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ABSTRACT

Sodium-alginate (SA) based nanofluids represent a new generation of fluids with improved performances in terms
of heat transfer. This work examines the influence of the nanoparticle shape on a non–Newtonian viscoplastic
Cu–nanofluid pertaining to this category. In particular, a stretching/shrinking sheet subjected to a transverse mag-
netic field is considered. The proposed Cu–nanofluid consists of four different nanoparticles having different
shapes, namely bricks, cylinders, platelets, and blades dispersed in a mixture of sodium alginate with Prandtl
number Pr = 6.45. Suitable similarity transformations are employed to reduce non–linear PDEs into a system
of ODEs and these equations and related boundary conditions are solved numerically by means of a Runge–Kut-
ta–Fehlberg (RKF) method. Moreover, analytical solutions are obtained through the application of a MAPLE
built–in differential equation solver (Dsolve). The behavior of prominent parameters against velocity and tem-
perature is analyzed. It is found that the temperature increases for all shapes of nanoparticles with the viscoplastic
parameter and the Eckert number.
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Nomenclature
b Constant
B0 Magnetic field intensity
Ec Eckert number
F 0 Dimensionless velocity
M Magnetic parameter
n Shape factor
Pr Prandtl number
T Temperature of nanofluid
u Velocity component in x–direction
v Velocity component in y–direction
Cp

� �
BF Base fluid heat capacity
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Cp

� �
NF

Heat capacity of nanofluid
KBF Base fliud thermal conductivity
KNF Nanofluid thermal conductivity
KNP Nanoparticle thermal conductivity
a Stretching parameter
c Viscoplastic parameter
g Similarity variable
h Dimensionless parameter
f Nanofluid volume fraction
qBF Base fluids density
qNF Nanofluid density
qNP Nanoparticles density
lBF Base fluids dynamic viscosity
lNF Nanofluid dynamic viscosity
rBF Base fluid electric conductivity
rNF Nanofluid electric conductivity
rNP Nanoparticles electric conductivity

Subscripts
NF Nanofluid
BF Base fluid
NP Nanoparticle
w Wall
1 Infinity

1 Introduction

The basic idea of dispersing particles into liquids can be traced back to the published theoretical work of
Maxwell [1]. The particles that had dimensions in the micrometer and millimeter range were considered in
the study. However, particles in the order of millimeters or even micrometers cause problems of rapid
settling, clogging, and abrasion [2]. The rapid development of nanotechnology makes the generation of
nanometer–sized particles possible and eliminates problems arising from micrometer–sized particles.
Nanofluids, first proposed by Choi [3], are a new class of heat transfer fluids that are superior to
conventional micrometer–sized particles based fluids in terms of thermo–physical properties. The
nanoparticles used in creating nanofluids include metals (gold, silver, copper), oxides (alumina, zirconia,
silica, titania), and some other compounds (carbon nanotubes, silicon carbide, graphene). Buongiorno [4]
developed an analytical model to explain the convective heat transfer in nanofluids. He considered seven
slip mechanisms and concluded that Brownian diffusion and thermophoresis are the two most important
slip mechanisms in nanofluids. Aly et al. [5] studied the effects of thermal radiation and suction/injection
on the heat transfer flow of water based nanofluid past a vertical plate, and reported that a constant
temperature was maintained on the plate. Moshizi et al. [6] considered mixed convection of Al2O3–water
nanofluid inside a vertical micro–annulus with two different types of heat fluxes imposed at the walls.
They noted that both temperature and concentration dependent buoyancy forces affect flow fields and
nanoparticle migration. Sheikholeslami et al. [7] numerically investigated the magnetohydrodynamic
(MHD) flow of CuO–water nanofluid flow in a porous semi annulus with constant heat flux.
Sheikholeslami [8] numerically investigated the CuO–water nanofluid inside a porous channel in the
presence of a magnetic field. They reported a significant enhancement in heat transfer rate with a
corresponding rise in the Hartmann number. Kanimozhi et al. [9] evaluated the impact of coupled
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buoyancy and thermocapillary driven convection in a cylindrical porous annulus saturated with water based
Ag–MgO hybrid nanofluid along with viscous dissipation effects. At varying levels of random motion of
nanoparticles, a higher volume percentage resulted in a decreased heat transmission rate. Several
researchers have extended heat transfer flow problems from Newtonian fluids to nanofluids using
different nanoparticles such as Cu–water [10]; CNTs–water [11]; Al2O3–water/ethylene glycol [12];
Fe3O4–water [13]; TiO2–water [14]; MWCNTs–water [15].

