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ABSTRACT

The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels
of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of fatigue fail-
ure. The fatigue life of high strength aluminum alloy 2090-T83 is predicted in this study using a variety of artificial
intelligence and machine learning techniques for constant amplitude and negative stress ratios (R ¼ �1). Arti-
ficial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), support-vector machines (SVM),
a random forest model (RF), and an extreme-gradient tree-boosting model (XGB) are trained using numerical
and experimental input data obtained from fatigue tests based on a relatively low number of stress measurements.
In particular, the coefficients of the traditional force law formula are found using relevant numerical methods. It is
shown that, in comparison to traditional approaches, the neural network and neuro-fuzzy models produce better
results, with the neural network models trained using the boosting iterations technique providing the best perfor-
mances. Building strong models from weak models, XGB helps to predict fatigue life by reducing model partiality
and variation in supervised learning. Fuzzy neural models can be used to predict the fatigue life of alloys more
accurately than neural networks and traditional methods.
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Nomenclature
ANN Artificial neural network
ANFIS Adaptive neuro-fuzzy inference system
SVM Support-vector machines
SVR Support vector regression models
RF Random forest models
XGB Extreme gradient tree boosting models
FFN Feed forward neural network
r Amplitude stress
S � N Curve of stress against cycles to failure
Nf Number of cycles to failure
n Number of data set
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i Applied torque level
pi Experimental value
a, b Constants for the Basquin and Dengel equation
ai Predicted value
Log, Lin Logistic and linear activation functions, respectively
MAE Mean absolute error
R2 Coefficient of determination
RMSE Root mean square error
MSE Mean square error
A, d, E Corson equation constants
MF Membership function

1 Introduction

Fatigue life is the most important issue that influences the structure and material engineering leading to
an effect on the life of the human. The fatigue damage is the primary cause of failure situations which has
been the area of the research during the past few years, where they have been demonstrated that the root cause
of 80% of incidents involving applied structures. The fatigue phenomena has been extensively studied using
machine learning techniques when one or more of the following conditions exist; Firstly, there is a significant
amount of data accessible. Secondly, a precise solution using physics-based mathematical techniques is not
feasible; and finally, if the data range is complex or erratic, the machine learning models are appropriate [1].

The most popular kinds of fatigue testing are S-N tests, often known as Wöhler tests. These tests are
simulated to component the fatigue life and offer engineers useful data for the design process. It is
constructed by using empirical formulas based on experimental data due to the nonlinearity and several
other factors that affect on it. Several empirical formulas, including the Dengel representation with two
parameters a and b, the Basquin equation with a logarithmic scale and two parameters a and b, are used
to find S-N curves. We can enhance the quality of the data correction by using the inflection point
method developed by Palmgren and Stromeyer with two parameters. The Corson equation, which has
three parameters (A, E, and d), and the Weibull equation, which has four parameters, are both
significantly inaccurate and inconsistent [2]. Since achieving the fatigue S-N curve has been extremely
challenging; therefore it is an imperative objective for the designer to obtain the curve fully and
consistently. One of the artificial intelligence techniques that have been used successfully in a variety of
engineering applications is artificial neural networks. Although multivariable nonlinear mathematical
modelling accuracy is extremely challenging to achieve using conventional analytical techniques, it can
be correctly represented by ANN due to its massively parallel structure. Many researchers utilize ANNs
to forecast the fatigue life of materials because they are excellent at characterizing fatigue processes [3].

For instance, artificial neural networks were used by Dharmadhikari et al. [4], who examined the
potential of each deep neural network (DNN) structure to identify fatigue cracks during two separate
phases of fatigue failure. With two-phase accuracy rates of 94.26 percent and 98.94 percent for the
feature-free network, it was found that it perform better than the feature-based network; this implies that
feature-free DNNs can replicate features more accurately, even if they are black boxes by design, and can
make it easier to choose between signal processing methods that have the similar problems. In the study
by Mohanty et al. [5], ANN was used to predict the fatigue fracture propagation life of the aluminum
alloys 7020-T7 and 2024-T3 under the influence of the load ratio. In this study, numerous
phenomenological models have been put forward for forecasting the fatigue life of the components under
the influence of the load ratio to calculate the impact of the mean load. Moreover, using an artificial
neural network (ANN) develop an autonomous prediction methodology to evaluate the constant
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amplitude loading fatigue life. Himmiche et al. [6] illustrated the two different ANN techniques (Radial basis
function network (RBFN) and extreme learning machine (ELM)) that could be used to predict the minor
crack formation due to fatigue. These two techniques have ability to create and anticipate the emergence
of microscopic fatigue cracks in different materials, where the variety of stress levels and ratios (R) are
considered in the works.

