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ABSTRACT

Sticking is the most serious cause of failure in complex drilling operations. In the present work a novel “early
warning” method based on an artificial intelligence algorithm is proposed to overcome some of the known pro-
blems associated with existing sticking-identification technologies. The method is tested against a practical case
study (Southern Sichuan shale gas drilling operations). It is shown that the twelve sets of sticking fault diagnostic
results obtained from a simulation are all consistent with the actual downhole state; furthermore, the results from
four groups of verification samples are also consistent with the actual downhole state. This shows that the pro-
posed training-based model can effectively be applied to practical situations.

KEYWORDS

Shale gas drilling; sticking fault; artificial intelligence; risk early warning technology

1 Introduction

As the demand for clean energy continues to expand, the price of natural gas continues to rise, and
people’s understanding of shale gas has rapidly improved [1,2]. In particular, the technology level of
horizontal wells is constantly improving, and the exploration and development of shale gas is forming a
boom. The high formation pressure coefficient and complex geological conditions in shale formations
have led to complex drilling operations with frequent failures, among which sticking is the most
prominent. The sticking faults seriously restricted the safe and efficient development of shale gas.
Therefore, it is important to ensure the safety of drilling and completion in horizontal sections of shale
gas horizontal wells. The traditional methods for identification of sticking relied only on experts’
experience to make qualitative judgments on downhole risks. They simply transplanted the commonly
used risk assessment methods (such as analytic hierarchy process, event tree, fault tree, bow-tie model,
among others) into drilling engineering. Most of these methods are qualitative and semi-quantitative, and
their prediction accuracy and efficiency are insufficient to ensure drilling safety [3–5]. In addition, only a
small amount of measurement and calculation work is automatically performed by computers, with most
of the judgments still relying on manual work. Due to the differences of individual knowledge,
experience, and sense of responsibility, it often leads to the failure to detect and handle drilling
abnormalities in time, which increases the risk [6–8]. The existing sticking risk assessment methods are
based on fuzzy analytic hierarchy process, bow model, fault tree, and so on [9]. In fact, it is not realistic
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to require operators to observe the changes in monitoring data and judge the potential risk of an accident
quickly. Therefore, the problems associated with the existing technology for identification of sticking,
such as the poor comprehensive utilization of monitoring information, the untimely risk warning, and the
strong subjectivity are of huge importance to operational safety and efficiency [10,11]. To solve these
problems, this paper proposed a real-time warning method based on an artificial intelligence algorithm,
which can predict and control the sticking. The application of this technology is of great significance for
companies to reduce the loss of complexity and failure.

2 Expert Knowledge Judgment of Sticking

2.1 Judgment Methods for Different Types of Sticking
Firstly, it is necessary to combine the traditional method of expert knowledge judgment to summarize the

qualitative methods for identification of sticking, which is one of the important basic work of artificial
intelligence risk prediction. According to the different causes, the sticking can be divided into differential
pressure, collapse, sand bridge, shrinkage, keyway, balling-up, and junk sticking [12]. The different types
of sticking are correspond to different judgment methods. According to the field drilling practice and
expert knowledge judgment [13,14], the judgment methods of sticking are summarized, as shown in Table 1.

2.2 Logging Characteristic Parameters Related to Sticking
According to the expert knowledge judgment of sticking failure, the comprehensive logging parameters

that can characterize the sticking are hook load (WHO), standpipe pressure (SPP), torque (TOR), rate of
penetration (ROP), rotary speed (RPM), and weight on bit (WOB). Although the types of sticking are
different, the change rules of logging data before and after sticking are consistent. After the drill sticking
fault occurs, the rotary table torque and the standpipe pressure increases, the rotary speed decreases.

Table 1: Judgment methods for different types of sticking

Sticking type Judgment method

Differential
pressure
sticking

� No change in Standpipe pressure. Drilling fluid circulation is normal.
� Dynamic balance of inlet and outlet flow.
� The checkpoint moves up, even to the casing shoe.