Literature review revealed that most articles on nanofluids mainly focus on the impacts of nanoparticle
dimensions, types, dispersibility of nanoparticles, and the base fluids. Some recent work suggests that the
shapes of nanoparticles have a significant impact on the thermo–physical properties of nanofluids. Elias
et al. [16] examined the effects of five types of nanoparticles shape (such as cylindrical, bricks, blades,
spherical, and platelets) based nanofluids to improve the performance of a shell and tube heat exchanger.
Boehmite alumina (γ–AlOOH) nanoparticles of different shapes were dispersed in ethylene glycol or
water based nanofluids. They determined that cylindrically shaped nanoparticles showed a better heat
transfer rate and higher entropy generation. Jeong et al. [17] investigated the viscosity and thermal
conductivity of ZnO nanofluids with nanoparticle shapes of nearly rectangular and a sphere, under
various volume concentrations of the nanoparticles, ranging from 0.05 to 5.0 vol.%. They reported that
the viscosity and conductivity of ZnO nanofluid with rectangular shape nanoparticles was better than with
sphere shape nanoparticles. Vanaki et al. [18] numerically studied the effects of different nanofluids on
the thermal and flow fields through transversely wavy wall channels with different phase shifts between
the upper and lower wavy walls. They found that the SiO2–EG nanofluid with platelets shape
nanoparticles gave the highest heat transfer enhancement. The shape effects of nano–size particles in Cu–
H2O nanofluid on entropy generation was analyzed by Ellahi et al. [19]. Their study concluded that
platelets shape nanoparticles gained maximum temperature than brick and cylinder shape nanoparticles.

Monfared et al. [20] investigated the turbulent convection flow of boehmite–alumina incorporated with
various shapes of nanoparticles inside a heat exchanger under entropy generation effects. They revealed that
platelet shape nanoparticles led to a stronger frictional entropy generation rate. Dogonchi et al. [21] studied
nanoparticle shape effects on water based CuO–nanofluid using CVFEM. The study concluded that platelet
shape nanoparticles exhibit a strong heat transfer rate. Shakiba et al. [22] studied the mixed convection of
MHD flow of nanofluid inside two vertical annulus under a radial magnetic field with respect to the
suction or injection using the analytical solution method. The impact of Brownian motion and shape
factor on the thermal state of CuO–water nanofluid was also considered. The highest overall rate of heat
transfer was achieved in the case of platelet shape nanoparticles. Sheikholeslami et al. [23] performed a
simulation using water based Fe3O4–nanofluids. Their results showed that platelet shape nanoparticles
should be used to obtain the highest Nusselt number. Hosseinzadeh et al. [24] examined micropolar
MHD fluid flow over a vertical plate where three different base fluids including water, ethylene glycol,
and ethylene glycol/water (50%–50%) were used. Their findings indicated that for water-based fluids, the
temperature profile of lamina–shaped nanoparticles was 38.09% higher than brick–shaped nanoparticles.
MHD mixed convection water based MoS2–GO hybrid nanofluid flow through an upright cylinder with
different shapes of nanoparticles was investigated by Chu et al. [25]. Their results showed that the blade–
shaped nanoparticles of MoS2–GO hybrid nanofluid had the maximum temperature. Khashi’ie et al. [26]
analyzed the effects of spherical, brick, and blade shape nanoparticles on Cu–Al2O3 water based
nanofluid flow in respect of the two important of parameters of EMHD and thermal radiation. Their
results indicated that the maximum heat transfer enhancement occured in the case of blade shape
nanoparticles. Anwar et al. [27] examined the heat transfer rates of different shape nanoparticles in
sodium alginate based MoS2–Co hybrid nanofluid. They used spherical, cylindrical, blade, platelet, and
brick shape nanoparticles and found that maximum heat transfer rate occured in the case of blade shape
nanoparticles. Shahsavar et al. [28] performed entropy generation analysis using boehmite–alumina
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nanofluid containing five different nanoparticles shapes (spherical, bricks, blades, cylindrical, and platelet).
They reported that spherical shape nanoparticles had the minimum impact on entropy generation. Ganesh
et al. [29] performed a numerical experiment through FEM on the convection of heat generating γ
Al2O3–H2O nanofluid filled in a square cavity with multiple circular-, square-, and triangular-shaped
obstacles. They found a higher heat transfer rate in the cavity with triangular obstacles. Cao et al. [30]
remarked that the accompanying influence on the thermophoretic force and the type of the random
motion of spherical carbon nanotubes, cylindrical graphene, and platelet alumina nanoparticles affects
heat transfer and mass transfer rates. Xiu et al. [31] noted that because there are numerous platelet
aluminium, cylindrical magnesium oxide, and titanium dioxide nanoparticles in the flow of water-based
ternary hybrid nanofluids, heat transfer is significant even at the start of the fluid flow. Saleem et al. [32]
discovered that the friction between the layers of a water–based ternary–hybrid nanofluid and the wall
can be reduced by increasing the density of spherical nanoparticles.