Bentéjac et al. [7] introduced a novel approach that examines the XGBoost technology. In this work, a
scalable assembly method based on scaling improvement has been established as a dependable and potent
remedy for machine learning problems. This study offers a useful analysis of the training efficiency,
generalization effectiveness, and parameter. Additionally, a comparison of XGBoost with gradient
boosting, random forests, and default settings were concluded in addition to using the properly tailored
models. Basak et al. [8] studied the generalization error linked to obtaining overall performance with the
role of Support Vector Regression (SVR) technology. The SVR technology has been used in a variety of
applications, including time series, risky and noisy financial forecasting, convex quadratic programming,
loss function alternatives, and approximation of difficult geometrical analyses.

Branco et al. [9] investigated the potential use of the cumulative strain energy density as a parameter to
measure fatigue in high-tech, strain-controlled steels. First, nine steel types were chosen from three
multiphase families, representing a range of elemental compositions and heat treatment techniques, and
their cyclic stress-strain responses were examined. Then, the suggested model’s predictive abilities were
contrasted with those of alternative strain- and energy-based methods. They discovered that when the
strain amplitude increases, the cumulative strain energy density falls. Additionally, it was discovered that
a power function may be used to connect the cumulative strain energy density and fatigue life. Macek
et al. [10] added to the understanding of fracture mechanisms for fatigue performance by examining the
fracture surface topography of X8CrNiS18-9 austenitic stainless steel specimens under various loading
conditions and notch radii. Cases with three distinct notch radius and stress amplitude values were
analyzed, and using an optical confocal measurement device, the areas covering the whole surface of the
fracture topographies were calculated.

Abdullatef et al. [11] used traditional analytical techniques to predict fatigue life (number of cycles to
failure) for composite materials that are constructed by stacking four layers of fibreglass-reinforced
polyester resin. These plies were tested in completely reversible tension-compression under dynamic load
(fatigue test) at stress ratio R ¼ �1. A trustworthy and accurate method for estimating fatigue life is the
ANN. The networks employed are the Radial Bases Function Neural Network (RBFNN), the Generalized
Regression Neural Network (GRNN), and the Feed Forward Neural Network (FFNN). Through a
comparison of the experimental outcomes, it was determined that ANN techniques are superior to
traditional methods for prediction. The findings demonstrate the effectiveness of RBFNN as a tool for
predicting and optimizing the fatigue life of fibreglass-reinforced composites. Stress load and angle of
orientation are inputs to the network, and the network output is the number of cycles until failure.

This study compares traditional approaches with ANN, SVM, ANFIS, RF and XGB models for
predicting the fatigue life of high strength aluminum alloy 2090-T83 under pure torsion loadingat
constant amplitude and negative stress ratios (R ¼ �1) for pure torsion round specimens.

2 Fatigue Test

Plotting the outcomes of fatigue tests as stress (minimum, maximum, or stress amplitude) to Nf to failure
commonly uses a log scale for the number of cycles. However, the scale used to plot stress may be either
linear or log. With decreasing stress, metal can withstand more cycles of stress before failing. Also,
referred to as the endurance or fatigue limit, this limiting stress allows the material to sustain an infinite
number of cycles before failing [12]. The maximum stress that a metal can withstand for an infinitely
high number of cycles with a 50% failure chance is known as the fatigue (endurance) limit, or Sf , and it
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is represented by the S � N curve’s horizontal region. Most nonferrous metals do not show signs of fatigue.
Instead, as seen by the curve for aluminum alloys, their S-N curves exhibit a mild rate of decline across a
large number of cycles. For these kinds of metals, the amount of stress that the metal can bear over a
given number of cycles is referred to as “fatigue strength” as opposed to “fatigue limit”. Each table of
fatigue strengths must state the number of cycles for which the strengths are displayed because there is
no set number of cycles. Falsely referred to as the fatigue limit, the fatigue strength of nonferrous metals
is usually at 108 or 5 � 108 stress cycles [13].
3 Artificial Neural Networks

The multi-layer perceptron, a type of neural network trained using the backpropagation method
(backpropagation neural network), is the most effective in applications for engineering fields. Thus, this
approaches is used the back-propagation neural network. It gets its name from the fact that the back-
propagation network learns by reflecting errors backward from input neurons to output neurons. In Fig. 1,
a single artificial neuron’s structure is presented. The following formula is used to calculate the weighted
sum of the input components:

Sj ¼
Xn
i¼1

wijxi � hj (1)

where xi is the output of the ith neuron in the previous layer, wij is the weight between the ith neuron and the
jth neuron in the next layer; the intrinsic threshold, or hj, can be thought of as a single weight with a negative
sign; and Sj is the weighted sum of a jth neuron for input received from the preceding layer with n neurons.
The output of the jth neuron yj is calculated using the sigmoid function once the weighted sum Sj has been
computed:

yj ¼ f Sj
� � ¼ 1

1þ exp �gSj
� � (2)

The semi-linear region’s slope is managed by the constant g. Except for the input layer, all layers exhibit
sigmoid nonlinearity [14].

