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ABSTRACT

This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically
extract from them relevant information with an accuracy that is beyond that achievable with traditional techni-
ques. The work is intended to improve current methods for the assessment of human health through measure-
ment of the distribution of four types of blood cells, namely, eosinophils, neutrophils, monocytes, and
lymphocytes, known for their relationship with human body damage, inflammatory regions, and organ illnesses,
in particular, and with the health of the immune system and other hazards, such as cardiovascular disease or
infections, more in general. The results of the experiments show that the deep learning models can automatically
extract features from the blood cell images and properly classify them with an accuracy of 98%, 97%, and 89%,
respectively, with regard to the training, verification, and testing of the corresponding datasets.
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Nomenclature
xl input vector of the residual unit
r activation function
Fðxl; WlÞ residual function
hðxlÞ underlying mapping of the residual unit
W the image width
H the image height
S the convolution kernel step size
TP true positive cases
TN true negative cases
FP false positive cases
FN false negative cases
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1 Introduction

The goal of a routine blood examination is to measure the number and concentration of blood cells in a
patient’s blood in order to determine, among other things, if the patient has anemia or an infection. Therefore,
high-precision blood cell detection technology is essential for human health diagnostics [1]. There are five
different types of white blood cells, neutrophils, eosinophils, basophils, lymphocytes, and monocytes. There
are now two available types of cell detection and counting technologies. Traditional image processing
techniques like automatic cell recognition technology based on Hough transform [2], watershed method
based on distance transform [3], and method based on threshold [4] were used in the early stages, but
they will not be accurate enough for real-world applications, especially in areas with a lot of cell overlap.
In the earliest stages of pre-blood cell identification, which is divided into two categories, traditional
image processing technology was mostly used. The most prevalent technique was hand-staining, followed
by manual inspection and classification under a microscope [5]. This method requires examiners to have
a comprehensive understanding of cell morphology and to have mastered the capacity to spot and
recognize patterns via consistent study and practice. Due to the vast amount of microscopic image data
and the diversity of blood cell morphology, traditional blood cell identification methods are becoming
more unsuitable for addressing the various complex challenges confronted by blood cell analysis
inspectors. Many effective deep learning-based object detection algorithms, such as R-CNN, Mask-R-
CNN [6], YOLO [7], and RetinaNet [8], have been presented in recent years, and they are now
frequently employed in blood cell detection applications.

Francois Chollet proposed CNNs that are superior to Inception by substituting depth-wise separable
convolutions. An experiment with a larger dataset of 350 million images and 17,000 classes for image
classification [9] shows that the Xception can improve the performance of CNNs. Christian et al. scaled
networks using correctly factorized convolutions and aggressive regularization [10]. He et al. [11]
introduced a residual learning framework and evaluated residual networks with up to 152 layers using the
ImageNet dataset. Han et al. [12] proposed a three-step strategy to eliminate superfluous connections to
circumvent the issues that neural networks are difficult to deploy on embedded systems and that
traditional neural networks can correct the design prior to training. Start by training the network and
identifying the vital links. Second, eliminate any unnecessary connections. The network must then be
retrained. Szegedy et al. [13] proposed the Inception architecture for deep convolutional neural networks.
In addition, the Hebbian principle and multi-scale processing intuition were used to maximize quality in
design decisions. Ma et al. [14] created the novel ShuffeNet V2 architecture to analyze the direct metric
on the target platform. Wang et al. [15] proposed an end-to-end training method for a residual attention
network employing an attention mechanism and a hybrid feed-forward network architecture. The
proposed network achieves state-of-the-art object performance on three benchmark datasets, including
CIFAR-10, CIFAR-100, and ImageNet. Zoph et al. [16] made a new search space called the “NASNet
search space” and a new regularization method called Scheduled DropPath to make the NASNet models
more general.