Collapse
sticking

� Standpipe pressure increases. Hook load decreases. Torque increases.
� The amount of drilling fluid returned from the wellhead decreases.

Bridge sticking � During tripping out, the hook load decreases, and the Standpipe pressure
increases.

� During tripping in, the wellhead will not return the drilling fluid, and no drilling
fluid is returned from the wellhead.

Shrinkage
sticking

� Standpipe pressure increases. Torque increases.
� Rate of penetration increases.

Keyway
sticking

� Hook load decreases. Torque increases.
� The drilling tool returns to normal state after putting out the keyway.

Balling-up
sticking

� When the pump is turned on, the Standpipe pressure is high, even unable to
circulate, and the Standpipe pressure drops for a period.

� Rate of penetration decreases.

Junk sticking � It is easy to lower the drilling tool.
� Drilling fluid circulation is normal.
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When sticking occurs during tripping out, the hook load and torque increases. When sticking occurs during
tripping in, the hook load decreases, the torque increases, and the rotary speed increases.

3 Intelligent Algorithm of BP Neural Network Based on PSO

3.1 BP Neural Network
The back propagation (BP) neural network is a typical multi-layer and feed-forward network. The main

advantage of the BP neural network is its strong nonlinear mapping ability. It is a three-layer forward artificial
neural network composed of input layer, hidden layer, and output layer. According to the calculation formula
of neuron output signal, the output of each neuron in the hidden layer can be obtained as follows:

Ij ¼
Xn
i¼1

mijxi � hj j ¼ 1; 2; . . . l

Oj ¼ f ðIjÞ j ¼ 1; 2; . . . l

(1)

In the formula, vij—connection weight of input layer neuron i and hidden layer neuron j. θj—threshold
value of hidden layer neuron j. f(Ij)—activation function of neurons.

Similarly, the output signal of the output layer of BP neural network is obtained as follows:

Ik ¼
Xl
j¼1

ljkOj � bk k ¼ 1; 2; . . .m

yk ¼ f ðIkÞ k ¼ 1; 2; . . .m

(2)

In the formula, μjk—connection weight of output layer neuron k and hidden layer neuron j.

βk—threshold value of output layer neuron k. f(Ik)—activation function of neurons.

This paper systematically analyzed the learning steps of BP neural network.

a) Initialize parameters of neural network

The connection weights vij and μjk of each layer of neurons are given a random number between [−1, 1].
The learning rate η is set to a decimal within 0~1. The error E is set to 0. The error threshold Emin is set to a
positive decimal. The number of hidden layer nodesm is obtained by an empirical formula. The sample mode
calculator p and training times q are reset to 1. The default number of workouts is M.

b) Input training samples and calculate output of each layer

A pair of training samples (XP, QP) are selected to assign values of the input parameters, and the output
O, Y are calculated.

c) Calculating the output error of neural network

Suppose the total number of training samples is P. The error of each training is Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
k¼1

qpk � ypk
� �2s

.

The total output error is ERME ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

XP
p¼1

Epð Þ2
vuut .

d) Calculate error signal of each layer

The error calculation formula of output layer and hidden layer is as follows:

dyk ¼ ðqk � ykÞyk 1� ykð Þ (3)
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The error calculation formula of hidden layer and input layer is as follows:

dOj ¼
Xl
1

dykljk

 !
Oj 1� Oj

� �
(4)

e) Adjust connection weight and threshold of each layer

The calculation formula of connection weight and threshold of output layer and hidden layer are as
follows:

Dljk ¼ gðqk � ykÞyk 1� ykð ÞOj (5)

Dbk ¼ gðqk � ykÞyk 1� ykð Þ (6)

The calculation formula of connection weight and threshold value of hidden layer and input layer are as
follows:

Dvij ¼ g
Xl
1

dykljk

 !
Oj 1� Oj

� �
xi (7)

Dhj ¼ g
Xl
1

dykljk

 !
Oj 1� Oj

� �
(8)

f) Determine whether to complete one training for all samples

If p < P, p, q increased by 1, return to Step b. Otherwise, go to Step g.

g) Check whether the total error of neural network meets the error threshold

ERME < Emin or q > M, end. Otherwise, E is reset to 0, p is reset to 1, return to Step b.