Input, output, and several hidden layers are constructed in the multi-layer perceptron network. More
complicated relationships can be represented and calculated by the network between patterns since hidden
layers are available. Numerous researchers have shown that the three-layers and multi-layer perceptron
can complete classification tasks of any difficulty, depending on how many neurons are present in the
hidden layer, with complexity. Depending on many factors, such as the number of neurons in each layer
may change. Fig. 2 illustrates the fundamental design of a feedforward, backpropagation network based
on the multilayer training algorithm. From the input layer to the output layer, propagation occurs and
there are no connections between neurons inside a layer. To reduce the discrepancy between the actual
and desired outputs, the network is given an assortment of input and output sequences that are matching

Figure 1: An artificial neuron’s schematic structure with input units
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and the connection strengths or weights of the interconnections are automatically altered. This method of
neural network training is known as supervised learning. The cost function is the mean square difference
between the desired and actual network outputs, and it is minimized using a gradient search technique. A
significant number of training sets and cycles are used for the network’s training (epochs). The root
means square error is obtained by adding the squares of the errors for each neuron in the output layer,
dividing by the total number of neurons in the output layer to obtain an average, and taking the square
root of that average. The root mean square error produces the convergence criteria is represented
mathematically as [15]:

eRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 di � yið Þ2
m

s
(3)

where m is the number of neurons in the output layer, yi and di represent the actual output and desired values
for the ith output neuron, respectively.

4 Adaptive Neuro-Fuzzy Inference System

The Sugeno type of fuzzy model is used by ANFIS, a neuro-fuzzy system, to avoid employing
defuzzification. It provides the rules’ formulae. The fuzzy inference system in this system comprises two
inputs, m1 and m2, and one output, k. The following statements provide a common rule set for the
Sugeno model with two fuzzy if-then rules:

Rule 1: If m1 is X1 and m2 is Y1; then f1 ¼ x1m1 þ y1m2 þ z1.

Rule 2: If m1is X2 and m2 is Y2; then f2 ¼ x2m1 þ y2m2 þ z2.

The coefficients of the first-order linear polynomial linear functions are; xi, yi, and (zi = 1, 2), while
X1, Y1, X2, and Y2 are fuzzy sets. As shown in Fig. 3, ANFIS has five-layer architecture. Input,
fuzzification, rule, normalization, and output layers are included. The fuzzification layer produces the
inputs’ fuzzy numbers, also, the others fuzzy numbers that can be used which are including the triangle,
trapezoid, and Gaussian fuzzy numbers. Eq. (4) is frequently used with a triangular fuzzy number.

f x; a; b; cð Þ ¼

0; x � a
x� a

b� a
; a � x � b

c� x

c� b
; b � x � c

0; c � x

8>>>><
>>>>:

(4)

Figure 2: Basic elements of a multi-layer perceptron-based feed-forward, back-propagation network
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where a and c are the triangular bases, and b is the top. Rules are developed following the fuzzification of the
inputs. By using these guidelines, normalization is created. An output layer provides the system’s outcomes
in the end [16].

5 Experimental Technique

This research was carried out on high-strength aluminum alloy 2090-T83. Developed for high-strength
aerospace applications, it is an aluminum-lithium alloy. When compared to other aircraft alloys, Li-Cu-Al
alloy provides 8% reduction in density and 10% higher for the modulus of the elasticity. In addition to
the low-density feature, this has unique weight-saving benefits. Alloy 2090-T83 has comparable strengths
to other high strength aluminum alloys and higher corrosion resistance [17]. The chemical compositions
and the mechanical properties are shown in Tables 1 and 2, respectively. With an average radius of 3.95
mm, the pure torsion round specimens were used for the fatigue tests. The main measurements of the test
specimens are shown in Fig. 4. The experiment is conducted by using the fatigue testing machine
(AVERY’S 7305) [18], see Fig. 5. With an average radius of 3.95 mm, the pure torsion round specimens
were used for these tests. At R ¼ �1, a constant load amplitude test was conducted while the fatigue test
was in place. For each torque level, the four specimens, Ai, Bi, Ci and Di, are used to calculate the fatigue
life by plotting the S � N curves. Table 3 presents the results of the average input data which were
computed based on the fatigue test results and are displayed in Appendix A.