Hegde et al. [17] categorized white blood cells using both traditional image processing techniques and
deep learning methods. The output of the classifier was evaluated using a neural network with hand-crafted
features that had an average accuracy of 99.8 percent. In addition, white blood cells were classified with
approximately 99% accuracy using CNN and transfer learning. Kutlu et al. [18] utilized Regional
Convolutional Neural Networks (R-CNN) and merged AlexNet, VGG16, GoogLeNet, and
ResNet50 architectures to recognize WBC cells. When the sample size is small, Baydilli et al. [19]
classified WBC using capsule networks. Shahin et al. [20] proposed transfer learning using deep
activation characteristics and fine-tuning of existing deep networks for the identification of WBCs. In
addition, “WBCsNet,” a novel end-to-end convolutional deep architecture, was proposed and utilized to
balance the categorization of the WBCs dataset. Sharma et al. [21] created a deep learning system that
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uses convolutional neural networks to make the whole process of classifying white blood cells (WBC)
automatic. Sahlol et al. [22] proposed a more effective hybrid technique for classifying WBCs. The
hybrid strategy consisted primarily of two steps, Initially, features were extracted from WBC images
using VGGNet. The collected features were then filtered using the Salp Swarm Algorithm (SESSA).
Zhang et al. [23] added the deformable convolution layer to the standard U-Net structure to deform U-
Net (dU-Net) and improve the accuracy of RBC classification in order to further address the low image
quality resulting from noise and artifacts. Iqbal et al. [24] utilized machine learning techniques such as
logistic regression, support vector machine (SVM), and CNN to differentiate between healthy and
diseased cells. Kassim et al. [25] introduced the RBCNet pipeline, which consists of a U-Net first stage
for cell-clusteror superpixel segmentation and a faster R-CNN second refinement stage for recognizing
tiny objects within connected component clusters. Jiang et al. [26] proposed a new deep learning method
called attention-YOLO, which adds a channel attention mechanism and a spatial attention mechanism to a
feature extraction network in order to effectively realize the automation of blood count and solve the
problems of inadequate positioning of the bounding boxes in the YOLO detection method. Compared to
RBC cell classification, Aliyu et al. [27] proposed a method to classify abnormalities based on images of
RBCs with deformed shapes using SVM and Deep learning. Boldú et al. [28] used pre-trained CNNs
(VGG16, ResNet101, DenseNet121, and SENet154) to adjust their layers to datasets, after which they
selected the optimal architecture and created a system with two parallel modules (ALNet). Mohamed
et al. [29] classified WBC using ten distinct pre-trained models and six distinct machine learning
techniques. Reference [30] proposed geometric-feature spectrum ExtremeNet (GFS-ExtremeNet), a
geometry-aware deep-learning technique for cell detection. Khouani et al. [31] developed an approach
based on deep learning for automatically recognizing white blood cells in images of peripheral blood and
bone marrow. In particular, the application of combined predictions and corrections increased model
outputs, as did the use of a new technique that improved segmentation quality by collaborating model
results with geographical information. Tran et al. [32] used cutting-edge deep learning semantic
segmentation techniques to separate red and white blood cells in blood smear images.

The rest of this work is arranged as follows, Section 2 contains the deep learning classification model
and model classification assessment criteria, such as model architecture design and analysis, and
Section 3 contains the model optimization approach. Section 3 presents a feature distribution study of the
four blood cells as well as a comparison of nine deep learning models for classification. The Section 4 of
this paper brings the paper to a conclusion.

2 Proposed Approaches for Hemodynamic Classification Analysis

On numerous occasions, deep neural networks outperform conventional machine learning techniques.
Complex nonlinear relationships between input and output variables are modeled by DNNs. Given
sufficient data, deep neural networks can provide a reliable solution for hemodynamic classification tasks.
CNNS learns features implicitly from training data. Because neurons on the same feature map surface
have identical weights, the networks can be trained concurrently. The structure of local weight sharing
reduces network complexity and provides unique benefits for image classification tasks. Resnet’s residual
structure enables the network to be deeper, to converge more rapidly, and to be optimized with fewer
parameters and less complexity than earlier models. Based on InceptionV3, Xception replaces the
Inception module with depth-separable convolutions and combines Resnet skip-connection structures.
This expedites the model’s convergence and increases its precision. However, the computational process
of the InceptionV3 network structure is relatively dispersed, and the performance of existing
convolutional neural networks for classification tasks is inadequate. SqueezeNet is a traditional
lightweight network, and on the ImageNet dataset, AlexNet can achieve comparable results with 50 times
fewer parameters than SqueezeNet. GoogleNet includes an additional classifier during training, which can
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mitigate the effects of vanishing gradients. Once the model has been trained, the supplementary classifier is
no longer required. Additionally, the fully connected layer and a global average pooling layer are utilized to
reduce the number of parameters in the model, allowing it to be successfully applied to image classification
tasks. SuffleNetV2’s primary function is to alter the data flow using channel shuffling. It reduces the number
of parameters and computation required for small models. Its disadvantage is that it creates a boundary effect
in which only a small portion of the input channel is used to generate the output channel. Attention
56 performs better when the output sequence and input sequence are not in the same order. NASNet can
be applied to arbitrary classification tasks by stacking network units. NASNet is essentially a more
complicated version of Inception. We think that these traditional neural networks can do a good job of
analyzing how blood moves through the body.

