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ABSTRACT

The regime of horizontal subcooled film boiling is characterized by the formation of a thin layer of vapor covering
the surface of a flat horizontal heater. Based on the equations of motion of a viscous incompressible fluid and the
equation of heat transfer, the stability of such a vapor film is investigated. The influence of the modulation of the
gravity field caused by vertical vibrations of the heater of finite frequency, as well as a constant electric field
applied normal to the surface of the heater, is taken into account. It is shown that in the case of a thick vapor
film, the phase transition has a little effect on the thresholds for the occurrence of parametric instability in the
system and its transformation into the most dangerous one. At the same time, the electric field contributes to
an increase in these thresholds. It was found that the effect of vibrations on the stabilization of non-parametric
instability in the system is possible only in a narrow region of the parameter space where long-wave damped dis-
turbances exist and consists of reducing the critical heat flux of stabilization. A vapor film stabilized in this way
can be destroyed due to the development of parametric instability. In contrast to the case of a thick vapor layer,
the threshold for the onset of parametric instability for thin films largely depends on the value of subcooling in the
system. In addition, this threshold decreases with increasing electric field strength. For a vapor film ten microns
thick, the instability threshold can be reduced by a factor of three or more by applying an electric field of about
three million volts per meter.
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Nomenclature
O Origin of Cartesian coordinates x; zf g
x Horizontal coordinate
z Vertical coordinate
t Time
~g ¼ 0;�gf g Vector of gravitational acceleration
E0 Electric field intensity
a Vibration amplitude
x Vibration frequency
h Thickness of the vapor film in the base state
H Distance between the heater and cooler
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Th Temperature at the heater surface in the base state
Tc Temperature of liquid near the cooler
q0 Equilibrium heat flux of subcooling
ps Equilibrium saturation pressure
Ts Equilibrium saturation temperature
j Index denoting either liquid (j ¼ 1), or its vapor (j ¼ 2), or heater material (j ¼ 3)
½� i;jf g A jump of a bracketed quantity in passing through the interface from the j-th to i-th phase
q Density
m Coefficient of kinematic viscosity
v Coefficient of thermal diffusivity
j Coefficient of thermal conductivity
c Coefficient of surface tension at the liquid-vapor interface
L Latent heat of vaporization
Rg Universal gas constant
M Molar mass of a liquid and its vapor
K Parameter of the non-equilibrium state of the interface
p Pressure
~u � ux; uzf g Vector of flow velocity
T Temperature
�T Temperature in the base state
g Position of the interface
n Rate of phase transition
�2 Electric field potential
��2 Electric field potential in the base state
r Tensor of viscous stresses
~n Unit vector of the outward normal to the interface
~s Unit vector of the tangent to the interface
p Pressure perturbation amplitude
tx Amplitude of the horizontal component of flow velocity
tz Amplitude of the vertical component of flow velocity
h Amplitude of temperature perturbations
f Amplitude of deviation of the interface from the equilibrium position
f Amplitude of phase transition rate
f2 Amplitude of electric field potential
k Wavenumber of perturbations
l Real part of the Floquet exponent
a Imaginary part of the Floquet exponent
D � d2

�
dz2 � k2 Operator obtained from the Laplace operator

dcg Gravity-capillary length
tcg Gravity-capillary time
Z Dimensionless electric field strength
� Dimensionless frequency
A Dimensionless amplitudes of acceleration
B Dimensionless vibration velocity
~q Nondimensional density
Re Reynolds number
Pe Péclet number
~j Dimensionless coefficient of thermal conductivity
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d Ratio of thermal conductivity coefficients of vapor and heater material
� Dimensionless parameter of energy consumption in phase transition
J Dimensionless parameter of the non-equilibrium state of the interface
� Dimensionless parameter for media pressure effect on the phase transition
Bo Bond number evaluated through the vapor film thickness

1 Introduction

In various materials processing technologies, it is common for a heated sample to contact a cold liquid.
The best-known example is the hardening process, in which hot metal, as a result of such contact, acquires
new useful properties. Here, the key factor is the amount of heat transfer, which decreases significantly
during film boiling when the hot surface is covered with a more or less stable film of vapor. For instance,
achieving stability at the liquid-vapor boundary is anticipated under microgravity conditions while
undergoing subcooling [1], where the temperature within the liquid medium remains distinct from the
saturation temperature. Consequently, the interface moves towards full stability in scenarios devoid of
phase transitions, with all the heat absorbed being dissipated through thermal conductivity within the
liquid. Such a process of subcooled film boiling should be avoided if possible, and the resulting vapor
layer must be destroyed.

Vibrations, which, as we know, always exist on orbital stations, can change the average shape of an
interface [2,3], induce a parametric resonance [4], stabilize the interface or destroy it [5]. For example,
the effect of vibrations on the heat flux of the second boiling crisis, leading in general to its increase, is
described in [6]. Note that the result of many recent works is the intensification of heat and mass transfer
processes associated with various boiling regimes by vibration [7–10] or acoustic [11–13] influence. In
general, the behavior of the liquid-vapor interface and liquid microlayers plays an important role in
nucleate boiling and boiling crisis triggering [14,15].

Previously, in article [16], the influence of the electric field on the minimum heat flux of film boiling,
which to some extent can replace the force of gravity under terrestrial conditions (see [17,18]), was
studied within the framework of the hydrodynamic theory of boiling crises. The development of modern
numerical methods makes it possible to supplement the data of simplified theoretical models (see [19,20]).

Experimental research [21] indicated that the stability of the interface under subcooling conditions can
be maintained even in the presence of a gravitational field directed towards the heating surface. This occurs
when the Rayleigh-Taylor instability is completely suppressed due to a phase transition at a critical
subcooling heat flux value. This phenomenon is observed only in the case of sufficiently thin vapor films,
which in [22] allowed the authors to construct a theory using the long-wave approximation. A more
comprehensive study based on the long-wave approximation was carried out in [23], which, in addition
to linear stability analysis, presents the results of weakly nonlinear analysis and numerical modeling of
the dynamics of the interface of subcooled or saturated film boiling phases. For stability under subcooling
conditions, stable nonlinear regimes have been found.