3.2 Particle Swarm Optimization Algorithm (PSO)
The BP neural network has its own defects. It is difficult to get the optimal value of the connection weight

and threshold value, which eventually results in a large error between the prediction result and the actual value
of BP neural network. Therefore, it is necessary to combine another optimal solution algorithm with the
BP neural network to improve the accuracy of prediction. In this paper, the ability of PSO to search
the optimal solution globally is used together with BP network to improve the prediction accuracy. The
principle and model of PSO [15] are as follows: The M particles are initialized to form a “bird swarm”

T ¼ Z1; Z2; . . . ; ZMf g; i ¼ 1; 2; . . . ;M : zi ¼ zi1; zi2; . . . ; ziDð Þ; i ¼ 1; 2; . . . ;M , which represents the
position vector of the i-th particle in D-dimensional space. si ¼ si1; si2; . . . ; siDð Þ; i ¼ 1; 2; . . . ;M represents
the velocity vector of the i-th particle in D-dimensional space. The flight motion experience of the
particle itself is Pbesti ¼ Pbesti1;Pbesti2; . . . ;PbestiDð Þ. The global optimal position is
Gbest ¼ Gbest1;Gbest2; . . . ;GbestDð Þ. The recurrence formula of particle algorithm is:

skþ1
i;d ¼ ski;d þ c1r1 Pbesti;d � zki;d

� �
þ c2r2 Gbestd � zki;d

� �
zkþ1
i;d ¼ zki;d þ skþ1

i;d

(9)

In the formula, c1r1 Pbesti;d � zki;d

� �
—the memory ability of particles to their optimal position. At the

same time, c2r2 Gbestd � zki;d

� �
—reflect the information sharing among particles.
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3.3 Optimization of BP Neural Network Based on PSO
In this paper, the main steps of BP neural network based on PSO are as follows:

a) Initialization parameters.

Determine the topological structure of the BP neural network, initially set connect the weights
and thresholds, and determine the particle swarm dimension D according to the number of weights
and thresholds. Set the population size M and the number of iterations N. real code The weights and
thresholds of the BP neural network are coded to obtain the initial population. In addition, the particle
speed si,d and position zi,d are set within the allowable range [smin, smax], [zmin, zmax], and set the learning
factors c1, c2.

b) The mean square error of each iteration in neural network is taken as the fitness function of particles.

c) According to the steps of particle swarm optimization algorithm, the global optimal position of
particles is solved.

d) Check whether the iteration termination condition is met, if satisfied, stop, output the optimal particle,
and decode it to get the optimal weight and threshold.

e) Training and prediction according to BP neural network.

4 Early Warning Model of Sticking

The algorithm based on particle swarm optimization (PSO) to optimize BP neural network is applied to
early warning of sticking. In this paper, an intelligent and real-time quantitative evaluation method for
downhole drilling risks is proposed, which is advanced compared to the existing qualitative and semi-
quantitative assessment methods. This method includes the design of BP neural network, the design of
particle swarm optimization algorithm and the prepossessing of model input parameters.

4.1 BP Neural Network Design
a) Input layer design

According to the expert knowledge, the six input neurons are set by selecting the characterization
parameters with strong correlation with the sticking: hook load, standpipe pressure, torque, rate of
penetration, rotary speed, and weight on bit.

b) Output layer design

This paper mainly deals with the identification of sticking. It only needs to judge whether it occurs and
how likely it will happen. Therefore, there are two output neurons: expected output vector of sticking q1 = (1,
0), expected output vector of no sticking q2 = (0, 1).

c) Hidden layer design

In this paper, the number of hidden layers is set to 10 through research, and the result is most consistent
with the actual situation.