In the above work, Newtonian fluids were taken as a base fluid. However, few researchers have
considered non–Newtonian based nanofluids in their research. It is well recognized that non–Newtonian
fluids are encountered in numerous transport processes such as central heating systems, molten polymers,
and nuclear reactors [33]. Sodium alginate natural convection based Fe2O3–nanofluid with accretion/
ablation was illustrated by Hussanan et al. [34]. The mixed convection ethylene glycol based nanofluids
flow, together with the functional shape effects of nanoparticles was investigated by Memon et al. [35].
Hussanan et al. [36] highlighted the impacts of magnetic and non–magnetic nanoparticles on viscoplastic
Casson-based mixture hybrid nanofluid. Kalaivanan et al. [37] investigated the influence of Arrhenius
activation energy in heat and mass transfer of second–grade nanofluid flow and noted that the thickness
of the boundary layer increased with non–dimensional activation energy. Influence of Arrhenius
activation energy on the momentum, energy, and mass transport of a second-grade magneto nanofluid
flow with elastic deformation effects was discovered by Kalaivanan et al. [38]. Hammachukiattikul et al.
[39] discussed the heat transfer flow of viscoplastic Casson-based hybrid nanofluid with additional
factors. These factors include radiation, heat source/sinks, and inclined Lorentz force. Ganesh et al. [40]
investigated the thermal and hydraulic characteristics of a Casson-based MWCNT nanofluid inside a
wavy square enclosure containing a circular–shaped obstacle. Ganesh et al. [41] explored the
incompressible, two–dimensional, buoyancy driven convection flow of Casson-based MWCNT nanofluid
in a square enclosure with a circular barrier and found that by increasing the MWCNT volume fraction
along the wavy bottom wall, Casson parameter, Rayleigh number, and the heat transfer rate increased.
To our knowledge, nanoparticle shape effects on non–Newtonian viscoplastic sodium alginate (SA) based
Cu–nanofluid has not been explored yet. The purpose of this article is three–fold. Firstly, to formulate the
SA based Cu–nanofluid flow over a stretching/shrinking sheet. Secondly, to analyze magnetic field and
viscous dissipation effects. Finally, to solve the governing non–linear system numerically as well as
analytically by using Runge–Kutta–Fehlberg (RKF) and MAPLE built–in differential equation solver,
Dsolve, methods. Thermo-physical properties of Cu and SA are given in Table 1.

Table 1: Thermo–physical properties of Cu and SA

q kg=m3ð Þ Cp J=kgKð Þ K W=mKð Þ r �:mð Þ�1

Cu 8933 385 400 5:6� 107

SA 989 4175 0.6376 2:6� 10�4
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2 Formulation

The steady 2D flow of SA based Cu–nanofluids with five shapes of nanoparticles is considered over a
stretching sheet having a sheet velocity assumed as uw xð Þ ¼ bx, where b is a constant, as shown in Fig. 1. The
x and y are taken along and normal to the sheet, respectively. It is also assumed that the temperature of the
sheet is Tw xð Þ ¼ T1 þ Ax2 [42].