The problem under consideration belongs to the class of stability problems for two-layer, two-phase
systems in a gravity field. It is assumed that there is a base state in which these layers are in mechanical
equilibrium, and the heat fluxes in the media caused by heating on the side of one of the phases are
balanced at their interface at the saturation temperature, so that the phase transition does not occur. The
linear stability of such a base state was studied in [24–26]. It is shown that the phase transition not only
reduces the disturbance growth rate in the region of Rayleigh-Taylor instability but also shifts
the boundary of this region towards long-wave disturbances. This shift is determined by the combined
effect of phase transition and the viscosity of the media. A strictly linear theory that does not use a
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quasi-equilibrium approximation for heat transfer (see [24]) was developed in [27,28], where, as in [22,23],
the existence of a completely stable configuration of media was confirmed and conditions for its
implementation were specified.

The effect of vertical vibrations of finite frequencies, when the type of disturbances at the interface is
determined by the Floquet theory, was considered in [29] in the absence of a phase transition. The study
revealed the onset of parametric instability, the excitation threshold of which is determined by viscous
dissipation. Here, a phase transition can be considered an additional inhibiting factor for instability.

The purpose of this study is to construct a linear theory of the stability of a vapor film under the condition
of subcooled film boiling, taking into account the combined effect of vertical vibrations and an electric field.

2 Statement of the Problem

Let us consider a layer of liquid, the lower boundary of which is separated from the solid flat surface of a
horizontal heater by a layer of vapor (see Fig. 1). In this work, we do not study the influence of boundary
effects associated with the finite sizes of the examined system, and therefore we proceeded from the
assumption that the surface of the heater, as well as the layers of liquid and its vapor, extend infinitely in
the horizontal plane. For the same reason, the upper boundary of the liquid volume is supposed to be
sufficiently distant from the interface, which minimizes its effect on the phase boundary, and the
thickness of the heater is not limited.

We consider the problem in a two-dimensional formulation, which, due to the homogeneity of the
system relative to the horizontal plane, is sufficient to study the linear stability of the possible base state
in the system. It is convenient to locate the origin of the Cartesian coordinate system x; zf g at a certain
point O on the interface between the media, corresponding to the base state, at which the vapor film of
thickness h (defined below) is formed on the surface of the heater. The vertical axis z extending from the
point O into the liquid layer is normal to the surface of the heater. The horizontal axis x lies in the plane
parallel to the surface of the heater, which corresponds to the coordinate surface z ¼ �h.

Figure 1: Configuration and system parameters: a vapor film of the thickness h is located on the surface of a
horizontal heater and is exposed to vibrations with the amplitude a and frequency x and an electric field with
the intensity E0
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The dependences of all fields of physical quantities considered below, such as velocity, pressure and
temperature, as well as the electric field potential, are specified in terms of the two spatial coordinates x
and z and time t, and the flow velocity vectors of both the liquid and its vapor lie in the plane formed by
the coordinate axes x and z.

The force of gravity with the acceleration vector ~g is directed downward along the vertical z-axis.
Vertical harmonic vibrations with the amplitude a and frequency x are excited in the same direction.
They are created by the translational movement of the heater according to the following law:

~r ¼~r0 þ~ja cosxt; (1)

where~r is the radius vector of a certain point of the heater in the laboratory reference frame at time t,~r0 is its
time-average value, and~j is the unit vector of the normal to the heater surface.

The vibration frequency is considered an arbitrary variable, but the velocity amplitude of vibrations, ax,
is taken to be much less than the speed of sound, c (generally speaking, it is different in a liquid and its vapor),
which makes it possible to consider vibrations as non-acoustic and to neglect the effect of the compressibility
of the medium under consideration:

ax � c: (2)

Since the system is studied in the reference frame associated with the heater, the acceleration of the
modulated gravity field takes the following form:

~gm ¼~g �~jax2 cosxt: (3)

Due to the difference in densities between the liquid and its vapor, such modulation can dramatically
affect the stability and dynamics of the interface.

The surface of the heater is kept at a constant temperature Th, which is higher than the saturation
temperature of the liquid, Ts (depending, generally speaking, on the total hydrostatic pressure existing
near the lower boundary of the liquid layer) and causes part of the liquid to turn into vapor. The
vaporization process is limited by subcooling, which is provided by a cooling system located at a
distance H from the heater (for example, in the form of thin metal tubes used to pump cold water). Due
to subcooling, the liquid being in contact with the heater is kept at a constant temperature equal to Tc,
which is lower than Ts. This results in the thermally conductive and convective removal of a greater or
lesser part of the heat from the phase boundary, which would otherwise be involved in the formation of vapor.

In this study, we proceed from the assumption that the temperature difference in the system is not large
enough to cause noticeable inhomogeneity between the liquid and its vapor. In what follows, they are
considered homogeneous viscous incompressible heat-conducting media in the state that is far below their
critical point, the criteria of which are determined by the following conditions:

Th � Ts
Ts

� 1;
Ts � Tc

Ts
� 1: (4)

The implementation of these conditions allows us to further specify the material parameters of the phases
that do not depend on temperature and, what is more important, to exclude from consideration the convective
instability that can arise in the layers of the above media due to the non-isothermal inhomogeneity of their
densities. This study also excludes thermocapillary effects and the effect of radiation from the heater surface.

The vapor in the film is considered an ideal dielectric, and the liquid and heater material are considered
ideal conductors of electricity, so in this we follow paper [30]. As will be discussed below, in the base state,
when the surface of the heater is covered with a layer of vapor of constant thickness, the potential difference
between two conductors generates in the layer a uniform electric field of intensity equal to E0.
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3 Equations and Boundary Conditions

The movement of the liquid and its vapor in the non-inertial reference frame associated with the heater
and the transfer of heat are controlled by the Navier-Stokes equation for an incompressible medium written
for each phase:

@~uj
@t

þ ~ujr
� �

~uj ¼ � 1

qj
rpj þ mjD~uj; (5)

the continuity equation

div~uj ¼ 0; (6)

and the heat transfer equation

@Tj
@t

þ~ujrTj ¼ vjDTj: (7)

Here~uj, pj and Tj are the fields of velocity, pressure and temperature in the media, respectively, qj, mj and
vj are the density, coefficients of kinematic viscosity and thermal diffusivity of the phases, respectively. The
index j indicates either the liquid (j ¼ 1), or its vapor (j ¼ 2), or the solid material of the heater (j ¼ 3), inside
which the movement is absent (~u3 ¼ 0), and the heat transfer equation has the following form:

@T3
@t

¼ v3DT3: (8)

Note that the modulated gravity field in the reference frame associated with the heater has a gradient
form and can be compensated by the media pressure field. Then, Eq. (5) retains the same form as in the
laboratory reference frame.

