] 

that considers the nanoparticle Brownian motion. This model takes into account the 

effects of particle volume fraction, particle size and nanofluid temperature. 

eff static Browniank k k                                                                   (9) 

Where kstatic is the static thermal conductivity based on Maxwell classical correlation and 

kBrownian is the component considered the enhanced thermal conductivity by micro-scale 

convective heat transfer of a particle’s Brownian motion. 

2 2 ( )

2 ( )

P f f P

static f

P f f P

k k k k
k k

k k k k





  


  
                                     (10) 

45 10 ( , )b
Brownian f p

p p

k T
k C f T

d
 


                                                   (11) 

where (β and f), two empirical functions combined the interaction between nanoparticles. 

0.8229 0
00.0137(100 ) 1for                                         (12) 

0.7272 0
00.0011(100 ) 1for                                         (13) 

( , ) ( 6.04 0.4705) (1722.3 134. 1%    43) %6f T T for                   (14) 

This equation is valid for temperatures in the range of 300 K ≤ T ≤ 325 K 

The effective viscosity of the nanofluid containing a dilute suspension of small rigid 

spherical particles is given by as [Koo and Kleinstreuer (2005)]: 

eff static Brownian                                                       (15) 

where μstatic is the viscosity of the nanofluid, as given originally by [Brinkman (1952)] 

and μBrownian is the component considered the effective viscosity due to Brownian motion 

of a particle’s proposed by [Koo and Kleinstreuer (2005)]. 

2.5(1 )

f

static








                                                               (16) 

45 10 ( , )b
Brownian f

p p

k T
f T

d
  


                                                   (17) 

Also, effective electrical conductivity of nanofluid was presented by [Sheikholeslami, 

Gorji-Bandpy, Ellahi and Zeeshan (2014)] as below: 
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3( 1)

1

( 2) ( 1)

s

nf f

s sf

f f




 

 


 



 

  

                                                   (18) 

The governing equations (1-4) are made dimensionless using the following dimensionless 

variables: 

 

2

2

0

2

3

, Y , , , ,

(T L Q
,

c

T )
, ,

c

nf nf h c nf nf

nf nfc

nf p nfnf
nf nf nf

L

T Tx y uL vL pL
X U V P

L L T T

g
Pr Ra Ha Hq B


   

 

   


     






 

          (19) 

Based on the dimensionless variables above, equations (1-4) can be written as follows: 

0
U V

X Y

 
 

 
                                                                 

(20) 

2 2
*

2 2
Pr ( )

U U P U U
U V

X Y X X Y

    
    

    
                                          

       (21) 

2 2
* * * 2 *

2 2
Pr ( ) Pr Pr

V V P V V
U V Ra Ha V

X Y Y X Y


    
      

    
                      (22) 

2 2

2 2
( )U V

X Y X Y
q

   


   
   

   
                                     (23) 

where 

* *
( )( )

Pr Pr, Ra Ra
( ) ( )

nf nf

f f

p pnf f nf f f

f p nf f nf p nf

C Ck k

C k k C

  

   
                                      (24) 

3  Simulation of MHD & nanofluid with lattice boltzmann method 

3.1  Brief Introduction to LBM 

The Lattice Boltzmann Method (LBM) was based on Ludwig Boltzmann’s kinetic theory 

of gases. The fundamental idea is that gases/fluids can be a large number of small 

particles moving with random motions. The exchange of momentum and energy is 

achieved through particle streaming and collision. For the incompressible non isothermal 

problems, (LBM) utilizes two distribution functions f and g, for the flow and temperature 

fields respectively.  

For the flow field: 

        eq1
Δ , Δ , , , Δi i i i if t t t f t f t f t t F


     i ix c x x x c                       (25) 

For the temperature field: 
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        eq1
g Δ , Δ g , g , g ,i i i it t t t t t


    ix c x x x                       (26) 

Where the discrete particle velocity vectors is defined by ci. t  denotes lattice time step 

which is set to unity.   and   are the relaxation time for the flow and temperature 

fields, respectively. eq

if  and eqg i
 are the local equilibrium distribution functions that have 

an appropriately prescribed functional dependence on the local hydrodynamic properties 

which are calculated with Eqs. (5)-(18) and for flow and temperature fields respectively. 