In this paper, a multi-deep learning model-based classification analysis for hemodynamics is proposed.
This paper uses a total of 12,444 images, which are divided into training sets, verification sets, and test sets,
totaling 7965, 1992, and 2487 images, respectively. These images are categorized as eosinophils,
neutrophils, monocytes, and lymphocytes. All datasets are subjected to uniform data preprocessing,
including normalization distribution testing. The CNNs, Xception, InceptionV3, ResNet50, Squeeze,
GoogleNet, SuffleNetV2, Attention56, and NasNet deep learning models are used for the four categories.
The performance of the proposed approaches is measured by the TP, TN, FP, FN, accuracy, and model loss.

Fig. 1 illustrates the process flow for this paper. In the classification task’s overall architecture, the
original data set is processed before the training set, validation set, and test set are proportionally divided.
The processing networks CNNs, Xception, InceptionV3, ResNet50, Squeeze, GoogleNet, SuffleNetV2,
Attention56, and NasNet receive the processed data. Then, visualize the training epoch’s curve using the
loss and accuracy values obtained during model training. At the conclusion, each model’s test results
were evaluated using a confusion matrix.

Figure 1: The processing diagram of this paper
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2.1 The Classification Model Based on Deep Learning
Without the need for manual feature creation and cell position calibration, deep learning models can

accept training samples, extract valid features from the samples, and perform classification recognition
without the need for manual feature creation and cell position calibration. Additionally, they can extract
valid features from the sample and perform classification recognition. By increasing the number of hidden
layers, deep neural networks can analyze and process a substantial amount of cell data, and this increase
in the number of layers improves accuracy and overcomes the limitations of shallow neural networks
[33,34]. In the case of the widespread ResNet network, the following model applies,

yl ¼ F xl; Wlð Þ þ h xlð Þ; xlþ1 ¼ r ylð Þ (1)

where xl denotes the input vector of the residual unit. xlþ1 and yl denote the output vectors. r represents the
activation function. The function Fðxl; WlÞ represents the residual function, which represents the learned
residual. hðxlÞ is the underlying mapping of the residual unit, when hðxlÞ ¼ xl represents the identity
mapping. Therefore, the features learned from shallow layer l to deep layer L can be expressed as,

xL ¼ xl þ
XL�1

i¼1
F xi; Wið Þ (2)

where xL represents the output vector of the Lth residual unit. The calculation formula of convolution is as
follows:

Woutput ¼ Winput � Wfilter þ 2P

S
þ 1 (3)

Houtput ¼ Hinput � Hfilter þ 2P

S
þ 1 (4)

whereW represents the image width, H represents the image height, S represents the convolution kernel step
size, and P represents the increased number of boundary pixel layers at the edge of the image. If the boundary
pixel filling mode is the same mode, P is the number of boundary layers added to the image; if the fill mode is
the valid mode, then P ¼ 0. The model architecture of the ResNet is shown in Fig. 2. The Relu activation
function formula is as follows:

f ðxÞ ¼ max 0; xð Þ (5)

where x represents the input and f ðxÞ is the output result. During forward propagation, the Relu function only
needs to set the threshold. If x , 0, then f ðxÞ ¼ 0; if x . 0, then f ðxÞ ¼ x, thus speeding up the computation
of forward propagation. The cross-entropy loss function is as follows:

L ¼ �
XM

c¼1
yc log pcð Þ (6)

where M expressed as the number of categories, and pc expressed as the probability that the sample belongs
to the category c. yc represented as the label of the sample, when the predicted class is the same as the sample
label, yc ¼ 1; otherwise, yc ¼ 0. L expressed as the total loss value of the sample, and the total loss value is
the sum of all sample loss values in the training set. The softmax function is as follows:

softmax zj
� � ¼ ezj

PK

k¼1
ezk

(7)

where zj is the output value of the jth node, and K represents the number of output nodes, that is, the number
of categories of classification. Through the softmax function, the range of each element is between (0, 1), and
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the sum of all elements is 1. Similarly, the model architecture of the Inception and Xception are shown in
Figs. 3 and 4, respectively.

