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ABSTRACT

The composite exciter and the CaO to Na2SO4 dosing ratios are known to have a strong impact on the mechanical
strength of fly-ash concrete. In the present study a hybrid approach relying on experiments and a machine-learn-
ing technique has been used to tackle this problem. The tests have shown that the optimal admixture of CaO and
Na2SO4 alone is 8%. The best 3D mechanical strength of fly-ash concrete is achieved at 8% of the compound
activator; If the 28-day mechanical strength is considered, then, the best performances are obtained at 4% of
the compound activator. Moreover, the 3D mechanical strength of fly-ash concrete is better when the dosing ratio
of CaO to Na2SO4 in the compound activator is 1:1; the maximum strength of fly-ash concrete at 28-day can be
achieved for a 1:1 ratio of CaO to Na2SO4 by considering a 4% compound activator. In this case, the compressive
and flexural strengths are 260 MPa and 53.6 MPa, respectively; the mechanical strength of fly-ash concrete at
28-day can be improved by a 4:1 ratio of CaO to Na2SO4 by considering 8% and 12% compound excitants. It
is shown that the predictions based on the aforementioned machine-learning approach are accurate and reliable.
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1 Introduction

Currently, the main form of power generation around the world comes from coal-fired thermal power
generation. Today this form of power generation now brings a series of resource and environmental
problems, one of the important pollutants is fly ash, which is formed in the high temperature environment
of coal-fired power plants and is mainly composed of aluminium oxide, silica and calcium oxide [1]. Fly
ash has a low utilisation rate and can occupy a large amount of land space. At the same time, fly ash is
an important material that can improve the compatibility and durability of plain concrete [2,3]. Due to its
unique physical and chemical properties, fly ash can be used as a new engineering material, mainly as
concrete fillers, ground polymers and to replace a certain amount of cement [4,5]. Fly ash is difficult to
get chemically active due to its strong glassy shell activity, so there are limitations to its application in
engineering. Stimulating the activity of fly ash is the key to improving the utilization of fly ash.
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Currently more research is being conducted on alkali-excited fly ash cementitious materials, which is an
emerging green cementitious material [6] with higher compressive strength [7], high temperature resistance
[8,9] and corrosion resistance [10,11,12] compared to common silicate materials. However, subsequent
studies have found that the early strength of fly ash concrete mixed with alkaline exciter alone at ambient
temperature and pressure does not improve, limiting its usefulness for practical engineering applications.
The activity of fly ash is limited by having a single means of excitation [13], and the composite
excitation method is more effective in stimulating the activity of fly ash. On this basis a composite
excitation approach to fly ash is proposed. Yi et al. [14] studied the effect of a compound excitant on the
strength of fly ash cement and the hydration mechanism, which showed that the use of a compound
excitant can improve the cementitious activity of fly ash, and the prepared fly ash cement can be used for
engineering purposes. Wu et al. [15] investigated the effect of excitation agents on the early mechanical
properties of large dose fly ash cement mortars. The results show that the early mechanical properties of
fly ash cement mortar become better with the increase of compound activator, while the early mechanical
properties become worse with the increase of fly ash content. At present, there are relatively few studies
on composite activated fly ash, which is in the theoretical stage, where there are relatively few effects on
the mechanical properties of fly ash cementitious materials by the ratio of different excitants in the
composite excitant.

In recent years, experts and scholars at home and abroad have researched and discussed the prediction of
the performance of concrete, with artificial neural network algorithms being more prominent in the prediction
of concrete performance. Artificial neural network (ANN) is an algorithm established to simulate the
biological system of the human brain [16,17]; ANN has the function of self-learning and self-
improvement, and can use fuzzy functional relationship conditions to solve some problems, so ANN can
better deal with complex functional relationship between some key factors and concrete performance, so
as to improve the efficiency of the experiment. There are more methods of ANNs, and they are widely
used in engineering, have simpler and easier to understand principles, and faster convergence [18–20].
Currently it is more common to use ANNs to predict some mechanical properties of concrete as well as
durability indexes [21–32]. Liu et al. [33] used random forest models, Gaussian progression regression
models, and other independent ANN models to predict the depth of carbonation of recycled aggregate
concrete, and the results showed that the random forest models showed better performance. However,
there is little research on composite activated fly ash strength models based on machine learning.