Figure 3: ANFIS structure [16]

Table 1: Chemical composition of high strength aluminum alloy 2090-T83

Al Cr Cu Fe Li Mg

Standard [7] 93.2%–95.6% ≤0.05% 2.4%–3.0% ≤0.12% 1.9%–2.6% ≤0.25%

Measured * 94.9% 0.39% 2.8% 0.105% 2.1% 0.16%

Mn Si Ti Zn Zr

Standard [7] ≤0.05% ≤0.10% ≤0.15% ≤0.10% 0.08%–0.15%

Measured * 0.41% 0.10% 0.12% 0.09% 0.11%

Table 2: Mechanical properties of high strength aluminum alloy 2090-T83

Tensile strength,
ultimate

Tensile strength,
yield

Elongation Modulus
of elasticity

Fracture
toughness

Hardness

BH VH

Standard [7] ≥531 MPa ≥483 MPa ≥3.0% 79.3 GPa 44.0 MPa
ffiffiffiffi
m

p
150 163

Measured * 511 MPa 444 MPa 4.5% 76.1 GPa —— 151 158
Note: *The samples were examined at the Specialized Institute for Engineering Industries-Baghdad/Iraq.
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Figure 4: Round specimen fatigue test for pure torsion

Torsion Specimen Holder

 

Figure 5: AVERY’s 7305 fatigue testing machine

Table 3: Stress and number of cycles to failure of the high strength aluminum alloy 2090-T83

Torque level
No. (i)

Torsional stress
(ave.) sið Þ [MPa]

No. of cycles ðNf Þ No. of cycles
(ave.) ðNfiÞAi Bi Ci Di

1 284.01 3260 3118 2209 3260 2960

2 274.55 4338 5260 3160 4260 4338

3 256.73 5330 6066 4870 5066 5333

4 253.24 7890 7938 5430 6998 7064

5 250.95 9220 12889 7790 13289 10797

6 229.11 16100 15232 9120 15662 14029

7 217.74 34340 41895 16500 40295 33258

8 235.72 68772 56333 34640 59833 54895

9 229.56 79467 87832 68072 82832 79551

10 254.85 101017 124466 79567 125566 107654

11 240.61 138994 144999 102117 149499 133902

12 184.61 231088 210292 133594 221092 199017
(Continued)
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6 Results and Discussion

6.1 Fatigue Test Results
Fatigue test specimens conducted are achieved under pure torsion load with constant stress amplitude to

establish the S-N curve (100 specimens divided into 25 groups are listed in Table 3), which is shown in
Fig. 6. Two numerical models were built based on the first model by extracting the average values of the
stresses and the number of cycles (Nf ) shown in Eq. (5) and denoted as the numerical model. While, for
the second model, it was prepared through all values obtained through the test from Eq. (6) and denoted
as the experimental model. In both cases, by taking the logarithm to the base 10 for both sides of the
power law equation, it can be converted to a linear equation, and the constants in this equation can then
be found using the linear least squares approach. The equations after calculations are:

rf ¼ 582:4ð Þ � Nf

� ��0:01019
(5)

rf ¼ 511:9ð Þ � Nf

� ��0:01106
(6)

Table 4 summarizes each model that was taken into consideration for regression and gives it a brief
name, invisible neurons, generating algorithms (training) and functions of activation. All the models
underwent grid-search optimization using the algorithm shown in Fig. 6. Using the technique from Fig. 7
and the optimal hyperparameter values, models were created. All the developed models were assessed
using both numerical (with average values) and experimental (with all values) input data to provide a full
comparison. The prediction accuracy and duration of calculations for each model were measured.

Table 3 (continued)

Torque level
No. (i)

Torsional stress
(ave.) sið Þ [MPa]

No. of cycles ðNf Þ No. of cycles
(ave.) ðNfiÞAi Bi Ci Di

13 176.07 352951 344901 231988 349101 312902

14 175.14 449101 462763 352051 462763 476670

15 17034 552559 563011 449691 553021 529571

16 166.24 679992 664787 553559 678764 644276

17 161.97 734419 734340 678992 834340 745523

18 155.46 999955 1019870 932119 1070019 1005491

19 158.57 1148976 1176700 1101100 1372706 1199871

20 156.21 1566732 1467004 1433200 1947554 1603623

21 153.84 2246790 2200662 2211100 2201162 2214929

22 151.47 3120000 3109090 3093030 3188890 3127753

23 150.29 3560040 3494567 3428000 3500567 3495794

24 149.11 4302215 4231088 4231300 5031081 4448921

25 147.92 5977763 6207706 5554800 6380806 6030269
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Figure 6: S-N curves for: (a) Numerical model (average input data) (b) Experimental model (overall
input data)