The rheological behavior of Cu–nanofluid followed by [36,39] can be described in the form of
continuity, momentum, and energy equations

@u

@x
þ @v

@y
¼ 0; (1)

u
@u

@x
þ v

@u

@y
¼ mNF 1þ 1

c

� �
@2u

@y2
� rNF
qNF

B2
0u; (2)

u
@T

@x
þ v

@T

@y
¼ KNF

qCp

� �
NF

@2T

@y2
� lNF

qCp

� �
NF

1þ 1

c

� �
@u

@y

� �2

; (3)

where u and v are the components of velocity, c is the viscoplastic parameter and B0 is the magnetic field.
Other symbols and quantities are defined in the nomenclature. The boundary conditions are

u ¼ auw xð Þ; v ¼ 0 at y ¼ 0; u ! 0 as y ! 1; (4)

T ¼ Tw at y ¼ 0; T ! T1 as y ! 1: (5)

The viscosity of SA based Cu–nanofluid with different shapes of nanoparticle, except spherical, is
calculated from the following correlation:

lNF ¼ 1þ d1fþ d2f
2� �
lBF; (6)

where the constants d1 and d2 are known as viscosity coefficients based on nanoparticle shapes as given by
Timofeeva et al. [43], see Table 2.

Figure 1: Stretching case a. 0ð Þ

Table 2: Viscosity coefficients for different shapes of nanoparticles [43]

Viscosity coefficients Platelets Blades Cylinders Bricks

d1 37.1 14.6 13.5 1.9

d2 612.6 123.3 904.4 471.4
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In the case of spherical nanoparticle shape, viscosity of SA based Cu–nanofluid is

lNF ¼
1

1� fð Þ2:5
" #

lBF: (7)

Pak et al. [44] introduced a correlation to predict the density of nanofluid, which is defined as

qNF ¼ 1� fð Þ þ f
qNP
qBF

� �
qBF: (8)

The electrical conductivity of SA based Cu–nanofluid given by Sheikholeslami [45] which is of the form

rNF ¼ 1þ
3

rNP
rBF

� 1

� �
f

rNP
rBF

þ 2

� �
� rNP

rBF
� 1

� �
f

2
664

3
775rBF: (9)

Many relationships proposed for the thermal conductivity of a two–phase mixture, in which Maxwell [1]
developed a model for the thermal conductivity of a two–phase mixture based on thermal conductivity of
base fluids, spherical particles and particle volume fraction. Hamilton et al. [46] expanded Maxwell
model for non–spherical particle shapes. Their model allows calculating the effective thermal conductivity
of a two–phase mixture under the empirical shape factor. This model is stated as

KNF ¼ KNP þ n� 1ð ÞKBF þ n� 1ð Þ KNP � KBFð Þf
KNP þ n� 1ð ÞKBF � KNP � KBFð Þf

� �
KBF; (10)

where n ¼ shape factor (for sphere n ¼ 3, for cylinder n ¼ 6). Moreover, n ¼ 3

w
is empirical shape factor as

given by Timofeeva et al. [43], see Table 3.

To simplify the Eqs. (2) and (3), following variables [11,39] are defined

g ¼ y

ffiffiffiffiffiffiffi
b

mBF

r
; u ¼ bxFg gð Þ ; v ¼ �

ffiffiffiffiffiffiffiffiffi
bmBF

p
F gð Þ; h gð Þ ¼ T � T1

Tw � T1
: (11)

Using Eq. (11), governing Eqs. (2) and (3) are reduced as follows:

lNF
lBF

qBF
qNF

1þ 1

c

� �
Fggg gð Þ þ F gð ÞFgg gð Þ � F2

g gð Þ �M
qBF
qNF

rNF
rBF

Fg gð Þ ¼ 0; (12)

Table 3: Sphericity and shape factor for different shapes of nanoparticles Timofeeva et al. [43]

Sphericity Platelets Blades Cylinders Bricks

w 0.52 0.36 0.62 0.81

n 5.7 8.6 4.9 3.7
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1

Pr

KNF

KBF

qCp

� �
BF

qCp

� �
NF

hgg gð Þ þ F gð Þhg gð Þ � 2Fg gð Þh gð Þ þ lNF
lBF

qCp

� �
BF

qCp

� �
NF

1þ 1

c

� �
EcF2

gg gð Þ ¼ 0; (13)

where Fg gð Þ represents an ordinary derivative with respect to g, M2 ¼ rBFB2
0

bqBF
is the magnetic parameter,

Pr ¼ qCp

� �
BFmBF

KBF
is the Prandtl number and Ec ¼ b2

A Cp

� �
BF

¼ u2w
Tw � T1ð Þ Cp

� �
BF

is the Eckert number.