This paper investigates the effect of single and combined excitants (sodium sulphate and calcium oxide)
on the strength of fly ash concrete (7-day and 28-day) at different dosing levels based on indoor tests, and
calcium oxide content in the compound excitants on the strength of fly ash concrete was investigated based
on indoor tests. A random forest ANN, decision tree ANN and support vector machine ANN based on python
software were written to predict the strength of composite activated fly ash concrete from indoor tests, and the
best model for composite activated fly ash concrete was screened with software scoring values, which can
provide a basis for similar tests.

2 Materials and Methods

2.1 Gelling Materials
PO42.5 silicate cement was used in the indoor test and its physical properties and indexes are presented

in Table 1. The fly ash was Grade II fly ash and its test report is presented in Table 2. The calcium oxide was
produced using quicklime powder from a lime factory, whose test report is presented in Table 3. The sodium
sulphate content was 98%.
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2.2 Aggregates
The fine aggregate was laboratory fine river sand with a fineness modulus of 1.94, apparent density of

2660 kg/m3, bulk density of 1380 kg/m3 and saturated surface dry water absorption of 4.6%.

The coarse aggregates were natural granite aggregates with a continuous gradation of 5–20 mm,
apparent density of 2746 kg/m3, bulk density of 1510 kg/m3, and a saturated surface dry water absorption
rate of 0.6%; the mixing water used for the experiments was laboratory tap water.

2.3 Test Mixes
The test water-cement ratio was fixed at 0.5, fly ash dosing was 15%, with excitation agent dosing

according to the proportion of fly ash outside the mix. The exciter was first dissolved in water, then
mixed with the concrete and cured at standard temperature after mixing. The compressive strength test
was carried out on the WA-1000B electro-hydraulic universal testing machine. Fig. 1 shows the condition
of the specimen when it was vibrated for 120 s. Fig. 2 shows the 28-day compressive strength testing of
a specimen with 8% compound exciter. The test was divided into 15 test groups, including those with
CaO alone (4%, 8%, and 10%) and Na2SO4 alone (4%, 8%, 10%), the test groups with the dose of

Table 2: Fly ash test report

Test items Fineness
(45 µm square
hole sieve
margin)

Water
requirement
ratio

Burning
loss

Sulphur
trioxide
content

Chloride
ions

Water
content

Calcium
oxide
content

Free
calcium
oxide
content

Measured
values

28.5 103 2.2 1.7 0.004 0.2 2.0 0.1

Table 3: Quicklime powder test report

Test items Standard requirements (%) Test results (%)

A(CaO + MgO) 65–90 87.4

MgO 8–2 3.35

SiO2 8–2 3.08

CO2 7–2 2.82

Digestion speed ≤15 min 12 min

Digestion temperature ≥60°C 70°C

Table 1: Basic physical and mechanical properties of cement

Specific
surface
area
(m2/kg)

Density
(kg/m3)

Water
consumption at
standard
consistency
(%)

Stability
(boiling
method)

Alkali
content

Coagulation
time/min
Initial
condensation/
Final
condensation

3 d/28-day
Flexural
strength
(MPa)

3 d/28-day
Compressive
strength (MPa)

360 2960 25 Qualified 0.5 275/360 3.9/7.8 20.4/45.5
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compound excitant (4%, 8%, 12%) and the test groups with different ratios (1:1, 4:1, 1:4) of CaO and
Na2SO4 in each compound excitant. These are presented in Table 4.

Figure 1: Condition of specimen pounded for 120 s

Figure 2: 28-day specimen compressive strength test

Table 4: Test mix ratio

No. Cement
(kg)

Fly ash
(kg)

Sand
(kg)

Stones
(kg)

Water
(kg)

Sand
rate (%)

Quicklime
(kg)

Sodium sulfate
anhydrous (kg)

A1 348.5 61.5 660 1225 205 35 2.46 0

A2 348.5 61.5 660 1225 205 35 4.92 0

A3 348.5 61.5 660 1225 205 35 6.15 0

B1 348.5 61.5 660 1225 205 35 0 2.46

B2 348.5 61.5 660 1225 205 35 0 4.92

B3 348.5 61.5 660 1225 205 35 0 6.15

C1 348.5 61.5 660 1225 205 35 1.23 1.23

C2 348.5 61.5 660 1225 205 35 1.968 0.492

C3 348.5 61.5 660 1225 205 35 0.492 1.968
(Continued)
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2.3.1 Preparation Process
The test mold was fitted with a standard mold of 100 mm × 100 mm × 100 mm, the mix was loaded into

the molds at one time and pounded along the inner wall, shaken on a vibrating table and left to stand indoors
for 24 h. For demolding and maintenance; the solidified specimens are demolded and placed in a
maintenance room at a temperature of 20 ± 2°C and a relative humidity of 95% or more. After reaching
the specified age, the specimens were taken out, dried, and subjected to the corresponding mechanical tests.