The electric field potential in the vapor layer, �2, due to its divergence-free nature associated with the
absence of free charges in a dielectric medium [31], obeys the Laplace equation

D�2 ¼ 0: (9)

On the solid heater surface at z ¼ �h, we apply no-slip condition for the vapor velocity (10),
temperature continuity condition (11) and heat flux balance condition (12). In addition, for the conductive
surface of the heater, we assume the condition of zero electric field potential (13) and specify the heater
surface temperature (14):

~u2 ¼ 0; (10)

T½ � 2;3f g ¼ 0; (11)

j
@T

@z

� �
2;3f g

¼ 0; (12)

�2 ¼ 0; (13)

T3 ¼ Th; (14)

where jj is the thermal conductivity coefficient of the phases, and hereinafter the square brackets ½ � i;jf g
indicate a jump in the corresponding value when passing through the interface from the j-th to the i-th phase.

In the liquid layer at z ¼ H � h, corresponding to the location of the refrigerator, the condition of
constant temperature (15) is satisfied. Also, on the basis of the model used in this study, we assume that
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the velocity of the liquid vanishes (16):
T1 ¼ Tc; (15)

~u1 ¼ 0: (16)

The liquid-vapor interface, characterized by the equation

G x; z; tð Þ ¼ z� g x; tð Þ ¼ 0; (17)

is expected to satisfy the following criteria: kinematic condition (18), mass flow balance (19), continuity of
tangential velocity components (20), continuity of tangential stresses (21), equilibrium of normal stresses
(22), temperature continuity (23), heat flux equilibrium (24) and the constancy of electric field potential
on the liquid’s conducting surface (25):

@G

@t
¼~u1rGþ n

q1
; (18)

~urGþ n
q

� �
1;2f g

¼ 0; (19)

us½ � 1;2f g ¼ 0; (20)

rns½ � 1;2f g ¼ 0; (21)

�pþ rnn þ q g � ax2 cosxt
� �

z
� �

1;2f g ¼ cdiv~nþ e0e2 r�2ð Þ2
2

; (22)

T½ � 1;2f g ¼ 0; (23)

j
@T

@n

� �
1;2f g

¼ Ln; (24)

�2 ¼ const: (25)

Here g represents the interface position, c denotes the surface tension coefficient, L stands for the latent
heat of vaporization, e0 represents the electrical constant, e2 is the dielectric constant of the vapor, r
symbolizes the viscous stress tensor, while ~n and ~s are the unit vectors pointing outward normal and
tangent to the interface, respectively.

It is important to note that terms in boundary conditions (21), (22) and (24) related to energy and
momentum transfer during phase transition (see [32]) are disregarded in the linear stability theory as
secondary effects. In addition, the normal stress balance condition (22) contains the inertial-gravitational
term, including vibrations due to the redefinition of pressure (see above). On the right-hand side of the
condition, we take into account the electric force [31]

fe ¼ e0e2 r�2ð Þ2
2

: (26)

The rate of phase transition, n, is associated both with the deviation of the liquid-vapor interface
temperature from the liquid saturation temperature Ts and with pressure disturbances at the interface (see [33]):

Kn ¼ T2 � Ts þ Ts
L

p1
q1

� p2
q2

	 

; (27)

where the value of the nonequilibrium number K can be estimated based on the kinetic theory of an ideal gas
(see [34]) as

FDMP, 2024, vol.20, no.11 2547



K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8R3

gT
5
s

.
pM3

r

Lps
: (28)

Here Rg is the universal gas constant,M is the molar mass of the liquid substance, and ps is the pressure
corresponding to the saturation temperature Ts.

4 Base State and Perturbation Problem

The Eqs. (5)–(9) and boundary conditions (10)–(16), (18)–(25) and (27) are solved to find a stable state
of a liquid and its vapor (~uj ¼ 0, pj ¼ const; j ¼ 1; 2) with a flat phase boundary (g ¼ 0) maintained at the
saturation temperature of the liquid, Ts, without undergoing phase change (n ¼ 0).

For the layers of liquid and its vapor, as well as for the heater material, the linear temperature profiles are
determined by

�Tj ¼ Ts � q0
jj

z ðj ¼ 1; 2Þ; (29)

�T3 ¼ Th � q0
j3

zþ hð Þ; (30)

where the thickness of the vapor film in the base state, h, and the equilibrium heat flux of subcooling, q0, are
found from the following expressions:

h ¼ H
j1 Ts � Tcð Þ
j2 Th � Tsð Þ þ 1

; (31)

q0 ¼ j1 Ts � Tcð Þ þ j2 Th � Tsð Þ
H

: (32)

In addition, we obtain a linear electric field potential profile, corresponding to a given uniform electric
field strength E0, for the vapor layer:

��2 ¼ E0 zþ hð Þ: (33)

It is known that the thermal conductivity coefficient of a subcritical liquid, j1, is much larger than the
thermal conductivity coefficient of its vapor, j2, and therefore, when the heating temperature Th � Tsð Þ is less
than or comparable to the subcooling temperature Ts � Tcð Þ, the thickness of the vapor film, h; determined
from (31) is much less than the distance between the heater and the refrigerator, H . Taking this fact into
account, we assume, for the sake of simplicity, that H ! 1. In order to completely exclude H from
consideration, the prescribed subcooling heat flux q0 associated with the thickness of the vapor film, h, is
used in the following as a controlling parameter:

h ¼ j2 Th � Tsð Þ
q0

: (34)

Next, we consider a perturbed state characterized by

ujx ¼ tjx z; tð Þ cos kx; (35)

ujz ¼ tjz z; tð Þ sin kx; (36)
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pj ¼ pj z; tð Þ sin kx; (37)

Tj ¼ �Tj þ hj z; tð Þ sin kx; (38)

�2 ¼ ��2 þ f2 z; tð Þ sin kx; (39)

g ¼ f tð Þ sin kx; (40)

n ¼ f tð Þ sin kx; (41)

where the temperatures of the media in the base state, �Tj, are determined from expressions (29) and (30), the
electric field potential in the vapor layer in the base state, ��2, is found from expression (33), the amplitudes
tjx, tjz, pj, hj, f2, f and f specify small deviations from the base state, and k is the wavenumber of
disturbances.