2.2 Evaluation Criteria of Model Classification
Accuracy, Precision, Reccall and F1 values are used as measurement indexes. The Accuracy, Precision,

recall rate, and F1 are defined as follows:

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(8)

Precision ¼ TP

TP þ FP
(9)

Recall ¼ TP

TP þ FN
(10)

F1 ¼ 2 � Precision � Recall

Precisionþ Recall
(11)

TP stands for true positive cases (both actual and predicted positive cases), TN stands for true negative
cases (actually positive cases, predicted false cases), FP stands for false positive cases (actually negative
cases, predicted positive cases), and FN stands for false negative cases (both actual and predicted
negative cases). The utilized Adam algorithm for deep learning architecture optimization in this paper is
provided in Algorithm 1.

Algorithm 1: Adam optimization

Inputs,

Learning rate a = 0.001, exponential decay rate of the moment estimate q1 ¼ 0:9, ρ2 = 0.999, constant
d ¼ 10�7 used for numerical convergence, initialization parameters h, initializes first-order moment variables
s ¼ 0 and second-order moment variables r ¼ 0, time t ¼ 0.

Outputs, Resulting parameters h.

While Resulting parameters h does not convergence do

Sampling sample from the training dataset fxð1Þ; xð2Þ; . . . ; xðmÞg, and the target yðiÞ

Calculate the gradient, g  1

m
rhLðf ðxðiÞ; hÞ; yðiÞÞ, t  t þ 1

Updates biased first-order moment estimates, s q1sþ ð1 � q1Þg,
Updates biased second-order moment estimates, r  q2r þ ð1 � q2Þg � g

Figure 2: The model architecture of the ResNet

(Continued)
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Corrects the deviation of the first-order moment, ŝ s

1� qt1

Corrects the deviation of the second-order moment, r̂ r

1� qt2
Update the calculation, h hþ Dh

End while

Figure 3: The model architecture of the inception

Algorithm 1: (Continued)
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where t represents the number of steps updated, a is used to control the learning rate, h indicates the
parameters that need to be solved for the update, q1, q2 represents the first and second order moment
attenuation coefficients, respectively. yðiÞ represents the gradient of the objective function for
differentiation, s and r are the first-order moment (the expectation of the gradient g) and the second-order
moment of the gradient (i.e., the expectation of the gradient g2), respectively. Both ŝ and r̂ denote the
bias correction in the case of zero initial value.

3 Experiments

This section contains an evaluation of feature distribution and performance. Visulization examines the
typical distribution of the four sample categories. To make sure that the final classifications are correct, the
performance of the eight deep learning models is compared to that of the benchmarking methods.

3.1 Feature Distribution Analysis of the Four Blood Cells
The contents of granules can be released by eosinophils, causing tissue damage and accelerating the

onset of inflammation. During the day and night, the quantity of eosinophils in the blood changes. White
blood cells are split into two types based on physical differences, granular and non-granular, with
eosinophils being a type of non-granular white blood cell. Eosinophils are white blood cell components
that, like other granulocytes, are generated from bone marrow hematopoietic stem cells. Eosinophils are
white blood cells that kill bacteria and parasites. They are also crucial cells in the immunological and
allergy response processes. In Wright stained blood smears, Neutrophils’ cytoplasm appears colorless or
extremely pale reddish, with many diffuse small (0.2–0.4 micron) light red or light purple particles.
Tissue damage, malignant tumors, aplastic anemia, agranulocytosis, myelodysplastic syndrome,
hypersplenism, and autoimmune illnesses all cause it to rise or fall. Lymphocytes, the smallest white
blood cells, are also a type of white blood cell. They are made by lymphoid organs and are mostly found
in the lymph fluid that circulates through lymphatic channels. They are a major cellular component of the

Figure 4: The model architecture of the Xception
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immune response function of the body and the main executor of practically all lymphatic immune functions.
Lymphocytes are a type of cell that has the ability to recognize and respond to antigens. T lymphocytes (also
known as T cells), B lymphocytes (also known as B cells), and natural killer (NK) cells can be classified
based on their motility, surface chemicals, and roles. Monocytes are the largest white blood cells and the
largest blood cells in the body. They play a crucial role in the body’s defense system. Monocytes are
produced from hematopoietic stem cells in the bone marrow and develop in the bone marrow before
entering the bloodstream as immature cells. Monocytes also play a role in immunological responses,
inducing a specific immune response in lymphocytes after phagocytosing antigen carried by the antigen
determinant given to them. Monocytes are also the primary cellular defense against intracellular harmful
bacteria and parasites, and they may recognize and kill tumor cells. Monocytes have more non-specific
lipases and have a better phagocytosis than other blood cells. The total%age of monocytes might alter
when the body is inflamed or has various disorders. As a result, measuring monocyte count has become
an important supplemental diagnostic tool. Figs. 5–7 illustrate the visulization of four blood cells and the
examination of eosinophils with labeling.

