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ABSTRACT

The work deals with the thermal behavior of a conventional partition wall incorporating a phase change material
(PCM). The wall separates two environments with different thermal properties. The first one is conditioned, while
the adjacent space is characterized by a temperature that changes sinusoidally in time. The effect of the PCM is
assessed through a comparative analysis of the cases with and without PCM. The performances are evaluated in
terms of dimensionless energy stored within the wall, comfort temperature and variations of these quantities as a
function of the amount of PCM and its emplacement.
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Nomenclature
c Concrete
p PCM
c Specific heat (J.kg−1K−1)
f Liquid fraction of PCM
h Convective heat transfer coefficient (W.m−2 K−1)
k Thermal conductivity (W/m K)
L Partition wall length (m)
Lf Latent heat in fusion state (J/kg)
qLatentPCM Dimensionless amount of latent heat charged in PCM
qcomposite
wall

Dimensionless amount of global heat charged into the composite partition wall
t Time (s)
Tf Melting temperature (°C)
Tint Indoor temperature (°C)
Tmax Maximum outdoor temperature (°C)
X Position within layer (m)
a Thermal diffusivity (m²/s)
q Density (kg.m−3)
x Pulsation (Rad/s)
e Melting range factor
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1 Introduction

High energy consumption leads to the necessity of reducing the energy demand of the building. This
could be realized by using efficient insulators [1,2] and new construction materials [3]. The use of
passive storage such as PCM is recommended not only in buildings [4–6], but also in other contexts,
such as transportation [7], industrial applications [8], electronics and electric systems [9,10], storage
devices for solar heating or cooling [10,11]. Thus, thermal energy storage can be accomplished either
using sensible heat storage and/or using latent heat storage. In building thermal applications, the partition
wall is considered an essential element for thermal comfort to reduce the employment of air-conditioners.
The outdoor thermal conditions and the activity in the neighboring room through the partition wall
influence the thermal comfort inside buildings. So, PCM embedding inside the partition wall improves
the characteristics involved and reduces the energy transmitted to the building premises. The PCM
insertion effect plays out according to thermal melting temperature [12], latent heat of melting [13], phase
change material emplacement and thickness [14]. The criteria of these studies are the flux density
transmitted to the room or the daily and the annual energy per unit area consumed. In this current study,
the principal aim is to study the impact of PCM emplacement regarding melting thermal level, and
melting range temperature on the dimensionless amount of the energy charged in the composite wall
comparatively to that involved for the basic wall. This study is carried out for the same thermal
conditions in a periodically established regime.

2 Equations and Mathematical Expressions

The study concerns the comparison of a referential partition wall with that integrating PCM (Fig. 1),
without changing the basic structure L ¼ 30 cm. The partition walls consisted of concrete and are subjected
to the following boundary conditions: the indoor temperature Tint is assumed constant and the outdoor
temperature To is varied between Tint as the minimum temperature value and Tmax as the maximum value.

In this work, we are interested in studying the effect of location, melting temperature Tf and melting
range factor e on the PCM’s thermal state. PCM is localized at the position e1 and displaced from the left
to the right of the partition wall. Furthermore, the thickness of the PCM is taken as e2 − e1 = 3 cm. The
maximum temperature of the adjacent local placed on the left of the partition wall is taken equal to 35°C.
In contrast, for the comfort temperature, we have taken two values Tint = 18°C and 20°C to study their effect.
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Figure 1: Scheme of the referential partition wall and that with PCM
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The energy equation for the multilayer partition wall system is as follows [15]:

@T

@t
þ Lf

c

@f

@t
¼ a

@2T

@x2
(1)

Lf
c
is only present in the case when the PCM is on fusion at T ¼ Tf .

The above equation is associated to:

-Interfaces conditions:

Tið Þ ¼ Tiþ1ð Þ (2)
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-Boundary conditions:
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With:

To ¼ ðTmax þ TintÞ
2

þ ðTmax � TintÞ
2

� �
sin xtð Þ (6)

The numerical code has been successfully validated [16] by comparison with analytical results
corresponding to the Newman problem [17].

3 Results and Discussion

The study concerns comparing the amount of thermal energy charged into the composite partition wall
(with PCM) to the referential wall (without PCM). The energy in the wall taken as a reference; is purely in
sensible form. However, for the composite partition wall, it is either in a sensible form, or in sensible and
latent form depending on the PCM’s fusion temperature, its melting range, its location, and also reposing
on the thermal level of the neighboring local. Thus, we have calculated the dimensionless latent heat
charged in PCM qLatentPCM and the dimensionless global heat charged in the composite wall qComposite

wall
in an

established periodic regime [15].