Table 4: Hyper-parameter tuning for different machine learning models

Neural network models

Model designation Structure Invisible
neurons

Generating algorithms (training) Functions
of activation

FF2 Feed forward 12 Levenberg-Marqurted Log-Lin

CF26 Cascade
forward

14 Conjugate gradient with Fletcher-Reeves Log-Lin

CF29 Cascade
forward

19 Conjugate gradient with Polak-Ribiére Log-Lin

EL2 Elman 9 Levenberg-Marqurted Log-Lin

Adaptive neuro-fuzzy inference systems (ANFIS)

ANFIS parameter type ANFIS1 ANFIS2

Number of inputs 4 4

Membership function type Gaussian curve Triangular shaped
(Continued)
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ANN, ANFIS, SVM, RF and XGB (five separate machine learning approaches that employed equivalent
prediction models for inputs and outputs data) findings were compared together. Those display data
generated by experimental work taught with 70% of the data. Both the amount of computation required
to produce predictions and the accuracy of the outcomes are included in the comparison. MATLAB2021b
was used to develop, train, and test the models [19].

Table 4 (continued)

Adaptive neuro-fuzzy inference systems (ANFIS)

Number of membership function 3 * 3 * 3 * 3

Training data set 40 60 81 40 60 81

Checking data set 80 100 180 80 100 180

Epoch number 10 25 40 10 25 40

Number of nodes 193 193

Number of linear parameters 405 405

Number of nonlinear parameters 24 36

Total number of parameters 429 441

Number of fuzzy rule 81 81

Support-vector machines (SVM)

Model designation Parameter Optimal setting Distance
error

Description

SVR 2 Penalty C
Kernel coefficient

2
0.01

4.58 SVR with linear kernel function

SVR 3 Penalty C
Kernel coefficient

2
0.01

1.75 SVR with polynomial kernel
function

SVR 9 Penalty C
Gaussian coefficient

2
0.01

1.23 Gaussian combination

SVR 17 Penalty C
Kernel coefficient

2
0.01

1.17 Trapezoidal type

Random forest (RF)

(RF) Number of trees
Max depth of individual tree
Min samples split of individual tree
Min samples leaf of individual tree

400
10
8
4

0.93 Random Forest

Boosting (XGBoost)

(XGB) Number of boosting iterations learning rate
Max depth of individual tree subsample

500
0.25
15
0.9

0.85 XGBoost
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Several models’ performances were also assessed using a variety of statistical metrics, and the root-
mean-square error (RMSE) was mostly used to improve the neurons in the hidden layer [20]:

Root mean square error RMSEð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
ai � pið Þ2

r
(7)

where N is the number of data sets, pi is the predicted value and ai is the experimental value.

Diverse membership function types were considered to determine the most appropriate models. A grid
search among them revealed the type that yields the most accurate model for modelling various types that are
selected based on input. With more membership functions per input, the computing effort needed to use the
trained model for predictions increases exponentially. As a result, it was decided to simply select as we
believed that the models illustrated in Table 5 dealt with accuracy sufficiently.
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Figure 7: Results of testing by ANN models for: (a) Numerical model; (b) Experimental input data

Table 5: Analysis of the accuracy of results and duration of the calculations for ANN, ANFIS, SVM, RF and
XGB models

Model RMSE
(experimental data)

RMSE
(numerical data)

Duration of
the calculations [ms]

Epochs
No.

FF2 0.0025 0.0036 18.6 30

CF26 0.0017 0.0026 22.2 120

CF29 0.0026 0.0032 27.2 70

EL2 0.0025 0.0034 30.8 5000

ANF1 0.00102 0.0061 164.0 200
(Continued)
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6.2 ANN Models
The most fundamental architecture of a neural network is the simple feed-forward neural network. There

are three layers in this type. Each layer’s node is referred to as a neuron. The layer that is on top is the input
layer. The two input neurons in Fig. 6 represent the two-dimensional input. The second layer contains the
hidden layer while the bottom layer is the output layer. To estimate an output signal during the forward
phase, the neurons are successively turned on from the input to the output layer. During the backward
phase, the error is propagated through the network due to the discrepancy between the output signal and
the correct value. This modifies the neuronal connection weights and reduces the probability of recurrent
mistakes. To decide how much weight should change, optimization techniques such as Adam algorithm
stochastic and gradient descent are used. To determine the gradient direction of each input weight, these
techniques estimate the derivation of each neuron’s activation function.

To predict the fatigue life of the high-strength aluminum alloy 2090-T83, four ANN models feed-
forward neural networks (FF2), cascade forward neural networks (CF26 and CF29), and Elman networks
(EL2) are used and compared with the two traditional methods (input data with average values of the
number of cycles (Nf ) that were obtained from a numerical model and experimental input data with all
obtained values). Exactly 10,000 trials were conducted to train the ANN, with each trial using between
9 and 19 random neurons in the hidden layer. The final ANN was picked because it handled experimental
input with the least amount of inaccuracy. Twelve neurons made up the buried layer of the final ANN.
The FF2, CF26, CF29 and EL2 models are used to predict fatigue life, as shown in Figs. 7a and 7b with
numerical and experimental models vs. feed-forward neural network models.