   
2 2

eq

2 4 2

3 . 9 . 3
1

2 2
i if

c c c
 

 
    
  

i ic u c u u                                      (27) 

 eq '

2

.
g 1 3i iT

c


 
  

 

ic u                                                    (28) 

u and   are the macroscopic velocity and density, respectively. c is the lattice speed 

which is equal to /x t   where x  is the lattice space similar to the lattice time step 

t  which is equal to unity, i is the weighting factor for flow and
 

'
i  is the weighting 

factor for temperature. The D2Q9 and D2Q4 lattice models are applied to present study. 

According to these models, the weighting factors and the discrete particle velocity 

vectors can be calculated with Eqs (29-31): 

For D2Q9 

0

4 1 1
,  for i 1, 2,3, 4 and  for i 5,6,7,8

9 9 36
i i                    (29) 

 

  

0 0

(cos[ 1 / 2],sin[( 1) / 2]) 1,2,3,4

2 cos[ 5 / 2 / 4],sin[( 5) / 2 / 4] 5,6,7,8

i

i i c i

i i c i

 

   

 


   


    

ic                      (30) 

For D2Q4 

The temperature weighting factor for each direction is equal to ' 1/ 4i   . 

 (cos[ 1 / 2],sin[( 1) / 2])i i c   ic    1,2,3,4i                                                                 (31)  

The kinematic viscosity ν and thermal diffusivity α are respectively related to the 

relaxation time by Eq. (32): 

21
Δ

2
sc t 

 
  
 

  , 21
Δ

2
sc t 

 
  
 

                                                           (32) 

Where cs is the lattice speed of sound which is equal to / 3sc c . In the simulation of 

natural convection, the external force term Fi is given by Eq. (33):  

2
.i

i i

s

F F c
c


                                                                  (33) 
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With F is the total external body force. 

The macroscopic quantities  , u and T can be calculated respectively by Eqs. (34)-(36). 

i

i

f                                                                   (34) 

i

i

u f  ic                                                                              (35) 

 

gi

i

T                                                                  (36) 

3.2  Implementation of boundary conditions 

One of the important and crucial issues in LBM simulation of flow and temperature is 

accurate modeling of the boundary conditions. Therefore, we need to determine 

appropriate equations for calculating those distribution functions f and g, for the flow and 

temperature at the boundaries for a given boundary condition. 

3.2.1  Flow 

Bounce-back boundary conditions were applied on all solid boundaries, which mean that 

incoming boundary populations are equal to out-going populations after the collision. The 

unknown density distribution functions at the left, south and north walls of the cavity can 

be determined by the following conditions respectively (Figure 2. a): 

f (1,0) = f(3,0) ;  f(5,0)=f(7,0) ;  f(8,0)=f(6,0)                       (37) 

f(0,5) = f(0,7) ;  f(0,2)=f(0,4) ;  f(0,6)=f(0,8)                       (38) 

f(m,7) = f(m,5);  f(m,4) = f(m,2); f(m,8) = f(m,6)                       (39) 

where m is a boundary node on the east wall (x = L). 

The flow field boundary condition at the open right wall of cavity is implemented as 

below: 
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(a) D2Q4 (For Température) (b) D2Q9 (For Flow) 

Figure 2: Domain boundaries and direction of streaming velocities. 

f(3,n)= f(3,n-1); f(6,n)= f(6,n-1); f(7,n)= f(7,n-1)                                                 (40) 

where n is a boundary node on the open end (x = L) side. 

3.2.2  Temperature 

Bounce back boundary condition (adiabatic) is used on the top and bottom walls of the 

cavity. The following conditions at the adiabatic walls (top and bottom) can be 

determined respectively by (Figure 2. b): 

g (1,0)= g (1,1) ; g (2,0)= g(2,1) ; g (3,0)= g (3,1) ; g (4,0)= g (4,1) ; g (0,0)= g (0,1) 

(41)g (1,0)= g (1,1) ; g (2,0)= g(2,1) ; g (3,0)= g (3,1) ; g (4,0)= g (4,1) ; g (0,0)= g (0,1)  

(42) 

Since we are using D2Q4 model, the unknowns for the left and the right open wall are 

respectively g (1,0) and g (3,0) which are evaluated as, (Figure 2. b): 

• For the left boundary, the following conditions are imposed: 

g (1,0)=Th(y) (w(1)+w(3))- g (3,0)                                      (43) 

• On the right wall the temperature boundary condition is calculated depending on   

fluid motion. If the fluid enters the cavity it is supposed to have a cold  

temperature, whereas if it exits the cavity we suppose that the right wall  

is adiabatic.  