Let’s adjust the problem formulation for the perturbed state by considering a scenario where the
temperature of the heater surface may vary from the previously defined value Th, which now serves
solely as a parameter defining the base state. Additionally, the condition of constant temperature (14) is
replaced by the condition of attenuation of its disturbances in the heater at a distance from its surface at
z ! 1:

T3 ! �T3: (42)

Pressure disturbances created by the flow of the media under consideration (j ¼ 1; 2), corresponding to
Eq. (5), which is linearized over small disturbances, and Eq. (6) satisfy the Laplace equation

Dpj ¼ 0: (43)

From Eq. (6), upon substituting fields (35) and (36), the following relationship between the amplitudes
tjx and tjzis derived:

tjx ¼
1

k

@tjz
@z

: (44)

This is the standard technique, which will be used further to write no-slip condition (59) and continuity
condition (67) for the x-component of velocity.

To represent the stability problem in a dimensionless form, we use the gravitational-capillary length

dcg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c= q1 � q2ð Þgp

as a unit of length. Such a choice is justified by the fact that the specified length
scale is the only acceptable option for a thick vapor layer, when kh � 1, and also by the fact that this
unit, unlike the thickness of the vapor film, h, does not depend on the thermal conditions in the system.

As a unit of time, we use the gravitational-capillary time tcg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1 þ q2ð Þd3cg

.
c

r
, dcg

�
tcg as a unit of

flow velocity, q1 þ q2ð Þd2cg
.
t2cg as a unit of pressure, q0dcg

�
j1 þ j2ð Þ as a unit of temperature,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q1 þ q2
p

dcg
� ffiffiffiffiffiffiffiffi

e0e2
p

tcg as a unit of electric field strength, and q1 þ q2ð Þdcg
�
tcg as a unit of phase

transition rate.

The problem is characterized by the following dimensionless parameters for the liquid and its vapor
(j ¼ 1; 2):

~qj ¼
qj

q1 þ q2
; ~jj ¼ jj

j1 þ j2
; Rej ¼ 1

mj

d2cg
tcg

; Pej ¼ 1

vj

d2cg
tcg

(45)
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and for the heater material (j ¼ 3):

d ¼ j2
j3

; Pe3 ¼ 1

v3

d2cg
tcg

: (46)

The Bond number is determined by the thickness of the vapor film as

Bo ¼ h

dcg
; (47)

the dimensionless phase transition parameters are

� ¼ L q1 þ q2ð Þ
q0

dcg
tcg

; J ¼ j1 þ j2ð ÞK
L

1

dcg
; � ¼ j1 þ j2ð ÞTs

q1 þ q2ð ÞL2
1

tcg
; (48)

the dimensionless electric field strength is

Z ¼
ffiffiffiffiffiffiffiffi
e0e2

p
E0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q1 þ q2
p tcg

dcg
; (49)

and the dimensionless frequency and amplitudes of acceleration and vibration velocity are

� ¼ xtcg; A ¼ ax2

g
; B ¼ A

�
: (50)

The relative densities and thermal conductivities of the liquid and its vapor are related by the following
relationships: ~q1 þ ~q2 ¼ 1 and ~j1 þ ~j2 ¼ 1. The Reynolds, Rej, and Peclet, Pej, numbers are determined
based on the coefficients of kinematic viscosity, mj, and thermal diffusivity, vj, of the respective media.

Table 1 shows the dimensional material parameters for a water-water vapor system under the
atmospheric pressure and at the water saturation temperature corresponding to this pressure, which is
equal to 100°C. Table 2 shows the values of dimensionless parameters, which are calculated using the
values from Table 1.

Table 1: Material parameters for the water-water vapor system

Variations Value

g 9:8 m s�2

q1 9:6 � 102 kg m�3

q2 6:0 � 10�1 kg m�3

c 5:9 � 10�2 N m�1

m1 3:0 � 10�7 m2 s�1

m2 2:1 � 10�5 m2 s�1

v1 1:7 � 10�7 m2 s�1

v2 2:0 � 10�5 m2 s�1

L 2:3 � 106 J kg�1

j1 6:8 � 10�1 W m�1 oK�1

(Continued)
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For the dimensionless amplitudes tjz, pj, hj, f2, f , f, coordinate z, time t and wavenumber k, we use the
same notation. Substituting fields of the perturbed state (35)–(41) into Eq. (5) linearized over small
perturbations and projected onto the axis z, linearized Eqs. (7)–(9), as well as Eq. (43), and applying the
nondimensionalization procedure, we obtain the following equations for disturbances of velocity, pressure
and temperature in the liquid and its vapor (j ¼ 1; 2):

Dpj ¼ 0; (51)

Table 2: Dimensionless parameters for the water-water vapor system

Variations Value

~q2 6:2 � 10�4

~j2 3:4 � 10�2

Re1 1307:1

Re2 18:6

Pe1 2306:7

Pe2 19:6

Pr1 1:7

Pr2 1:05

d 2:4 � 10�2
�
j3ðWm�1oK�1Þ

Bo 399:4 hðmÞ
� 3:4 � 108�qðWm�2Þ
J 2:2 � 10�5

� 3:2 � 10�12

Z 6:1 � 10�7 E0ðVm�1Þ
� 1:6 � 10�2 xðs�1Þ
A 0:1 ax2ðms�2Þ
B 6:3 axðms�1Þ

Table 1 (continued)

Variations Value

j2 2:4 � 10�2 W m�1 oK�1

Ts 373 oK

ps 101:3 � 103 N m�2

M 1:8 � 10�2 kg mol�1

Rg 8:31 J oK�1 mol�1

K 1:8 � 10�1 kg�1 m2 s oK

e0 8:8 � 10�12 F m�1

e2 1:006
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@

@t
� 1

Rej
D

	 

tjz ¼ � 1

~qj

@pj
@z

; (52)

@

@t
� 1

Pej
D

	 

hj ¼

tjz
~jj
; (53)

electric field potential in the vapor layer:

Df2 ¼ 0; (54)

and temperature in the heater material:

@

@t
� 1

Pe3
D

	 

h3 ¼ 0: (55)

Hereinafter, the following operator is used:

D � @2

@z2
� k2: (56)

Substituting fields (35)–(41) into boundary conditions (10)–(13), (15), (16) and (42), and conditions
(18)–(25) and (27), which are previously transferred to the coordinate surface z ¼ 0 and linearized, we
obtain after performing nondimensionalization the following boundary conditions in the heater at z ! �1:

h3 ¼ 0; (57)

on the solid surface of the heater at z ¼ �Bo:

t2z ¼ 0; (58)

@t2z
@z

¼ 0; (59)

h½ � 2;3f g ¼ 0; (60)

~j
@h
@z

� �
2;3f g

¼ 0; (61)

f2 ¼ 0; (62)

in the liquid layer at z ! 1:

t1z ¼ 0; (63)

h1 ¼ 0; (64)

on the undisturbed liquid-vapor interface at z ¼ 0:

@f

@t
¼ t1z þ f

~q1
; (65)

tz þ f
~q

� �
1;2f g

¼ 0; (66)

@tz
@z

� �
1;2f g

¼ 0; (67)
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~q
Re

Dþ 2k2
� �

tz

� �
1;2f g

¼ 0; (68)

�pþ 2~q
Re

@tz
@z

� �
1;2f g

þ 1� k2 � A cos�t
� �

f � Z
@f2

@z

����
z¼0

¼ 0; (69)

h� f
~j

� �
1;2f g

¼ 0; (70)

~j
@h
@z

� �
1;2f g

¼ �f; (71)

�Jf ¼ h2 � f
~j2

þ ��
p1
~q1

� p2
~q2

	 

; (72)

f2 þ Zf ¼ 0: (73)

It is important to highlight that the departure of the interface temperature from the equilibrium
temperature, leading to a phase transition, is a result of both local temperature disturbances concerning
the base state and the displacement of the interface in regions where the base temperature differs from the
initial temperature. This is reflected in boundary conditions (70) and (72), which contain both the
amplitudes hj and amplitude f .

From Eq. (54) and boundary conditions (62) and (73), the following solution can be obtained for the
perturbed electric field potential in the vapor layer:

f2 ¼ �Z
sh k zþ Boð Þ

sh kBo
f ; (74)

which allows us to determine the magnitude of the electric force acting under condition (69),

Z
@f2

@z

����
z¼0

¼ � Z2k

th kBo
f : (75)

In the next section of this work, disturbances of physical fields are expanded into series according to
Floquet modes (78)–(83). From Eq. (55), the following solution is found for the n-th mode of
temperature disturbances in the heater material with the Floquet index lþ ia, decaying at z ! �1
according to boundary condition (57):

h nð Þ
3 � exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ Pe3 lþ i aþ n�ð Þf g

p
� z

h i
: (76)

After substituting into boundary conditions (60) and (61), it allows us to write the condition
(fulfilled at z ¼ �Bo) for the n-th mode of temperature disturbances in the vapor layer, which no longer
contains h nð Þ

3 :

d
dh nð Þ

2

dz
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ Pe3 lþ i aþ n�ð Þf g

p
� h nð Þ

2 ¼ 0: (77)

Then, we consider the limiting case of an ideal heat-conducting boundary (d ! 0), when h nð Þ
2 ¼ 0 at

z ¼ �Bo.
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5 Floquet Theory

Due to the fact that the inertial-gravitational acceleration in boundary condition (69) is a time-periodic
function with a period of 2p=�, the problem of linear stability (51)–(55), (57)–(73), (75) and (77) should be
studied within the framework of Floquet theory, as was done earlier for the configuration of two viscous
incompressible liquids in a modulated gravity field in the absence of a phase transition [29]. Based on
this theory, we present the disturbance amplitudes tjz, pj, hj, f2, f and f in the form of the following
series expansions in Floquet modes:

tjz z; tð Þ ¼ exp lþ iað Þt �
X1
n¼�1

tj
nð Þ
z zð Þ exp in�t; (78)

pj z; tð Þ ¼ exp lþ iað Þt �
X1
n¼�1

p nð Þ
j zð Þ exp in�t; (79)

hj z; tð Þ ¼ exp lþ iað Þt �
X1
n¼�1

h nð Þ
j zð Þ exp in�t; (80)

f2 z; tð Þ ¼ exp lþ iað Þt �
X1
n¼�1

f nð Þ
2 zð Þ exp in�t; (81)

f tð Þ ¼ exp lþ iað Þt �
X1
n¼�1

f nð Þ exp in�t; (82)

f tð Þ ¼ exp lþ iað Þt �
X1
n¼�1

f nð Þ exp in�t: (83)

Here l and a are the real and imaginary parts of the Floquet exponent, and exp lþ iað Þ2p=� is the
Floquet multiplier. The Fourier series represent time-periodic functions with a period of 2p=�.

The Floquet multiplier is an eigenvalue of a real transformation, which means that it is either real or
always has a complex conjugate pair. In addition, a is defined only by the modulo �, and we can always
assume that 0 	 a 	 �=2. Two cases, a ¼ 0 and a ¼ �=2, are of special interest. In the case called
harmonic, when a ¼ 0, the Floquet multiplier has a positive value. Whereas in the subharmonic case at
a ¼ �=2, this multiplier has a negative value.When 0 < a < �=2, the Floquet multiplier is a complex quantity.

The relationship between positive and negative Floquet modes depends on the magnitude of a. In the

harmonic and subharmonic cases, the following conditions must be fulfilled, respectively: x �nð Þ ¼ x nð Þ
 or

x �nð Þ ¼ x n�1ð Þ
, where x nð Þ needs to be substituted for one of the amplitudes tj nð Þ
z , p nð Þ

j , h nð Þ
j , f nð Þ

2 , f nð Þ and

f nð Þ. Thus, expansions (78)–(83) can be written only in terms of non-negative mode numbers. On the
other hand, when 0 < a < �=2, the Floquet coefficients with positive and negative n are linearly
independent. The complex conjugate parts must be added to expansions (78)–(83) to form real fields.

Disturbances either increase with time at l > 0, or decay at l < 0, or remain neutral at l ¼ 0. It can be
shown that disturbances with 0 < a < �=2 always decay with time. Since we are only interested in
disturbances that increase with time or remain neutral, the objective of our further discussion will be
harmonic and subharmonic cases.