The corresponding boundary conditions in the non–dimensional form are

F gð Þ ¼ 0; Fg gð Þ ¼ a; h gð Þ ¼ 1 at g ¼ 0; (14)

Fg gð Þ ! 0; h gð Þ ! 0 as g ! 1: (15)

3 Analytical Solutions

3.1 Momentum Equation Solution
The closed–form solution of Eq. (12) has been obtained by Chakrabarti et al. [47] can be written as

F gð Þ ¼ a
b

1� exp �bgð Þð Þ; (16)

where b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ae1 þ e2

p
and

e1 ¼ c
1þ c

� �
1

1þ d1fþ d2f
2

� �
1� fð Þ þ f

qNP
qBF

� �
; e2 ¼ M

c
1þ c

� �

1

1þ d1fþ d2f
2

� �
1þ

3
rNP
rBF

� 1

� �
f

rNP
rBF

þ 2

� �
� rNP

rBF
� 1

� �
f

0
BB@

1
CCA:

The following closed–form solution for velocity is obtained

FgðgÞ ¼ a exp �


c

1þ c

� �
1

1þ d1fþ d2f
2

� �
a 1�fð Þ þf

qNP
qBF

� �
þM 1þ

3
rNP
rBF

� 1

� �
f

rNP
rBF

þ 2

� �
� rNP

rBF
� 1

� �
f

0
BB@

1
CCA

8>><
>>:

9>>=
>>;

vuuuuut g

2
6664

3
7775; (17)

Fgg gð Þ¼a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

1þc

� �
1

1þd1fþd2f
2

� �
a 1�fð Þþf

qNP
qBF

� �
þM 1þ

3
rNP
rBF

�1

� �
f

rNP
rBF

þ2

� �
� rNP

rBF
�1

� �
f

0
BB@

1
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>>:

9>>=
>>;

vuuuuut
2
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3
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�exp �
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c

1þc

� �
1

1þd1fþd2f
2

� �
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þM 1þ
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f
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þ2
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(18)
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3.2 Energy Equation Solution
By substituting F gð Þ; Fg gð Þ and Fgg gð Þ in Eq. (13), we get

1

Pr

KNF

KBF

� �
hgg gð Þ þ qCp

� �
NF

qCp

� �
BF

a
b
� a
b
e�bg

� �
hg gð Þ � 2ae�bgh gð Þ

� �

þ lNF
lBF

1þ 1

c

� �
Ec �abe�bg

� �2¼ 0:

(19)

Taking s ¼ e�bg, Eq. (19) turns

1

Pr

KNF

KBF
shss sð Þ þ hs sð Þ½ � � qCp

� �
NF

qCp

� �
BF

1

b2
a 1� sð Þhs sð Þ þ 2ah sð Þ½ � þ lNF

lBF
1þ 1

c

� �
Ec a2s ¼ 0; (20)

and boundary conditions are

h s ¼ 1ð Þ ¼ 1; h s ¼ 0ð Þ ¼ 0: (21)

Closed–form solution of Eq. (21) with the help of MAPLE toolbox is obtained as

h sð Þ ¼ hypergeometric
3e3 � e4

e3

� �
;

e3 � e4
e3

� �
;
e4
e3
s

� �
e
� e4

e3
s

� �
C1

þ hypergeometric 3½ �; e3 þ e4
e3

� �
;
e4
e3
s

� �
s
e4
e3e

� e4
e3
s

� �
C2

þ 1

2

e5 e3 � e4 þ 2e4sð Þ
e24

� �
;

(22)

where

e3 ¼ KNF

KBF

1

Pr
; e4 ¼

qCp

� �
NF

qCp

� �
BF

a

b2
; e5 ¼ lNF

lBF
1þ 1

c

� �
Eca2

Z1 ¼ � 1

2

e5 e3 � e4ð Þ
e24

� �
hypergeometric

3e3 � e4
e3

� �
;

e3 � e4
e3

� �
; 0

� �� ��1

Z2 ¼ hypergeometric 3½ �; e3 þ e4
e3

� �
;
e4
e3

� �� ��1

e
e4
e3

� 1

2

e5 e3 þ e4ð Þ
e24

� �
hypergeometric 3½ �; e3 þ e4

e3

� �
;
e4
e3

� �� ��1

e
e4
e3

þ 1

2

e5 e3 � e4ð Þ
e24

� �
hypergeometric

3e3 � e4
e3

� �
;

e3 � e4
e3

� �
;
e4
e3
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� hypergeometric 3½ �; e3 þ e4
e3