Right wall 
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g (3, n) = -g (1, n)  for u < 0;      g (3,n)= g (3,n-1)    for u > 0                         (44) 
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3.3  Solution method 

To ensure that the code is applicable in a near incompressible regime, the characteristic 

velocity must be small compared to the fluid speed of sound. Hence, in simulation, Mach 

number should be less than Ma = 0.3. Therefore, for all the considered cases in the 

present study, Mach number is fixed as 0.1. By fixing Rayleigh number, Prandtl number 

and Mach number, the viscosity and thermal diffusivity are calculated from the definition 

of these non dimensional parameters. 

Pr

Ra
f sNMac                                                     (45) 

With N is the number of lattices in y-direction. 

Nusselt number Nu is one of the most important dimensionless parameters in describing 

the convective heat transport. The local Nusselt number at the right and left walls is 

expressed as: 

l

f

hH
Nu

k
                                                                                                                            (46) 

The thermal conductivity of the nanofluid is expressed as: 

/

w
nf

q
k

T x
 

 
                                                                (47) 

where the heat transfer coefficient is given by: 

w

h C

q
h

T T



                                                                (48) 

Substituting Eqs. (47) and (48) into Eq. (46), and using the dimensionless quantities, we 

get the local Nusselt number along the left wall as: 

0
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l

f X

k
Nu

k X




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   
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                                                (49) 

Accordingly, the average Nusselt number can be obtained as: 
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                                   (50) 

The stream function and vorticity are defined as: 

2 2

2 2
( )

v u

x y x y

 


   
     

   
                                              (51) 

where   and   are vorticity and stream function, respectively. 
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4  Code validation and grid independence 

Figure 3 demonstrates the effect of grid resolution and the lattice sizes by calculating the 

average Nusselt number on the left wall for the case of Ra=104 and 105. The grid 

independence study is carried out by using the five uniform grid lattice sizes (40x40, 

60x60, 80x80, 100x100, 120x120 and 140x140). It is found that a grid size of 100 × 100 

ensures the grid independent solution for this case. In order to verify the accuracy of the 

present numerical study, the present numerical model was validated at the three topics of 

this previous problem. For the first part, Figure4 shows the comparison of the 

temperature on axial midline computed for three values of the Hartmann number (Ha=0, 

30, 60), Rayleigh number (Ra=105) and for a solid volume fraction  = 0.03, between the 

present calculations and the results of [Ghasemi and Aminossadati (2010)] for MHD 

natural convection in an enclosure filled with Cu–water nanofluid. At the second part, the 

comparison of streamlines and isotherms obtained showed a very good agreement with 

those of [Mohamad, El-Ganaoui and Bennacer (2009)] for Ra = 104 (Figure5). 

Furthermore, Table 2 shows the comparison of average Nusselt number at the hot wall of 

the present study with the prediction of LBM [Mahmoudi, Mejri, Abbassi and Omri 

(2015)] and Finite Volume Method (FVM) [Mohamad, El-Ganaoui and Bennacer (2009)].  

 

Figure 3. Average Nusselt number on the 

left wall for different uniform grids for 

q=0, Ha=0 and ϕ= 0. 

Figure 4. Comparison of the temperature 

on axial midline between the present results 

and numerical results by Ghassemi et al. (2010) 

(=0.03,Ra=105).

These comparisons show that the present study has a good agreement with previous 

studies. 
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Table 2: Comparison of average Nusselt number at hot wall 

5  Results and discussion 

Lattice Boltzmann Method (LBM) is applied to perform the analysis of laminar free 

convection heat transfer and fluid flow in an open square cavity containing water-based 

nanofluid. Effects of the parameters Rayleigh number (Ra), Hartmann number (Ha), 

volume fraction of the nanoparticles () and the heat generation or absorption coefficients 

(q) on heat transfer and fluid flow inside the cavity has been studied. Comparison of two 

cases as absence of Brownian effect and presence of Brownian effect will be discussed. 