Finally, the BP neural network structure is established, as shown in Fig. 1.

Figure 1: Schematic diagram of BP neural network structure for early warning of sticking
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4.2 PSO Design
a) Particle coding

The structure of neural network is 6-10-2, as shown in Fig. 2. Therefore, there are 6 × 10 + 10 ×
2 = 80 weight vectors and 10 + 2 = 12 threshold vectors. The number of particle swarm optimization
parameters is 92, and the particle length is 92.

In this paper, the vector coding is used, and particle i is encoded as follows:

particleðiÞ ¼½w10;1 � � �w10;6 � � �w19;1 � � �w19;6;

w20;10 � � �w20;19 � � �w21;10 � � �w21;19;

b10;1 � � �b19;6; b20;1 � � � b21;6�
(10)

b) Fitness function

The root mean square error of BP network training is taken as fitness function:

MES ¼ 1

2M

XM
i¼1

Xl
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yj;i � qj;i
� �2q

(11)

c) Data processing

To avoid the increasing error of network prediction result caused by the large difference of input and
output data, the data normalization is carried out. In this paper, the minimum-maximum method is used
for normalization [16,17]:

xk ¼ xk � xmean
xvar

� �
(12)

In formula, xmin, xmax—minimum and maximum values of logging data.

5 Training and Optimization of Early Sticking Warning Model

Combined with the field practice of shale gas drilling in South Sichuan, the comprehensive logging data
of sticking are selected as the training samples to train and optimize the early warning model of sticking.

5.1 Algorithmic Control Elements
The elements of BP neural network and particle swarm optimization algorithm in the early warning

model of sticking are set, as shown in Table 2.

Figure 2: Schematic diagram of PSO-BP for early warning of sticking
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5.2 Model Training and Simulating
Based on the logging and well history data of seven sticking wells in South Sichuan shale gas work area

(XX-1, XX-2, XX-3, XX-4, XX-5, XX-6, and XX-8), the sixteen sets of working condition data are selected
as samples, eight sets of data correspond to sticking and eight sets of data correspond to no sticking. The
comprehensive logging parameters monitored in given time period before and after the occurrence of
sticking are selected and normalized according to the minimum-maximum method. The results are shown
in Table 3. The first twelve groups of samples are selected as training samples to train the model, and the
other four groups of samples as verification samples to verify the accuracy of the model.

Table 2: Algorithmic control elements

Algorithm Basic elements Control value

BP Target error 0.0001

Learning rate 0.01

Maximum training times 100

Implicit output layer transfer function log-Sigmoid

Initial connection weights and thresholds [−1,1] random number

PSO Population size 30

Iteration times 100

Particle length 92

Learning factor c1 = c2 = 2.0

Table 3: Network training simulation sample

Sample
category

Number WHO SPP RPM TOR WOB ROP Condition type Expect
vector

Training sample 1 0.89 0.91 0.07 0.94 0.67 0.003 Sticking (1,0)

2 0.95 0.87 0.01 0.88 0.74 0.004 Sticking (1,0)

3 0.94 0.85 0.03 0.89 0.78 0.005 Sticking (1,0)

4 1 0.97 0.03 0.98 0.65 0.004 Sticking (1,0)

5 0.98 0.96 0.02 1 0.71 0.002 Sticking (1,0)

6 0.84 0.95 0.02 0.87 0.73 0.004 Sticking (1,0)

7 0.57 0.23 0.66 0.11 0.94 0.15 No sticking (0,1)

8 0.43 0.17 0.66 0.24 0.89 0.11 No sticking (0,1)

9 0.61 0.09 0.65 0.21 0.97 0.21 No sticking (0,1)

10 0.58 0.12 0.68 0.13 1 0.17 No sticking (0,1)

11 0.61 0.15 0.72 0.19 0.95 0.23 No sticking (0,1)