These parameters are defined as:

qLatentPCM ¼
R e2
e1
qpcpLf f dxR L

0 qccc TcðxÞ � Tint½ �dx (7)

qComposite
wall

¼
 Ze1

0

qcccðTcðxÞ � TintÞdxþ
Ze2
e1

qPðcPðTPðxÞ � TintÞ þ Lf f Þdx

þ
ZL
e2

qcccðTcðxÞ � TintÞdxÞ
!
=

 ZL
0

qcccðTcðxÞ � TintÞdx
! (8)
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With:

f ¼ 0 if Tf � Tp
0 < f < 1 if Tf ¼ Tp
f ¼ 1 if Tf � Tp

8<
: (9)

As the PCM takes place over a range temperature, the melting factor e, which varies between 1% and
3%, is introduced to evaluate the melting range effect. The melting factor e is defined as:

Tf1 ¼ Tf � e � Tf
� �

Tf2 ¼ Tf þ e � Tf
� �

(
(10)

Three PCMs are selected for this study, with melting temperatures equal to Tf ¼ 19�C, Tf ¼ 21�C and
Tf ¼ 23�C.

The physical properties for the concrete and the PCMs are indicated in Table 1:

The results of the study are summarized in the Tables 2–7 associated to the Figs. 2–7. They show the
effect of the melting factor e, the PCM location, the maximum temperature of the adjacent local
Tmax ¼ 35�C as well as comfort temperatures Tint ¼ 18�C and Tint ¼ 20�C of the conditioned local on the
variation of latent and global heat inside the partition wall. The parameter qLatentPCM indicates if the melting
takes place and for which emplacement of the PCM. However, the parameter qcomposite

wall
indicates where

the composite partition wall is more efficient than the referential one. PCM’s thickness is e2 � e1. The
displacement step in the partition wall is taken equal to 5 cm from the left to the right of the partition
wall. As the total thickness of the partition wall is L ¼ 30 cm. Thus, five PCM emplacements have been
chosen: 5 cm, 10 cm, 15 cm, 20 cm and 25 cm.

Table 1: Physical properties

Tf (°C) Lf (kJ/kg) K (W/m K) C (kJ/kg K) ρ (kg/m3)

Concrete – – 1.730 0.840 2400

PCM

19 [5] 160 0.43 1.90 1520

21 [18] 112 0.7 (l)
0.5 (s)

3.6 1380

23 [18] 175 0.540 2.20 1530

Table 2: Dimensionless latent and global heat for PCM Tf ¼ 19�C at Tint ¼ 18�C

PCM with Tf ¼ 19�C
Location of PCM

5 cm 10 cm 15 cm 20 cm 25 cm

At Tint = 18°C

e ¼ 1
qLatentPCM 2.889 2.889 2.832 2.889 2.889

qcomposite
wall

3.862 3.895 3.871 3.962 3.995

e ¼ 2
qLatentPCM 2.889 2.889 2.889 2.889 2.889

qcomposite
wall

3.849 3.882 3.916 3.949 3.982

e ¼ 3
qLatentPCM 2.889 2.889 2.889 2.889 2.889

qcomposite
wall

3.836 3.869 3.903 3.936 3.969
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Table 3: Dimensionless latent and global heat for PCM Tf ¼ 21�C at Tint ¼ 18�C

PCM with Tf ¼ 21�C
Location of PCM

5 cm 10 cm 15 cm 20 cm 25 cm

At Tint = 18°C

e ¼ 1
qLatentPCM 1.836 1.835 1.787 1.739 0.000

qcomposite
wall

2.960 2.959 2.909 2.864 1.153

e ¼ 2
qLatentPCM 1.835 1.831 1.808 1.641 0.000

qcomposite
wall

2.936 2.934 2.916 2.765 1.157

e ¼ 3
qLatentPCM 1.829 1.821 1.787 1.536 0.852

qcomposite
wall

2.914 2.910 2.885 2.665 2.013

Table 4: Dimensionless latent and global heat for PCM Tf ¼ 23�C at Tint ¼ 18�C

PCM with Tf ¼ 23�C
Location of PCM

5 cm 10 cm 15 cm 20 cm 25 cm

At Tint = 18°C

e ¼ 1
qLatentPCM 0.000 0.000 0.000 0.000 0.000

qcomposite
wall

1.014 1.049 1.071 1.093 1.113

e ¼ 2
qLatentPCM 1.888 0.000 0.000 0.000 0.000

qcomposite
wall

2.903 1.049 1.073 1.093 1.113

e ¼ 3
qLatentPCM 1.910 0.000 0.000 0.000 0.000

qcomposite
wall

2.929 1.050 1.073 1.093 1.113

Table 5: Dimensionless latent and global heat for PCM Tf ¼ 19�C at Tint ¼ 20�C

PCM with Tf ¼ 19�C
Location of PCM

5 cm 10 cm 15 cm 20 cm 25 cm

At Tint = 20°C

e ¼ 1
qLatentPCM 3.274 3.274 3.210 3.274 3.274

qcomposite
wall

4.246 4.279 4.247 4.346 4.379

e ¼ 2
qLatentPCM 3.274 3.274 3.274 3.274 3.274

qcomposite
wall

4.231 4.264 4.298 4.331 4.364

e ¼ 3
qLatentPCM 3.274 3.274 3.274 3.274 3.274

qcomposite
wall

4.216 4.249 4.283 4.316 4.349
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Table 6: Dimensionless latent and global heat for PCM Tf ¼ 21�C at Tint ¼ 20�C