The isotherms and streamlines with all Ra, Ha and q in this work have been affected by 

the Brownian motion of nanoparticles. Figs. 6–7 illustrate the effect of Rayleigh number 

and Hartmann number, on the isotherms and streamlines of nanofluid (=0.04) for q=0. It 

is obvious that the isotherms near to the hot wall as Rayleigh number augments at 

different Hartmann numbers and heat transfer by convection dominates. This is because 

the buoyancy force effect is important, so the convection heat transfer contribution is 

important too and the conduction heat transfer is neglected. 

 

 

(a) 

   

 

 

 

 

(b) 

 

Figure 5: Comparison of the streamlines and isotherms between (a) numerical results by 

[Mohammad, El-Ganaoui and Bennacer (2009)] and (b) the present results. 

Ra Present  [Mejri and Mahmoudi, 2015] [Mohammad, 2009] 

Ra = 104 3.263 3.250 3.264 

Ra = 105 7.217 7.237 7.261 

Ra = 106 14.250 14.222 14.076 
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Also, the increase in Rayleigh number causes to occur an almost isothermal process at 

down half of open enclosure. On the contrary, it is noticeable that the gradient of 

temperature on the hot wall decreases as the Hartmann number increases. This occurs due 

to the magnetic damping effect that suppresses the overall heat transfer in the open square 

cavity. For the streamlines, it is shown that the maximum value of the stream function 

decreases with the rise of Hartmann number for all Rayleigh numbers. But the effect of 

Hartmann number is not identical for different Rayleigh numbers. For instance, for Ha=0 

to 60 the values of the maximum stream function decrease by 96%, 91%, 73% and 54% 

for Rayleigh numbers of Ra=103, 104, 105 and 106 respectively. So, the trend exhibits that 

The effect of the magnetic field on the fluid flow drops with the rise of Rayleigh number. 

Existence of the nanoparticles in the water changes the properties of the base fluid and 

hence affects the heat transfer and fluid flow characteristics. The presence of high 

thermal conductive nanoparticles enhances the thermal conductivity of the nanofluids and 

causes a favorable enhancement of the heat transfer.  
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Figure 6: Isotherms for different Ra and Ha at q = 0 and   = 0.04 (water-Al2O3 nanofluid). 

On the other hand, the increase of nanofluid viscosity decreases convection heat transfer. 

So, this last effect of nanoparticles is unfavorable from the point of view of heat transfer.  
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Figure 7: Streamlines for different Ra and Ha at q = 0 and   = 0.04 (water- Al2O3 nanofluid). 

As can be seen in Figure 8 the Brownian motion effect on the variation of average 

Nusselt number for, Ha=0, q=0, =0.04 and different Rayleigh numbers (Ra=103, 105) 

will be presented. A comparison between the two studies of with and without Brownian 

motion shows that the heat transfer is generally higher when Brownian motion is 

considered. When Brownian motion is neglected (keff = kstatic, μeff = μstatic), the average 

Nusselt number continuously increases as   increases for all Rayleigh numbers. 

However, when Brownian motion is considered (keff = kstatic + kBrownian, μeff = μstatic + 

μBrownian), an optimum value for  can be found which results in the maximum Numax. This 

result agrees well with published results by [Ghasemi and Aminossadati (2010)] and 

[Haddad, Abu-Nada, Oztop and Mataoui (2012)]. At Ra=103, the Brownian motion effect 

acts as an effective parameter to augment heat transfer when  < 0.03. On contrast, when 

the solid volume fraction increases from = 0.03 to 0.04, the average Nusselt number 

decreases. Therefore, the Brownian motion effect on the enhancement appears at low 

volume fraction of the nanoparticles. So, the favorable enhancement of the nanofluid has 

a dominant effect on the thermal conductivity, it leads to enhancement of the Nusselt 

numbers, but the unfavorable increase of the nanofluid viscosity affects on some amount 

of this enhancement. But, on the contrary at high values of the solid volume fraction, the 

Brownian motion of the nanoparticles has an adverse effect on heat transfer. This is due 

to make the nanofluid to be more viscous, which will reduce convection currents and 

accordingly will diminish the temperature gradient and the Nusselt number at the heated 

surface. At Ra=105, the average Nusselt number changes with the similar trend of Ra = 

103, just the optimum value for  equal to 0.02. 
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(a) 

 

(b) 

Figure 8: Average Nusselt number on the left wall for different Ra and  , (a) Ra=103, 

(b) Ra=105 at q = 0. 