� �
;
e4
e3

� �� ��1

:
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Using boundary conditions (21), we obtained

h sð Þ ¼ � 1

2

e5 e3 � e4ð Þ
e24

� �
hypergeometric

3e3 � e4
e3

� �
;

e3 � e4
e3
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;
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e
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;
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e3
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s
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� �
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� �
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e
e4
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� �
;
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e3
s

� �
s
e4
e3e

� e4
e3
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� �

� � e5 e3 þ e4ð Þ
2e24

� �
hypergeometric 3½ �; e3 þ e4
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� �
;
e4
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e
e4
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þ hypergeometric 3½ �; e3 þ e4
e3

� �
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e4
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� �
s
e4
e3e

� e4
e3
s

� �
hypergeometric 3½ �; e3 þ e4

e3

� �
;
e4
e3
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� 1

2

e5 e3 � e4ð Þ
2e24

� �
hypergeometric

3e3 � e4
e3

� �
;

e3 � e4
e3

� �
;
e4
e3

� �� �
:

(23)

Note that above solution of temperature h sð Þ depends on s; in other words, h sð Þ is a function of s.
However, temperature depends on g. By substituting s ¼ e�bg in Eq. (23), we can find temperature
solution with respect to g.

4 Runge–Kutta–Fehlberg (RKF) Method

The non–linear differential Eqs. (12) and (13) with the boundary conditions (14) and (15) have been
solved numerically by the Runge–Kutta–Fehlberg (RKF) method using MAPLE software (Version 13)
and analytically with the help of MAPLE built–in differential equation solver Dsolve. The system of
differential equations consists of third–order velocity and second–order temperature equations are reduced
in simultaneous ordinary differential equations. The step size Dy ¼ 0:001 and a convergence criterion of
10�6 are considered in the numerical computations. The asymptotic boundary conditions (15) are
substituted by using a value of 12 for the similarity variable gmax as

Fg 12ð Þ ¼ 0; h 12ð Þ ¼ 0:

5 Graphical Results and Discussion

The effect of different physical parameters, namely, the viscoplastic parameter c, magnetic parameterM,
Eckert number Ec, Prandtl number Pr on velocity and temperature fields are shown in graphs. Figs. 2–5
describe the temperature field h gð Þ variation at different values of viscoplastic parameter c along a
stretching sheet for SA based nanofluid when M . 0 (in the presence of magnetic field) and a. 0 (in
case of stretching sheet), for different shapes of Cu nanoparticles such as bricks, cylinders, platelets, and
blades respectively. It was noticed that temperature increased with increasing values of c for bricks,
cylinders, platelets, and blades shapes of Cu nanoparticles, respectively. To this end, increases in the
values of c led to decreases in yield stress which improved the temperature field. Figs. 6–9 show the
influence of different values of Prandtl number Pr on the temperature field h gð Þ for bricks, cylinders,
platelets, and blades shapes of Cu nanoparticles when M . 0 and a. 0. It was found that increases in Pr
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decreased the temperature of bricks, cylinders, platelets, and blades shapes of Cu nanoparticles. Physically,
the increase in Pr number means that momentum diffusivity dominated over thermal diffusivity which caused
the decrease in temperature field. Moreover, these figures show the comparison of temperature field h gð Þ for
four different types of base fluids such as water Pr ¼ 6:2ð Þ, sodium alginate Pr ¼ 6:45ð Þ, kerosene Pr ¼ 21ð Þ
and engine oil Pr ¼ 6450ð Þ containing bricks, cylinders, platelets, and blades shapes of Cu nanoparticles.
The temperature of water and sodium alginate-based Cu–nanofluids was noticed to be higher than
kerosene and engine oil based Cu–nanofluids. The reason for this is that water and sodium alginate have
better thermal conductivity than kerosene and engine oil-based fluids. Therefore, water and sodium
alginate-based fluids raised the temperature h gð Þ of the Cu–nanofluid.