PCM with Tf ¼ 21�C
Location of PCM

5 cm 10 cm 15 cm 20 cm 25 cm

At Tint = 20°C

e ¼ 1
qLatentPCM 2.081 2.081 2.040 2.081 2.081

qcomposite
wall

3.201 3.201 3.157 3.200 3.200

e ¼ 2
qLatentPCM 2.081 2.081 2.081 2.081 2.081

qcomposite
wall

3.173 3.173 3.172 3.172 3.172

e ¼ 3
qLatentPCM 2.081 2.081 2.081 2.081 2.081

qcomposite
wall

3.145 3.145 3.144 3.144 3.144

Table 7: Dimensionless latent and global heat for PCM Tf ¼ 23�C at Tint ¼ 20�C

PCM with Tf ¼ 23�C
Location of PCM

5 cm 10 cm 15 cm 20 cm 25 cm

At Tint = 20°C

e ¼ 1
qLatentPCM 3.585 3.571 3.255 0.000 0.000

qcomposite
wall

4.601 4.608 4.287 1.069 1.111

e ¼ 2
qLatentPCM 3.567 3.543 3.169 1.870 0.000

qcomposite
wall

4.570 4.569 4.207 2.943 1.111

e ¼ 3
qLatentPCM 3.543 3.503 3.008 1.934 0.000

qcomposite
wall

4.536 4.521 4.054 3.015 1.111

Figure 2: Dimensionless latent and global heat histograms at Tint ¼ 18�C and for Tf ¼ 19�C
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We noted that the PCM with the melting temperature (19°C) is associated with a thermal state
characterized by a continuous melting in which all the amounts of qLatentPCM are different from zero and
qcomposite
wall

takes high values for all locations. Moreover, the amounts of the dimensionless latent and global

heat for PCM Tf ¼ 19�C are more efficient at Tint ¼ 20�C than at Tint ¼ 18�C.

However, for the melting temperatures 21°C and 23°C, there is melting or an absence of melting
depending on the melting interval, the thermal level, the comfort temperature of the conditioned room
and the PCM location within the wall. For the PCM of melting temperature (21°C), the best results are
shown at Tint ¼ 20�C. At Tint ¼ 18�C, we notice the absence of melting only in the PCM location equal
to 25 cm and for the melting factor e = 1% and 2%. Thus, the continuous melting is noted for the other
locations according to the variation of e. For the PCM of melting temperature (23°C), the results are the
best at Tint ¼ 20�C. Each PCM location and each melting factor e involve different results. Thus, this has
a direct influence on the melting or the absence of melting of the PCM inside the partition wall.

Figure 4: Dimensionless latent and global heat histograms at Tint ¼ 18�C and for Tf ¼ 23�C

Figure 3: Dimensionless latent and global heat histograms at Tint ¼ 18�C and for Tf ¼ 21�C
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Results of the study show that the PCM embedding is beneficial in terms of charged energy, for all the
cases when qcomposite

wall
� 1. PCM enhances the amount of charged energy when the melting temperature range

and level, and the PCM emplacement are suitable. Increasing melting factor and judicious location are
characterized by qLATENTPCM 6¼ 0, which gives the best results. Furthermore, the results show that PCM must
have a thermal level of melting close to the comfort temperature, localized in the vicinity of local under
activity.

Figure 5: Dimensionless latent and global heat histogram at Tint ¼ 20�C and for Tf ¼ 19�C

Figure 6: Dimensionless latent and global heat histograms at Tint ¼ 20�C and for Tf ¼ 21�C
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4 Conclusion

In this paper, we have studied the effect of the location, the melting temperature, and the melting range
factor e on the PCM’s fusion. We have been interested in latent heat charged in the PCM and the global heat
charged in the composite partition wall separating two locals with different thermal environments. PCM
embedding enhances the amount of the charged energy when the thermal level of melting is close to the
comfort temperature of the conditioned room, as well as when the PCM location is not so far from the
adjacent local. The best results are noticed when the dimensionless global heat charged in the composite
wall is, qcomposite

wall
� 1 and the dimensionless latent heat charged in PCM is qLATENTPCM 6¼ 0. This shows that

the wall with PCM is more efficient than the referential one and indicates that the melting takes place for
judicious emplacements of the PCM and the appropriate melting level. PCM increases the energy
involved in the composite partition wall and reduces the energy transmitted to the conditioned room. In
addition, results indicate that the increase of the melting factor e and the variation of the external
maximum temperature could give the best storage performance.
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