Fig. 8 graphically compares the accuracy of ANN models to experimental and numerical input data.

6.3 ANFIS Models
In this section, two models of ANFIS models were considered; one with fifth membership functions per

input and the other with three membership functions per input (total of 72 and 800 rules, respectively). The
algorithm shown in Fig. 9 was used to select the ideal kind of membership function. Triangle membership
functions are employed in the most precise regression models for both the ANF1 and ANF2 models,
according to the results of the grid search. Models with various Gaussian membership types were
considered for selecting the best ANFIS results. A grid search was used to demonstrate that the triangular
function creates the most precise model, producing both models with ANF1 and ANF2 per input. As the
number of membership functions per input rises, the amount of computing needed to use the trained
model for predictions grows exponentially. The model accuracy was deemed sufficient at two MFs per

Table 5 (continued)

Model RMSE
(experimental data)

RMSE
(numerical data)

Duration of
the calculations [ms]

Epochs
No.

ANF2 0.0078 0.0099 1793.1 300

SVR 2 0.0026 0.0031 3.9 150

SVR 3 0.023 0.027 2.3 85

SVR 9 0.019 0.022 6.1 200

SVR 17 0.021 0.024 7.9 300

(RF) 0.022 0.033 32.0 100

(XGB) 0.00165 0.0019 14.8 250
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input and did not significantly increase with the addition of more MFs per input; therefore, it was chosen to
stop there.
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Figure 8: Assessment of the produced ANN models’ accuracy and duration of the calculations
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The effectiveness of the techniques developed using the algorithm is illustrated in Figs. 10 and 11. After
applying the input data from numerical simulations and a series of experiments (average and all input data)
based on measured levels of applied torsional stresses and determined for experimental inputs, the results
were compared to reference data. The accuracy and amount of time needed to complete the calculations
for the derived ANFIS models are listed in Table 5. The RMSE, which compares the model output to
experimental data obtained through numerical simulations, is used to determine the accuracy. The
duration of calculations for each point in the experimental input dataset is used to calculate the needed
duration of calculations effort. The duration of calculations was determined using the MATLAB
software’s average of 100 runs.

RMSE from experiments with data collected during tests is significantly more relevant than RSME with
respect to digitally generated input data. Results for the ANF1 and ANF2 models are not significantly
different (see Fig. 11). It is clear from the results (see Table 5) that ANF2 produces results with an RMSE
greater than 8% while requiring approximately 11 times as much computing work as the ANF1 model, as
shown in Fig. 12. So the ANF1 model will be used for further studies (Both RSME values are very
slight), and the potential real-time applications of the ANF2 model raise concerns due to its high
computing cost and lack of accuracy when compared to the ANF1 model.
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Figure 10: Algorithm for identifying the best models for each category
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6.4 Support-Vector Machines (SVM) Models
Fig. 10 is shown the produced four SVR 2, SVR 3, SVR 9 and SVR 17 models with the best

hyperparameter values (out of 500 trials, each is the best). The models were evaluated using experimental
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and numerical input data, similar to the ANFIS models. Fig. 13 is represented the numerical and experimental
results of the result of the support-vector machines (SVM) models test.

The same metrics used for the ANFIS models were used to assess the accuracy and the necessary
duration of calculations effort. Table 5 compares the four models, and Fig. 14 shows the graphical
comparison of the accuracy of numerical and experimental input data. Fig. 13 demonstrates that the linear
model provided somewhat erratic results when dealing with empirically observed inputs, despite having
been trained on data that have white gauss noise added. The experimental input data were noisy, yet the
gaussian model was shown to be the most stable (resistant). Since the SVR 9 has RMSE that is roughly
three times smaller than the SVR 17 and all models require the same amount of time to compute,
SVR 9 will be used for further analysis.