2.3.2 Mechanical Properties Test Procedure
After reaching the desired curing age, the concrete specimens were removed and dried to the surface and

tested for cubic compressive and flexural strengths. The mechanical properties test process was carried out in
strict accordance with the specifications of GB/T50081-2019 “Standard for Mechanical Properties Test
Methods for Ordinary Concrete”, and the experimental results were comprehensively collated and analyzed.

2.4 Artificial Neural Networks (ANN)
ANN is now widely used in various fields and has solved several challenging problems in the areas of

classification problems, function approximation problems, prediction problems, optimization problems, etc.
The ANN approach simulates the structure of neurons in the human brain, which receive and process external
information, thus achieving an intelligent solution similar to that of the human brain. It is the model that plays
an important role in the activity of ANNs [34].

Theoretically, an ANN consists of a set of computational units and a set of unidirectional data connection
units. The input, hidden, and output layers form the basic structure of the ANN model. ANN models all have
at least one input layer, a hidden layer, and an output layer, and there can be more than one hidden layer. For
very complex problems, multiple hidden layers can be very helpful. The mathematical operations performed
in neurons are carried out in the hidden and output layers as shown in Eq. (1).

y ¼ f
X

wi xiþ b
� �

(1)

where y = results for representative neurons, w = inter-neuron weights, x = input from the upper level, f = a
transfer function, b = representation bias, and i = number of neurons.

The ANN consists of two processing phases, training and testing, which are applied to analyze different
moments at different operating times. The modification of the weights relies on the choice of training method,
and currently, the commonly used one is the supervised learning method, also called back propagation
method. The backpropagation method is a gradient-decreasing method that minimizes the error of a
particular training by micro-adjusting the weights one gradient at a time [35]. Fig. 3 shows the principle
of a simple ANN model.

Table 4 (continued)

No. Cement
(kg)

Fly ash
(kg)

Sand
(kg)

Stones
(kg)

Water
(kg)

Sand
rate (%)

Quicklime
(kg)

Sodium sulfate
anhydrous (kg)

D1 348.5 61.5 660 1225 205 35 2.46 2.46

D2 348.5 61.5 660 1225 205 35 3.936 0.984

D3 348.5 61.5 660 1225 205 35 0.984 3.936

E1 348.5 61.5 660 1225 205 35 3.69 3.69

E2 348.5 61.5 660 1225 205 35 5.904 1.476

E3 348.5 61.5 660 1225 205 35 1.476 5.904
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2.5 Decision Trees
Decision trees are a commonly applied machine learning method. Decision tree models can summarize

and accurately classify and describe the attributes that data exhibits, and they can classify data that is
unpredictable. The decision tree classification algorithm is an inductive learning method based on a given
sample of data. The top-down recursive method is used to generate a tree structure given a data set with
known class labels. The topmost node of the tree is called the root node and the bottom node is called the
leaf node, with each leaf node representing the class of the sample. The nodes between the root and leaf
nodes are called internal nodes. The decision tree classification algorithm first selects the descriptive
attribute with the highest information gain as branch attributes for a given data set, thus creating nodes in
the decision tree, and then recursively calls the above method for each subset of samples in each branch
to create each child node of the node. When all the data samples on the branch belong to the same class,
the division stops, and a leaf node is formed. Alternatively, a leaf node is formed when samples on a
branch do not belong to the same class, but there are no remaining descriptive attributes to further divide
the dataset, and this leaf node is labelled using the class to which most samples belong. When classifying
data samples with unknown class labels, the class labels of the data samples are obtained by judging from
the root node downwards, layer by layer, to the leaf nodes.

2.6 Random Forest (RF)
Random Forest (RF) is a comprehensive algorithm combining CART tree and Bagging, which was first

proposed by Breiman and is now widely used in problems such as prediction and feature selection [36], and
contains two important ideas, the idea of bagging and the idea of random subspace, based on which the two
ideas can be implemented to achieve random sample extraction and random feature.

The RF algorithm consists of two algorithms, a regression algorithm and a classification algorithm. The
regression algorithm uses a bootstrap resampling method to draw a number of samples from the original
sample, and models a decision tree for each bootstrap sample, thus forming a combinatorial model
consisting of a set of decision subtrees fhðx; hkÞ; k ¼ 1; 2; . . . ;Kg. Where the decision subtree in hðx; hkÞ
is without pruning categorical regression trees built with the CART algorithm, and the mean values of
hðx; hkÞ in each decision subtree form the prediction results of the random forest. Fig. 4 illustrates the
principle of Random Forest.