 

(a) 

 

(b) 

Figure 9: Average Nusselt number on the left wall for different Ra and Ha, (a) Ra=103, 

(b) Ra=105 at q = 0. 

Figure 9 presents the average Nusselt number for the nanofluid at various Rayleigh 

numbers (Ra=103, 105) and Hartman number (Ha = 0, 15, 30, 45, 60). The influence of 

Brownian motion on the Num is more significant in the conduction regime which is 

illustrated for  Ra = 103. More specifically, at Ra = 103, when no magnetic field is applied 

(Ha=0.0), the difference between two cases without and with Brownian motion in terms 

of Num is about 6.97% while this difference is decreased by 5.72% for Ra=105. On the 

other hand, the effect of Brownian motion is vanished when the Hartmann number is 

increased especially at high Rayleigh numbers Ra = 105. For example, at Ra = 105 and 

Ha= 60, for the nanofluid with = 0.04, Num increases by 3.26%. This occurs due to the 

magnetic damping effect that suppresses the overall heat transfer in the enclosure and as a 

result the Brownian motion of nanoparticles is diminished. So, the thermal conductivity 

of the nanofluids due to the Brownian motion of nanoparticles is neglected compared to 

the static thermal conductivity based on Maxwell classical correlation. 
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(a) 

 

(b) 

Figure 10: Average Nusselt number on the left wall for different Ra and   , (a) Ra=103, 

(b) Ra=105 at q = 0. 

 

(a) 

 

(b) 

Figure 11:  Normalized average Nusselt number on the left wall for different Ra and   , 

(a) Ra=103, (b) Ra=105 at q = 0. 

Figure 10 presents the influence of the nanoparticles volume fraction () and Hartman 

number (Ha) on the average Nusselt number along the heated surface for different 

Rayleigh numbers. It demonstrates that the average Nusselt number is raised steadily 

non-linearly by the augmentation of the nanoparticles at various Rayleigh and Hartmann 

numbers. It can be seen from these figures that the effect of magnetic field on Nusselt 

number augments with the enhancement of Rayleigh number. For instance, at Ra=103 and 

= 0.04, the difference between Num (Ha=0.0) and Num (Ha=60.0) is about 30%, while it 

is increased by 61% for Ra=105. This is due to the convection effect which becomes very 

significant with increasing Rayleigh number and leads to increase the temperature 

gradient adjacent the hot left sidewall and increases the flow circulation strength. For this 

reason the Lorentz force due to the application of external magnetic field is neglected 

compared to the buoyancy force. Figure 11 shows the values of the normalized average 

Nusselt number at various Rayleigh numbers (Ra=103, 105) for different volume fractions 

and Hartmann numbers. At Ra=103, the increase in Hartmann number from Ha=0 to 45 

acts as an effective parameter to augment heat transfer but the positive impact vanishes 

from Ha=45 to 60.  
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Figure 12: Isotherms for different Ra and q at Ha=0 and =0.04 (water-Al2O3 

nanofluid). 

Whereas, at Ra=105, the normalized average Nusselt number demonstrates that heat 

transfer declines with the enhancement of Hartmann number. 
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Figure 13: Streamlines for different Ra and q at Ha=0 and =0.04 (water-Al2O3 

nanofluid). 

Figs. 12-13 illustrates the Rayleigh number effect (Ra=103, 104, 105 and 106) for different 

heat generation/absorption and for Ha=0.0 on the isotherms and streamlines of nanofluid 

(=0.04). For all heat generation/ absorption coefficients, when Rayleigh number 

increases; the effect of the convective heat transfer becomes more significant and 
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boundary layer is formed along the active walls of the cavity. This distribution means that 

the convective heat mode is predominant. For the case of q=-10 (heat absorption), the 

decrease of the heat absorption coefficient diminishes the nanofluid temperature. 