Four different kernel functions were considered for SVM models. Grid searches of the hyperparameter
values were used for all pertinent models. Gaussian kernel function (SVR 9) model outperformed the three
other models in terms of accuracy by an order of magnitude. The SVM tests (see Fig. 13) illustrate that
SVR 2 was not resistant to distorted experimental input data, even if all models were trained on
numerical data with white gaussian noise added, and this is regarded as being of utmost importance. The
SVM 9 model was chosen for further investigation even though it took longer to compute than the
SVR 2, SVR 3, and SVR 17 models since the others, even when assessed, did not do well using
numerical and experimental input data that was the same as that used in training.
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Figure 13: Results of testing by support-vector machines (SVM) models for: (a) Numerical model;
(b) Experimental input data
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6.5 Random Forest (RF) and Boosting (XGBoost) Models
One of the ensemble approaches, the RF algorithm, builds many regression trees and averages the final

forecast from each tree’s results [21]. Gradient boosting’s fundamental idea is a simple technique for creating
a new model in the direction of the residual errors in order to reduce the loss function that is produced at each
iteration. Particularly in terms of scalability, parallelization, optimization, and accuracy, XGBoost
demonstrates its supremacy [22].

For Random Forest (RF) and Boosting (XGBoost) techniques (based on Table 4) with various
covariance methodologies, a grid search for a single hyper-parameter was carried out, where 75 and
100 logarithmically evenly spaced points, respectively, were produced. The algorithm shown in Fig. 10
was used to generate the final RF and XGBoost models while accounting for the best hyperparameter
values discovered. The generated models’ S-N curves, derived for the same numerical and experimental
input data as before, are shown in Fig. 15. As with the ANN, ANFIS and SVM models, Table 5
compares the precision and computing effort needed for the RF and XGBoost models. Fig. 16 provides a
graphic representation of the same comparison for easier viewing.

The RF model’s output is less accurate than the XGB model’s when dealing with the numerical input
data of the two models. But when compared to the experimental data, the XGB model was shown to be
the most effective, producing 15%–25% more accurate findings than the other model and using the least
amount of processing time. The RF model, which when applied to the empirically recorded input data,
has an almost identical disposition, will be excluded from additional considerations even if the derived
accuracies of the two models are good. This is evident in Fig. 16, where the XGB model outperforms the
RF models in both studied criteria.
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6.6 The Comparison between the ANN, ANFIS, SVM and XGB Models
The chosen ANN, ANFIS, SVM, and XGB models were compared with one another. The responses of

the models to an empirically recorded and numerically generated S-N curve are shown in Fig. 17. Table 6
compares the computed root mean square errors with the actual a duration of the calculations. Fig. 18
displays a graphic comparison of the models’ precision (numerical and experimental input data) with
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model; (b) Experimental input data
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duration of the calculations. The ANF1 was the most accurate and the XGB the most effective in terms of
computation (about 20% less accurate than ANF1, but needing roughly 35 times less the duration of
calculations). Given its inaccuracy and computational complexity, the SVR 9 model was the worst
performer among all those evaluated. The accuracy of the CF26 model was quite comparable to that of
the SVR 9 (8% best), but it was four times slower.
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Figure 17: Results of testing selected models of various techniques: (a) Numerical input data;
(b) Experimental input data

Table 6: Comparison of the selected models’ duration of the calculations and accuracy

Model RMSE (experimental data) RMSE (numerical data) Duration of the calculations (ms)

CF26 0.0017 0.0026 22.2

ANF1 0.00102 0.0061 164.0

SVR 9 0.022 6.1

(XGB) 0.00165 0.0019 4.8
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7 Concluding Remarks

Under pure torsion loading induced with various applied stresses, the fatigue life of the high strength
aluminum alloy 2090-T83 was predicted using different types of machine learning approaches (ANN,
ANFIS, SVM, RF, and XGB). The accuracy and time required for the computations were evaluated by
comparing the findings to one another. The following conclusions were reached:

1. Considering the aforementioned findings, it is concluded that, for all activation functions and training
procedures, forward neural network models outperform traditional methods.

2. The accuracy of the CF26 neural network’s findings when compared to all models used in ANNs and,
in most cases, the additional weight employed in these networks, which could improve the network’s
accuracy, make it evident from these results that the CF26 produces strong results.

3. Various forms of membership function modelling techniques were considered to find the ideal
ANFIS with one or two membership functions for each entry, as it was found that two
membership functions for each input data did not significantly improve them, and therefore,
stopping at one MFs was determined for each entry.

4. Four different kernel functions were considered for SVM models (SVR 2, SVR 3, SVR 9 and
SVR 17). Grid searches of hyperparameter values were done for all four models. The gaussian
kernel function (SVR 9) model outperformed the other models in terms of accuracy by an order
of magnitude.

5. With various covariance functions, random forest (RF) and tree boosting (XGBoost) models were
taken into consideration. Their results for calculation time and accuracy were very different from
one another.

6. For the final comparison, the best model from each of the above categories, namely CF26, ANF1,
SVR 9 and XGB, was selected. The accuracy of each specific model was distinct, acceptable, and
consistent in scale. However, it was found that the resulting model from XGB gives better
accuracy and acceptable computational time compared to the rest of the models.