Solutions for tj nð Þ
z , p nð Þ

j and h nð Þ
j , which we do not present here because of their cumbersome derivation,

can be obtained from Eqs. (51)–(53). Substituting expansions (78)–(83) into boundary conditions (57)–(73)
and (77), we arrive at a system of linear algebraic equations written for each of the modes. Moreover, the
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neighboring modes are “engaged” in condition (69) through the factor cos�t. By transferring the term
describing such “engagement” to the right side of the system and resolving it relative to the amplitude
f nð Þ, we can obtain the following set of relations for the amplitudes of disturbances of the media interface:

f nð Þ ¼ R nð ÞA f nþ1ð Þ þ f n�1ð Þ
 �

; (84)

which need to be supplemented with the reality conditions

f �1ð Þ ¼ f 1ð Þ
ðharmoniccaseÞ (85)

f �1ð Þ ¼ f 0ð Þ
ðsubharmoniccaseÞ (86)

In this case, the coefficients R nð Þ specify a kind of the f nð Þ-amplitude response to the two neighboring
modes.

By limiting the number of modes under consideration to a certain considerable number and separating
the real and imaginary parts from relations (84), we arrive at the problem of eigenvalues for the vibration
amplitude A (or rather, the inverse amplitude A�1). Mathematically, the problem reduces to finding an
eigenvalue for the vibration amplitude with other prescribed parameters: the vibration frequency,
wavenumber and Floquet exponent. By setting such an indicator, corresponding to a neutral disturbance
(harmonic or subharmonic), it is possible to determine the boundaries of instability regions.

6 Results

Calculations were carried out in a program written in Fortran using procedures from the IMSL
mathematic library, based on the data from Tables 1 and 2 for the water-vapor system. The number of
base functions in expressions (78)–(83) was taken to be equal to fifty. The model was restricted to the
limiting case of an ideal heat-conducting boundary, when d ! 0. First, let us consider the case of a thick
vapor layer, when Bo � 1.

As it follows from Fig. 2, two types of instability are possible in the system. First, there is a non-
parametric instability, which can be either the Rayleigh-Taylor instability or a combination of the
Rayleigh-Taylor and the Tonks-Frenkel instabilities. The latter is similar to the Rayleigh-Taylor instability
but is caused by an electric field. These types of instability exist in the range of wavenumbers from zero
to a certain critical value, which decreases with the increasing intensity of the vibration effect.

The vibrations themselves are capable of causing parametric instability, which is characterized by the
excitation threshold, which depends on the dissipative factors of the system: the viscosity of the liquid
and its vapor, as well as the phase transition. With a further increase in the vibration intensity, the
parametric instability becomes the most dangerous. It can be shown that this occurs at such a vibration
amplitude when, at a certain Floquet exponent (which we find in an iterative process), the appearance of
the regions of disturbances with such an exponent (parametric and non-parametric) is directly associated
with the indicated vibration amplitude (Fig. 3).

Fig. 4 shows the threshold for the occurrence of parametric instability and the threshold for its
transformation into the most dangerous one versus the frequency of vibrations. It is assumed that there is
no electric field and that the subcooling heat flux through the system is small. Thus, this figure illustrates
the situation when the Rayleigh-Taylor instability and parametric instability appear in the system in the
absence of such complicating factors as a phase transition and an electric field. It can be seen that at a
very high vibration frequency, these two thresholds practically coincide. Data on the threshold for the
occurrence of parametric instability and its becoming the most dangerous (see Fig. 4) for a high
dimensionless vibration frequency were compared with the results of the high-frequency approximation
without a phase transfer (see [5]). An excellent match was obtained.
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As it follows from Fig. 5, the effect of phase transition, even in the limit of strong subcooling at � ¼ 0,
weakly affects the threshold for excitation of parametric instability in the system in the case of a thick vapor
layer. In general, the same observation also applies to the threshold for the formation of the most dangerous
parametric instability.

Figure 2: Regions of instability in the space of parameters “wavenumber–amplitude of vibration velocity”
for the dimensionless frequency � ¼ 10. The phase transition parameter is � ¼ 1010; the electric field
parameter is Z ¼ 0

Figure 3: Illustration of a situation where parametric instability becomes most dangerous at B ¼ 0:406. The
boundaries of the regions in the space of parameters “wavenumber–amplitude of vibration velocity” are
constructed for the dimensionless frequency � ¼ 10 and Floquet exponent l ¼ 0:597. The phase
transition parameter is � ¼ 1010; the electric field parameter is Z ¼ 0
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From Figs. 6 and 7, it is seen that the electric field is capable of influencing the thresholds for the
occurrence of parametric instability and its transformation into the most dangerous disturbances in the
direction of their increase. The effect is most pronounced at low and moderate vibration frequencies.

It is known [22,23] that the pressure of viscous vapor in a sufficiently thin vapor film, caused by its
influx from the liquid side as a result of the phase transition effect, stabilizes the long-wave disturbances,
leading to the appearance of another region of stability in addition to the region of short-wave
disturbances associated with the influence of surface tension. The region of instability caused by the
medium-wave disturbances separating the above two regions is getting narrower with increasing
subcooling heat flux until it disappears completely at a certain critical value.

Figure 4: Dependence of the threshold for the occurrence of parametric instability (solid line) and its
becoming the most dangerous (dashed line) on the vibration frequency. The phase transition parameter is
� ¼ 1010; the electric field parameter is Z ¼ 0

Figure 5: Dependence of the threshold for the occurrence of parametric instability on the vibration
frequency. The phase transition parameter is � ¼ 1010 (solid line) and � ¼ 0 (dashed line). The electric
field parameter is Z ¼ 0
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Consideration of the linear stability of the system in the absence of vibrations and electric fields allowed
us to construct the stability map presented in Fig. 8. It is seen that vibrations do not shift the boundary of
region I, where stabilization of the non-parametric instability by a phase transition is impossible. The
influence of vibrations on stabilization is possible only in region II, where long-wave damped
disturbances exist, as shown in Fig. 9 for a point in this area. In addition, the electric field acts in the
direction of increasing the stabilization threshold of instability.