Figure 3: A simple artificial neural network model
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2.7 Support Vector Machines
One of the advantages of the support vector machines, which are intelligent algorithms, is that they can

learn the relationship between input and output parameters very well [37]. In solving the non-linear
regression problem, the support vector machine introduces a non-linear mapping function hðxÞ and maps
each of the input and output variables (xi, yi) in this set of non-linearly related data into a high-
dimensional feature space, where a linear regression model is built using kernel functions.

3 Results and Discussion

3.1 Effect of Compound Activator Dosing on the Mechanical Strength of Fly Ash Concrete
As shown in Fig. 5, the optimum admixture of CaO and Na2SO4 alone is 8%, at which point the

mechanical strength of the fly ash concrete at 3- and 28-day is maximum.

It is clear from Fig. 6 that the 3-day compressive and flexural strengths of fly ash concrete mixed with
8% CaO alone is the lowest, and the compressive and flexural strengths of fly ash concrete mixed with 8%
Na2SO4 alone are higher than those of 8% CaO alone at the age of 3 days.

Figure 4: Schematic diagram of the principle of random forest

Figure 5: CaO alone and Na2SO4 alone affects the mechanical strength of fly-ash concrete at 3-day and 28-
day aging

FDMP, 2023, vol.19, no.12 3013



The 3-day mechanical strength of fly ash concrete mixed with the compound activator is generally
higher than that of fly ash concrete mixed with exciter alone. Comparing (C1, D1, E1), (C2, D2, E2), and
(C3, D3, E3), respectively, it can be seen that the 3-day compressive and flexural strengths show a trend
of increasing and then decreasing as the dosing of the compound activator increases from 4% to 8% and
finally to 12%. The greatest compressive and flexural strength of 3-day fly ash concrete was achieved
when 8% compound activator was mixed in.

As shown in Fig. 7, the 28-day mechanical strength of fly ash concrete mixed with 8% of CaO alone and
8% Na2SO4 alone was lower than the 3-day mechanical strength. Comparing (C1, D1, E1), (C2, D2, E2), and
(C3, D3, E3), it can be seen that the 28-day compressive and flexural strength of fly ash concrete was greatest
at this point when the amount of compound activator is 4%.

From the apparent pattern, Na2SO4 has a greater effect on the early strength of fly ash concrete, when
CaO and Na2SO4 are used as a compound activator than when mixed alone. The best strength of fly ash
concrete aged for 3 days was achieved at 8% of the compound activator, while the best strength of fly
ash concrete at 28-day was achieved at 4% of the compound activator. The degree of fracture of the
internal structure of fly ash is determined by the concentration of hydroxide ions in the system, so the

Figure 6: Mechanical strength of 3-day fly ash concrete as influenced by compound activator dosing

Figure 7: Effect of compound activator dosing on the mechanical strength of 28-day fly ash concrete
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higher the concentration of hydroxide ions, the higher the degree of fracture. In-depth studies have revealed
that sodium ions also influence the activity of fly ash in the same way as hydroxide ions, with sodium ions
having a smaller ionic radius and easily migrating into the gelling network to balance the charge, thus
facilitating the release of active substances. Na2SO4, therefore, has a relatively large effect on the early
strength of fly ash concrete. As the curing time increases, the calcium-silica system gradually forms, an
effective structure is generated, and the mechanical strength of fly ash concrete is increased [38].

3.2 Effect of Different Ratios of Cao and Na2SO4 Composite Activator on the Mechanical Strength of Fly
Ash Concrete
As shown in Fig. 8, ratios of 1:1, 4:1, and 1:4 in Fig. 9 represent the ratio of CaO to Na2SO4 doping. The

strength at 3 days age of fly ash concrete with different doses of compound activator was better in
compressive and flexural strength for the CaO to Na2SO4 dosing ratio of 1:1 than for the CaO to Na2SO4

dosing ratio of 4:1 and 1:4. And the deduction from Fig. 9 is that the 28-day compressive and flexural
strength of CaO to Na2SO4 at a dosing ratio of 1:1 was better than the CaO to Na2SO4 dosing ratio of
4:1 and 1:4 when the compound activator was dosed at 4%. The 28-day compressive and flexural
strength of the CaO to Na2SO4 dosing ratio of 4:1 was better than the CaO to Na2SO4 dosing ratio of
1:1 and 1:4 when the compound activator was dosed at 8% and 12%.