3.2 Classification Comparison of the Deep Learning Models
Traditional CNNs with four hidden layers, such as Xception [9], InceptionV3 [10], ResNet50 [11],

Squeeze [12], GoogleNet [13], SuffleNetV2 [14], Attention56 [15], and NasNet [16], are utilized to
evaluate the final four classification detections. On the basis of deep learning’s excellent classification
performance, the Keras and Pytorch frameworks are utilized to develop the deep learning network
classification model for the classified findings. Crossectropy is used to assess model loss in the trials, and
the Adam method is utilized to optimize model performance. The maximum epoch length is 20 and the
learning rate is 0.0001. All tests are conducted on a Dell Precision 5820 running Linux. The graphics
processing unit is an NVIDIA 2080Ti 11G. Table 1 shows how the performance of nine deep learning
models was judged, and Figs. 8 and 9 show how the performance of nine deep learning models was judged.

Figure 5: Visulization of four blood cells
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Figure 6: Visulization of four blood cells

Figure 7: Labeling analysis of Eosinophils
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Table 1: The performance evaluation of nine deep learning models

Methods Training
loss

Training acc
(%)

Validation
loss

Validation acc
(%)

Testing
loss

Testing acc
(%)

CNNs 0.0548 93 0.5620 88 2.0388 72

Xception [9] 0.0459 97 0.0902 96 0.0129 89

InceptionV3 [10] 0.4387 93 0.0338 93 0.2550 85

ResNet50 [11] 0.0080 93 0.0126 95 1.6920 87

Squeeze [12] 0.1893 96 0.0327 94 0.0478 85

GoogleNet [13] 0.9427 96 0.0419 96 0.0375 86

SuffleNetV2 [14] 0.2830 94 0.0178 95 0.0263 85

Attention56 [15] 0.1553 87 0.1405 89 0.0186 83

NasNet [16] 0.0470 98 0.0098 97 0.0410 87

Figure 8: Performance evaluation of five deep learning models. (a) The training, valid and testing loss
curve; (b) The training, valid and testing accuracy curve; (c) Confusion matrix of the valid dataset; (d)
Confusion matrix of the testing dataset
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In training, validation, and testing, the ResNet50, NasNet, and Xception achieve low model loss of
0.0080, 0.0098, and 0.0129, respectively. NasNet, NasNet, and Xception, respectively, have the best
categorization accuracy of 98%, 97%, and 89%. In terms of individual metrics, the best results for
training loss, training accuracy, validation loss, validation accuracy, test loss and test accuracy are
ResNet50 (0.0080), NasNet (98%), NasNet (0.0098), NasNet (97%), Xception (0.0129) and Xception
(89%). For overall metrics, we believe that the NasNet model achieves the best results, with the best
performance in training accuracy, validation loss and validation accuracy, and is second only to Xception
in test accuracy compared to other models. Despite the fact that the granulocyte appearance, diameter,
and refractive index of the aforementioned four blood cells are distinct, the classification accuracy and
model loss of nine deep learning models, in particular the benchmark model, were compared. It was
discovered that deep learning is capable of automatically extracting features from four types of blood
cells, including eosinophils, neutrophils, monocytes, and lymphocytes, and performing accurate
classification analysis. This shows that the method proposed for analyzing hemodynamic categorization
makes sense and works well.

4 Conclusions

In this study, nine models of deep learning were employed to classify four types of blood cells,
eosinophils, neutrophils, monocytes, and lymphocytes. CNNs, Xception, InceptionV3, ResNet50,
Squeeze, GoogleNet, SuffleNetV2, Attention56, and NasNet are among these models. Also presented are

Figure 9: Performance evaluation of four deep learning models. (a) The training, valid and testing loss
curve; (b) The training, valid and testing accuracy curve; (c) Confusion matrix of the valid dataset; (d)
Confusion matrix of the testing dataset
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the statistical data derived from the aforementioned deep learning model, as well as the experiments based on
12,444 blood cell images and the experimental parameters setup. ResNet50, NasNet, and Xception achieve
minimal model loss of 0.0080, 0.0098, and 0.0129 in training, validation, and testing datasets, respectively, and
NasNet, NasNet, and Xception achieve 98%, 97% and 89% classification accuracy in training, validation, and
testing datasets, despite blood cells with varying granulocyte appearance, diameter, and refractive index. Future
research will investigate the analysis of clinical datasets utilizing improved techniques.
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