7. The experimental input interacts with the above-mentioned training models that were adopted in this
research more effectively when compared with the numerical model.
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For fatigue field, one should consider two methods—ANF1 and GBX. The GBXmodel is the fastest due
to simple floating-point operations in each layer; however, finding the accurate model could be hard or even
impossible. In this case, the ANF1 model could be easier to implement, as it was proven to have good
repeatability.
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Appendix A: Results of fatigue test

Group
No. ið Þ

Specimen
id

Specimen’s
diameter (mm)

Torque
(N.m)

Torsional stress
s (MPa)

Torsional stress
(average value)
s (MPa)

1 A1 4.055 1.2 339.12 284.01

B1 4.211 260.41

C1 4.222 255.73

D1 4.166 280.77

2 A2 4.055 1.16 327.86 274.55

B2 4.211 251.75

C2 4.222 247.19

D2 4.166 271.45

3 A3 4.075 1.10 300.34 256.73

B3 4.221 234.70

C3 4.222 234.39

D3 4.166 257.36

4 A4 4.055 1.07 302.43 253.24

B4 4.211 232.20

C4 4.222 228.01

D4 4.166 250.34

5 A5 4.166 1.01 236.30 250.95

B5 4.059 283.51

C5 4.178 231.59

D5 4.127 252.38

6 A6 4.211 0.79 210.50 229.11

B6 4.222 206.69

C6 4.166 226.94

D6 4.059 272.28

(Continued)
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Appendix A (continued)

Group
No. ið Þ

Specimen
id

Specimen’s
diameter (mm)

Torque
(N.m)

Torsional stress
s (MPa)

Torsional stress
(average value)
s (MPa)

7 A7 4.055 0.92 260.04 217.74

B7 4.211 199.65

C7 4.222 196.04

D7 4.166 215.25

8 A8 4.059 0.88 247.02 235.72

B8 4.178 201.78

C8 4.127 219.90

D8 3.999 274.16

9 A9 4.124 0.85 213.49 229.56

B9 4.026 252.63

C9 3.989 269.50

D9 4.217 182.63

10 A10 3.876 0.82 317.91 254.85

B10 4.088 218.99

C10 3.911 298.53

D10 4.191 183.98

11 A11 4.184 0.80 181.60 240.61

B11 3.885 305.17

C11 4.118 202.99

D11 3.948 272.67

12 A11 4.055 0.78 220.46 184.61

B12 4.211 169.27

C12 4.222 166.21

D12 4.166 182.49

13 A13 4.055 0.76 214.81 176.07

B13 4.211 164.93

C13 4.282 146.71

D13 4.166 177.81

14 A14 4.055 0.74 209.16 175.14

B14 4.211 160.59

C14 4.222 157.68

D14 4.166 173.13
(Continued)
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Appendix A (continued)

Group
No. ið Þ

Specimen
id

Specimen’s
diameter (mm)

Torque
(N.m)

Torsional stress
s (MPa)

Torsional stress
(average value)
s (MPa)

15 A15 4.055 0.72 203.51 17034

B15 4.212 155.99

C15 4.222 153.42

D15 4.166 168.45

16 A16 4.055 0.70 197.85 166.24

B16 4.211 151.91

C16 4.224 148.66

D16 4.156 166.55

17 A17 4.055 0.69 195.03 161.97

B17 4.211 149.74

C17 4.222 147.03

D17 4.186 156.11

18 A18 4.055 0.68 192.20 155.46

B18 4.211 147.57

C18 4.322 123.00

D18 4.166 159.09

19 A19 4.055 0.67 189.37 158.57

B19 4.211 145.40

C19 4.222 142.77

D19 4.166 156.75

20 A20 4.055 0.66 186.55 156.21

B20 4.211 143.23

C20 4.222 140.63

D20 4.166 154.41

21 A21 4.055 0.65 183.72 153.84

B21 4.211 141.06

C21 4.222 138.50

D21 4.166 152.07

22 A22 4.055 0.64 180.89 151.47

B22 4.211 138.89

C22 4.222 136.37

D22 4.166 149.73

(Continued)

2106 FDMP, 2023, vol.19, no.8



Appendix A (continued)

Group
No. ið Þ

Specimen
id

Specimen’s
diameter (mm)

Torque
(N.m)

Torsional stress
s (MPa)

Torsional stress
(average value)
s (MPa)

23 A23 4.055 0.635 179.48 150.29

B23 4.211 137.80

C23 4.222 135.31

D23 4.166 148.56

24 A24 4.055 0.63 178.07 149.11

B24 4.211 136.72

C24 4.222 134.24

D24 4.166 147.39

25 A25 4.055 0.625 176.65 147.92

B25 4.211 135.63

C25 4.222 133.18

D25 4.166 146.22
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