12 0.46 0.27 0.63 0.26 0.87 0.24 No sticking (0,1)

Verification
sample

13 0.88 0.90 0.01 0.91 0.66 0.005 Sticking (1,0)

14 0.99 0.96 0.04 0.95 0.81 0.004 Sticking (1,0)

15 0.37 0.25 0.71 0.11 0.98 0.30 No sticking (0,1)

16 0.44 0.31 0.68 0.19 0.89 0.28 No sticking (0,1)
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The training results of the sticking model are shown in Table 4. The conclusions are listed below: the
simulation results are consistent with the actual downhole state, which shows that the training model can
be applied to the early warning of sticking in the block.

5.3 Application of Sticking Warning Model
To verify the accuracy of the developed early warning model, the being drilled WY-XX well in South

Sichuan work area is selected for trial analysis. In the process of drilling in the fourth spud horizontal section,
the sticking early warning model developed in this paper was used to conduct the real-time diagnosis of
sticking. The probability of the sticking fault diagnosed at 4279 m was high (as shown in Table 5), and
the drill sticking early warning information was timely sent to the driller operator. After drilling the
column to 4280 m, the technicians took corresponding measures to avoid sticking. Thus, the possible
sticking was effectively avoided. The field test application showed that the model developed in this paper
can diagnose the sticking in real time, and the accuracy and efficiency of risk identification can meet the
needs of field drilling operations and effectively ensure the safety of drilling operations.

Table 4: Simulation results of early warning model training for sticking

Sample category Number q1 q2 Condition type

Simulation training sample 1 0.96864 0.033179 Sticking

2 0.9775 0.035743 Sticking

3 0.61327 0.010748 Sticking

4 0.77001 0.017822 Sticking

5 0.55134 0.002513 Sticking

6 0.86937 0.013817 Sticking

7 0.008818 0.98627 No sticking

8 0.005764 0.99378 No sticking

9 0.013284 0.77387 No sticking

10 0.00525 0.95334 No sticking

11 0.021962 0.94467 No sticking

12 0.03491 0.79564 No sticking

Verification sample 13 0.94875 0.006218 Sticking

14 0.889748 0.014785 Sticking

15 0.029633 0.89496 No sticking

16 0.001178 0.99815 No sticking

Table 5: Real time warning result of sticking

Depth
/m

WHO SPP RPM TOR WOB ROP Calculation
results (q1, q2)

Warning results

4276 0.61 0.15 0.72 0.19 0.95 0.23 (0.0208, 0.9533) No sticking

4277 0.58 0.12 0.68 0.23 1 0.17 (0.1371, 0.7862) No sticking

4278 0.48 0.16 0.72 0.29 0.92 0.27 (0.2343, 0.6701) No sticking

4279 0.98 0.96 0.02 1 0.71 0.002 (0.7037, 0.3491) Sticking

4280 1 0.97 0.03 0.98 0.65 0.004 (0.7664, 0.2327) Sticking
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6 Conclusion

(1) The traditional sticking fault prediction relies heavily on the subjective judgment of experts, and the
results are mostly qualitative or semi-quantitative. In this paper, the method for early-warning of sticking is
proposed, which utilizes the intelligent and real-time quantitative judgment of sticking, and solves the
problems of poor comprehensive utilization of monitoring information, insufficient early warning of risk,
and strong subjectivity.

(2) The error training function of BP neural network is not a strict convex function, thus it is easy to fall
into local minimum when searching for the optimal connection weight and threshold value. The defects of
BP network affect the accuracy of dynamic risk assessment results. The ability of a global searching optimal
solution based on PSO can make up for the defect of local optimization of BP neural network.

(3) A case study and application of the developed early warning model for sticking was carried out. The
twelve sets of sticking diagnostic results obtained by simulation were all consistent with the actual downhole
state. Further, the results of four groups of verification samples were also consistent with the actual downhole
state, which demostrated that the model developed by training can be applied to the early warning and
recognition of sticking.
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