Figure 7: Dependence of the threshold for the formation of parametric instability as the most dangerous on
the vibration frequency. The electric field parameter is Z ¼ 0 (solid line), Z ¼ 1 (dashed line) and Z ¼ 2
(dash-dotted line). The phase transition parameter is � ¼ 1010

Figure 6: Dependence of the threshold for the occurrence of parametric instability on the vibration
frequency. The electric field parameter is Z ¼ 0 (solid line), Z ¼ 2 (dashed line) and Z ¼ 5 (dash-dotted
line). The phase transition parameter is � ¼ 1010
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The size of region II on the instability map is small, and we can conclude that vibrations have virtually
no effect on the phenomenon of stabilization of nonparametric instability. A stable vapor film, however, can
be destroyed by the parametric instability. The intensity of the vibrations required to produce such an effect
can be determined from Figs. 10 and 11. The phase transition, as a dissipative factor, contributes to an
increase in the threshold, and the electric field contributes to its decrease.

Figure 8: System stability map in the absence of vibrations and electric field. I: region where the effect of the
phase transition is to reduce the critical wavenumber; II: region where damped long-wave disturbances
appear; III: region where instability is completely suppressed by the phase transition effect

Figure 9: Dependence of the stabilization threshold of non-parametric instability on vibration frequency.
The electric field parameter is Z ¼ 0 (solid line), Z ¼ 0:01 (dashed line) and Z ¼ 0:02 (dash-dotted line).
The phase transition parameter is � ¼ 2 � 109; the Bond number is Bo ¼ 0:004
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7 Conclusion

Based on the complete equations of heat and mass transfer, we analyzed the linear stability of the base
state of the liquid-vapor interface in conditions of subcooled film boiling, taking into account the modulation
of the gravity field caused by vertical vibrations of the heater and the additional influence of the electric field.
The solution for disturbances developed in the framework of the Floquet theory with a lower-limited number
of harmonics and a given disturbance multiplier was used to obtain a matrix, whose eigenvalues indicate the
required amplitude of the vibration effect. This allowed us to construct resonant “bags” on the stability map

Figure 10: Dependence of the excitation threshold of parametric instability on vibration frequency. The
phase transition parameter is � ¼ 1010 (solid line) and � ¼ 103 (dashed line). The electric field parameter
is Z ¼ 0; the Bond number is Bo ¼ 0:004

Figure 11: Dependence of the excitation threshold of parametric instability on vibration frequency. The
electric field parameter is Z ¼ 0 (solid line), Z ¼ 2 (dashed line) and Z ¼ 5 (dash-dotted line). The phase
transition parameter is � ¼ 103; the Bond number is Bo ¼ 0:004
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for the harmonic and subharmonic cases. The minimum amplitude determines the threshold for the
occurrence of parametric instability in the system.

In a certain range of wavenumbers (the boundaries of the range are determined by the condition that the
determinant of a certain matrix for a system of amplitude equations is equal to zero), the instability occurs as
a combination of the Rayleigh-Taylor and Tonks-Frenkel instabilities. The narrowing of this range to zero
provides a condition for suppressing this instability. There may also be a situation where this instability
disappears due to the action of vibrations and heat flux through the interface, and the parametric
instability has not yet been excited. In this case, which has to be avoided, the liquid-vapor interface is
stable at any wavenumber of disturbances.

It is shown that in thin vapor films with a thickness of the order of tens of microns, the electric field acts
as a factor that partially complicates the stabilization of the Rayleigh-Taylor instability by a phase transfer
and at the same time facilitates the excitation of parametric instability at vibration frequencies of the
order of tens of kilohertz. The threshold for excitation of parametric instability in terms of vibration
amplitude can be reduced by three times by applying an electric field with a strength of about three
million volts per meter.

Acknowledgement: The authors would like to thank the anonymous reviewers for the helpful suggestion.

Funding Statement: The research was supported by the Ministry of Science and High Education of Russia
(Theme No. 121031700169-1).

Availability of Data and Materials: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The author declares that they have no conflicts of interest to report regarding the
present study.

References
1. Oka T, Abe Y, Mori YH, Nagashima A. Pool boiling of n-pentane, CFC-113 and water under reduced gravity:

parabolic flight experiments with a transparent heater. J Heat Transf Trans ASME. 1995;117(2):408–17. doi:10.
1115/1.2822537.

2. Ivantsov A, Lyubimova T, Khilko G, Lyubimov D. The shape of a compressible drop on a vibrating solid plate.
Mathematics. 2023;11(21):4527. doi:10.3390/math11214527.

3. Lyubimova TP, Fomicheva AA, Ivantsov AO. Dynamics of a bubble in oscillating viscous liquid. Philos Trans R
Soc A Math Phys Eng Sci. 2023;381(2245):68. doi:10.1098/rsta.2022.0085.

4. Konovalov VV, Lyubimov DV, Lyubimova TP. Resonance oscillations of a drop or bubble in a viscous vibrating
fluid. Phys Fluids. 2021;33(9):344. doi:10.1063/5.0061979.

5. Briskman VA. Parametric stabilization of the interface between liquids. Dokl Akad Nauk SSSR.
1976;226(5):1041–4 (In Russian).

6. Konovalov VV, Lyubimova TP, Lyubimov DV. Effect of normal vibrations of a flat horizontal heater on the second
boiling crisis. J Appl Mech Tech Phys. 2006;47(4):534–41. doi:10.1007/s10808-006-0086-0.

7. Staszel C, Sinha-Ray S, Yarin AL. Forced vibration of a heated wire subjected to nucleate boiling. Int J Heat Mass
Transf. 2019;135:44–51. doi:10.1016/j.ijheatmasstransfer.2019.01.101.

8. Unno N, Yuki K, Taniguchi J, Satake S. Boiling heat transfer enhancement by self-excited vibration. Int J Heat
Mass Transf. 2020;153(2–4):119588. doi:10.1016/j.ijheatmasstransfer.2020.119588.

9. Fedyushkin AI. Numerical simulation of gas-liquid flows and boiling under effect of vibrations and gravity. J Phys
Conf Series. 2020;1479:012094. doi:10.1088/1742-6596/1479/1/012094.

FDMP, 2024, vol.20, no.11 2561

https://doi.org/10.1115/1.2822537
https://doi.org/10.1115/1.2822537
https://doi.org/10.3390/math11214527
https://doi.org/10.1098/rsta.2022.0085
https://doi.org/10.1063/5.0061979
https://doi.org/10.1007/s10808-006-0086-0
https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.101
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119588
https://doi.org/10.1088/1742-6596/1479/1/012094


10. Mondal K, Bhattacharya A. Pool boiling enhancement through induced vibrations in the liquid pool due to moving
solid bodies—a numerical study using lattice Boltzmann method (LBM). Phys Fluids. 2021;33(9):1419. doi:10.
1063/5.0057637.