Conversely, an opposing effect occurs in the heat generation condition q =10, the 

increase of the heat generation coefficient increases the nanofluid temperature, which 

decreases the heat transfer at the left wall. Also, as it can be seen from Figure 13, the 

flow structure changes completely for Ra=103 and 104. Furthermore, at high Rayleigh 

numbers (Ra=105 and 106) the maximum value of the stream function declines due to the 

augmentation of the heat generation/ absorption coefficient. For instance, from q=- 10 to 

10 the values of the maximum stream function decrease by 13.4% and 12.2% for 

Rayleigh numbers of Ra=105 and 106 respectively. 

 

 

(a) 

 

(b) 

Figure 14:  Average and normalized Nusselt number on the left wall for different Ra and 

q at Ha=0 and  =0.04 (water-Al2O3 nanofluid). 

 

(a) 

 

(b) 

Figure 15:  Variation of temperature at y/H=0.5 for different q, (a) Ra=103, (b) Ra=105 at 

Ha=0 and  =0.04 (water- Al2O3 nanofluid). 

Figure 14 illustrates the effect of the heat generation or absorption on the average Nusselt 

number on the hot wall for different Rayleigh numbers at  = 0.04. Figure 14-a shows 

that the heat transfer rate on the hot wall decreases with the increase of the heat 

generation/ absorption coefficient and increases with the rise of Rayleigh numbers. At 

law Rayleigh numbers (Ra=103-104), when q> 0, the nanofluid temperature is higher than 

the temperature of the hot vertical wall. This leads to negative Nusselt number at the hot 

wall. On the other hand, the effect of the heat generation or absorption on the average 
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Nusselt number declines with the enhancement of Rayleigh number. Figure 14-b 

illustrates the ratio between Nusselt number and Nusselt number without heat 

generation/absorption. It can be seen that the increase of heat absorption coefficient (q < 

0), increases the normalized average Nusselt number, especially when the heat absorption 

coefficient is (q=-10). Also, the heat absorption coefficient effect is favored by 

decreasing the Rayleigh number. Conversely, an opposite effect occurs in the heat 

absorption condition q < 0. 

Figure 15a-b show the effect of the heat generation/absorption coefficient respectively for 

Ra = 103 and 105 on the dimensionless temperature profiles in the middle of the cavity for 

Ha=0 and  =0.04. For all heat generation or absorption coefficient, Figure 17a and b 

show that the dimensionless temperature profiles in the middle of the cavity is greatly 

affected by changing the Rayleigh number. The changes in amplitudes of temperature 

decrease with an increase of the heat absorption coefficient (q < 0) and increase with an 

increase of the heat generation coefficient (q > 0). For q = 10, by increasing Ra from 103 

to 105, the dimensionless temperature profiles in the middle of the cavity is decreased; its 

maximum value passes from 5.4 to 0.74. 

7  Conclusions 

In this study, MHD natural convection heat transfer in an open cavity with non uniform 

boundary condition in the presence of uniform heat generation/absorption is investigated 

numerically using the Lattice Boltzmann Method. The effects of nanoparticles volume 

fraction, Rayleigh numbers, Hartman numbers and heat generation/absorption coefficient 

on the flow and heat transfer characteristics have been examined. 

• Heat transfer is enhanced with the Rayleigh number and decreased as the Hartmann 

number increases.  

• The enhancement in heat transfer is observed at any Rayleigh numbers and 

nanoparticle volume fraction by considering the role of Brownian motion. 

• When Brownian motion is considered, an optimum solid volume fraction can be 

found, which results in the maximum heat transfer rate. 

• The optimum solid volume fraction value depends on the Rayleigh number used. 

• The Brownian motion effect is diminished at high Hartmann number (Ha=60). 

• The heat absorption coefficient effect is favored by decreasing the Rayleigh number. 

The opposite effect occurs in the case of heat generation coefficient. 

• For high Rayleigh number Ra=106, the effect of heat generation or absorption 

coefficient is vanished. 

• The study of entropy generation, magnetic field orientation, dissipation and Joule 

effects can be a future work. 
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