Figure 2: Temperature field of bricks shape nanoparticles for different c

Figure 3: Temperature field of cylinder shape nanoparticles for different c
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Figure 4: Temperature field of platelets shape nanoparticles for different c

Figure 5: Temperature field of blades shape nanoparticles for different c

Figure 6: Temperature field of bricks shape nanoparticles for different Pr
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Figure 7: Temperature field of cylinder shape nanoparticles for different Pr

Figure 8: Temperature field of platelets shape nanoparticles for different Pr

Figure 9: Temperature field of blades shape nanoparticles for different Pr
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Figs. 10–13 show the temperature profile h gð Þ for different values of Eckert number Ec for brick,
cylinder, platelet, and blade shapes of Cu–nanoparticles respectively when M . 0 and a. 0. It was
observed that temperature increased for all shapes of nanoparticles respectively with increasing values of
Ec. This was due to increases in Ec resulting in enhancement of the kinetic energy, as it is a well–known
fact that temperature is defined as average kinetic energy. Moreover, the dissipative frictional forces
between layers were enhanced with the increases in Ec and consequently, the temperature of the Cu–
nanofluid rose. Velocity fields Fg gð Þ for different shapes of nanoparticles (bricks, cylinders, platelets, and
blades) respectively for different values of viscoplastic parameter c when M . 0 and a. 0 are shown in
Figs. 14–17. It was observed that velocity field decreased for all nanoparticles with increasing values of
c. To this end, increases in values of c led to reductions in yield stress, therefore the velocity field Fg gð Þ
reduced. Figs. 18–21 present the variations in velocity profile Fg gð Þ with the variations in stretching sheet
parameters a when M . 0 for different shapes of nanoparticles. It was observed that the increases in the a
increased the velocity field Fg gð Þ. Figs. 22–25 show the impact of different values of magnetic parameter
M when a. 0 on the velocity field Fg gð Þ for different shapes of nanoparticles (bricks, cylinders, platelets
and blades), respectively. It was observed that increases in magnetic parameter M decreased the velocity
field Fg gð Þ. Resultant resistive type forces due to enhancement of magnetic field strength, also called
Lorentz forces with respect to the aligned magnetic field play a key factor in slowing the fluids motion.
Hence, increasing values of M immediately cause an increase in drag force which decreases the velocity
profile. To test the present numerical results, the results of velocity and temperature fields for Cu–
nanofluid are compared with those obtained by Saleem et al. [48] in Figs. 26 and 27, for blade and
platelet shapes nanoparticles when M ¼ 0 (n the absence of magnetic field) and c ! 1 (in case of
Newtonian fluid), respectively. Both of these results for velocity and temperature fields of Cu–nanofluid
are found in an excellent agreement.

Figure 10: Temperature field of bricks shape nanoparticles for Ec
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Figure 12: Temperature field of platelets shape nanoparticles for Ec

Figure 13: Temperature field of blades shape nanoparticles for Ec

Figure 11: Temperature field of cylinder shape nanoparticles for Ec
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Figure 15: Velocity field of cylinder shape nanoparticles for c

Figure 16: Velocity field of platelets shape nanoparticles for c

Figure 14: Velocity field of bricks shape nanoparticles for c
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Figure 18: Velocity field of bricks shape nanoparticles for a

Figure 19: Velocity field of cylinder shape nanoparticles for a

Figure 17: Velocity field of blades shape nanoparticles for c
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Figure 21: Velocity field of blades shape nanoparticles for a

Figure 22: Velocity field of bricks shape nanoparticles for M

Figure 20: Velocity field of platelets shape nanoparticles for a
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Figure 24: Velocity field of platelets shape nanoparticles for M

Figure 25: Velocity field of blades shape nanoparticles for M

Figure 23: Velocity field of cylinder shape nanoparticles for M
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6 Conclusion

The present article examined nanoparticles shape effects on sodium alginate-based Cu–nanofluid over a
stretching/shrinking sheet. The vital findings are

i) Velocity field decreases for all shapes of Cu nanoparticles for magnetic parameter and viscoplastic
parameter.

ii) Velocity field increases for all shapes of Cu nanoparticles for stretching sheet parameter.

iii) Temperature field increases for different shape of Cu nanoparticles for viscoplastic parameter and
Eckert number.

iv) Temperature field decreases for all shapes of Cu nanoparticles for Prandtl number.

v) The temperature of non–Newtonian sodium alginate-based Cu–nanofluids is higher than kerosene
and engine-oil-based Cu–nanofluids.

Figure 27: Comparison of temperature field of platelets shape and blade shape nanoparticles of present
paper with Saleem et al. [48]

Figure 26: Comparison of velocity field of platelets shape and blade shape nanoparticles of present paper
with Saleem et al. [48]
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