Figure 8: Mechanical strength of 3-day fly ash concrete affected by different CaO to Na2SO4 dosing ratios

Figure 9: Effect of different CaO to Na2SO4 dosing ratios on the mechanical strength of 28-day fly ash
concrete

FDMP, 2023, vol.19, no.12 3015



The analysis suggests that the pre-sodium ions can effectively stimulate the release of active substances
within the fly ash, thus increasing the pre-strength. When calcium hydroxide is present in the system, the
active alumina in the fly ash particles react with gypsum to produce hydrated calcium sulphate aluminate,
which consumes more aluminum ions but accelerates the hydration reaction. The reaction proceeds as
follows; sulphate ions react with activated alumina in the system in the presence of calcium ions to form
calcium alumina (Aft):

Al2O3 + Ca2+ + OH− + SO4
2− = 3CaO·Al2O3·3CaSO4·32H2O

Gypsum also reacts with partially hydrated calcium aluminate and forms calcium alumina (Aft):

3CaO·Al2O3·3CaSO4·6H2O + 3(CaSO4·2H2O) + 20H2O = 3CaO·Al2O3·3CaSO4·32H2O

Sulphate and calcium alumina (Aft), on the other hand, has a certain degree of swelling of their own, and
in excess may cause volumetric instability with increasing age, leading to a reduction in strength.

3.3 Analysis of Intensity Based on Machine Learning
In this paper, based on machine learning, we use python to write random forest ANN, decision tree

ANN, and support vector machine ANN models to predict and estimate the strength of composite excited
fly ash concrete, and compare the predictive results of the three models to filter out the best model.

The input layer of the ANN used in this paper includes six factors, namely cement, water-cement ratio,
fly ash, sand ration, CaO admixture, Na2SO4 admixture, and four other factors, namely compressive strength
at 3- and 28-day, and flexural strength at 3- and 28-day, as the output layer. The software score for the three
models is shown in Fig. 10. It is clear from the figure below that the decision tree ANN model predicts more
accurate results than the random forest ANN model and the support vector machine ANN model.

When the mechanical strength of composite inspired fly ash concrete was predicted based on the
decision tree ANN model, the software scores for compressive and flexural strengths at 3- and 28-day
were relatively high, and the predicted values were in good agreement with the experimental values,
which indicates that the decision tree artificial neural net model has good application. Fig. 11 shows the
error analysis of some of the predicted and experimental values of the decision tree model.

0 20 40 60 80 100 120

3d
Compressiv
e strength

28d
Compressiv
e strength

3d Flexural
strength

28d
Flexural
strength

Svc Decision Tree Random Forest

Figure 10: Software scoring of each algorithm model
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4 Conclusions

The addition of the compound activator can effectively stimulate fly ash activity and improve the
mechanical properties of concrete, thus effectively promoting the comprehensive use of fly ash, which
has significant environmental and economic benefits. In this paper, the effect of different dosing amounts
of the compound activator and the ratio of CaO to Na2SO4 in the compound activator on the strength of
fly ash concrete was analyzed through indoor tests, and the best compound activator solution was
proposed on this basis. The mechanical strength of composite excited fly ash concrete was also analyzed
and predicted using random forest ANNs, decision tree ANNs and support vector machines, with the
following conclusions:

1. The mechanical strength of fly ash concrete at 3- and 28-day was greatest when CaO and Na2SO4

were blended at 8% alone.

2. Na2SO4 has a relatively large impact on the early stage of fly ash concrete, which can greatly improve
the mechanical strength of fly ash concrete in the early stage, while with the increase in age Na2SO4 dosing
will lead to a reduction in strength.

3. The best 3-day mechanical strength of fly ash concrete is achieved at 8% of compound activator while,
the best 28-day mechanical strength of fly ash concrete is achieved at 4% of the compound activator.

4. The 3-day mechanical strength of fly ash concrete is better when the dosing ratio of CaO to Na2SO4 in
the compound activator is 1:1, and the 28-day strength of fly ash concrete is greatest when the dosing ratio of
CaO to Na2SO4 in the compound activator is 1:1 at 4%. The mechanical strength of fly ash concrete at 28-day
is favored when the ratio of CaO to Na2SO4 is 4:1 in the 8% and 12% compound excitants.

5. The decision tree ANN model effectively predicts the mechanical strength of composite excited fly
ash concrete with more accurate results, which provides a reference for subsequent studies such as
simplified indoor tests.

This paper analyses the mechanical strength of fly ash concrete mixed with compound excitant from a
macroscopic point of view, and recommends that it is necessary to study the microscopic performance
mechanism of compound excitant on the mechanical properties of fly ash concrete.
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