11. Tang J, Sun L, Wu D, DuM, Xie G, Yang K. Effects of ultrasonic waves on subcooled pool boiling on a small plain
heating surface. Chem Eng Sci. 2019;201:274–87. doi:10.1016/j.ces.2019.03.009.

12. Li X, Tang J, Sun L, Li J, Bao J, Liu H. Enhancement of subcooled boiling in confined space using ultrasonic
waves. Chem Eng Sci. 2020;223:115751. doi:10.1016/j.ces.2020.115751.

13. Wan Z, Duan J, Wang X, Zheng M. Saturated boiling heat transfer under ultrasound. Int Commun Heat Mass
Transf. 2020;115(1):104511. doi:10.1016/j.icheatmasstransfer.2020.104511.

14. Liu H, Liu W, Yan P, Chen D, Dong K, Qin J, et al. The role mechanism of vapor-liquid behavior on boiling crisis
triggering. Int J Heat Mass Transf. 2022;196(4):123248. doi:10.1016/j.ijheatmasstransfer.2022.123248.

15. Chen J, Liu H, Dong K. Experimental and LBM simulation study on the bubble dynamic behaviors in subcooled
flow boiling. Int J Heat Mass Transf. 2023;206(4):123947. doi:10.1016/j.ijheatmasstransfer.2023.123947.

16. Johnson RL. Effect of an electric field on boiling heat transfer. AIAA J. 1968;6(8):1456–60. doi:10.2514/3.4788.

17. Di Marco P, Grassi W. Effects of external electric field on pool boiling: comparison of terrestrial and microgravity
data in the ARIEL experiment. Exp Therm Fluid Sci. 2011;35(5):780–7.

18. Ahangar Zonouzi S, Aminfar H, Mohammadpourfard M. A review on effects of magnetic fields and electric fields
on boiling heat transfer and CHF. Appl Therm Eng. 2019;151:11–25.

19. Feng Y, Li H, Guo K, Lei X, Zhao J. Numerical study on saturated pool boiling heat transfer in presence of a
uniform electric field using lattice Boltzmann method. Int J Heat Mass Transf. 2019;135:885–96.

20. Feng Y, Li H, Guo K, Lei X, Zhao J. Numerical investigation on bubble dynamics during pool nucleate boiling in
presence of a non-uniform electric field by LBM. Appl Therm Eng. 2019;155:637–49.

21. Abbassi A, Winterton RHS. The non-boiling vapour film. Int J Heat Mass Transf. 1989;32:1649–55.

22. Tanaka H. On the stability of vapour film in pool film boiling. Int J Heat Mass Transf. 1988;31(1):129–34. doi:10.
1016/0017-9310(88)90229-3.

23. Panzarella CH, Davis SH, Bankoff SG. Nonlinear dynamics in horizontal film boiling. J Fluid Mech.
2000;402:163–94. doi:10.1017/S0022112099006801.

24. Hsieh DY. Interfacial stability with mass and heat transfer. Phys Fluids. 1978;21(5):745–8. doi:10.1063/1.862292.

25. Ho S-P. Linear Rayleigh-Taylor stability of viscous fluids with mass and heat transfer. J Fluid Mech.
1980;101(1):111–27. doi:10.1017/S0022112080001565.

26. Adham-Khodaparast K, Kawaji M, Antar BN. The Rayleigh-Taylor and Kelvin-Helmholtz stability of a viscous
liquid-vapor interface with heat and mass transfer. Phys Fluids. 1995;7(2):359–64. doi:10.1063/1.868633.

27. Konovalov VV, Lyubimov DV, Lyubimova TP. The Rayleigh-Taylor instability of the externally cooled liquid
lying over a thin vapor film coating the wall of a horizontal plane heater. Phys Fluids. 2016;28(6):064102.
doi:10.1063/1.4952998.

28. Konovalov VV, Lyubimova TP. The effect of natural convection in a liquid layer and the thermal inhomogeneity of
vapor on the stability of a vapor film on a flat horizontal heater. Int J Heat Mass Transf. 2018;117(3–4):107–18.
doi:10.1016/j.ijheatmasstransfer.2017.09.120.

29. Kumar K, Tuckerman LS. Parametric instability of the interface between two fluids. J Fluid Mech. 1994;279:
49–68. doi:10.1017/S0022112094003812.

30. Berghmans J. Electrostatic fields and the maximum heat flux. Int J Heat Mass Transf. 1976;19(7):791–7. doi:10.
1016/0017-9310(76)90133-2.

31. Landau LD, Pitaevskii LP, Lifshitz EM. Electrodynamics of continuous media. Oxford: Butterworth-Heinemann;
1984. vol. 8.

2562 FDMP, 2024, vol.20, no.11

https://doi.org/10.1063/5.0057637
https://doi.org/10.1063/5.0057637
https://doi.org/10.1016/j.ces.2019.03.009
https://doi.org/10.1016/j.ces.2020.115751
https://doi.org/10.1016/j.icheatmasstransfer.2020.104511
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123248
https://doi.org/10.1016/j.ijheatmasstransfer.2023.123947
https://doi.org/10.2514/3.4788
https://doi.org/10.1016/0017-9310(88)90229-3
https://doi.org/10.1016/0017-9310(88)90229-3
https://doi.org/10.1017/S0022112099006801
https://doi.org/10.1063/1.862292
https://doi.org/10.1017/S0022112080001565
https://doi.org/10.1063/1.868633
https://doi.org/10.1063/1.4952998
https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.120
https://doi.org/10.1017/S0022112094003812
https://doi.org/10.1016/0017-9310(76)90133-2
https://doi.org/10.1016/0017-9310(76)90133-2


32. Burelbach JP, Bankoff SG, Davis SH. Nonlinear stability of evaporating/condensing liquid films. J Fluid Mech.
1988;195:463–94. doi:10.1017/S0022112088002484.

33. Kanatani K. Interfacial instability induced by lateral vapor pressure fluctuation in bounded thin liquid-vapor layers.
Phys Fluids. 2010;22(1):012101. doi:10.1063/1.3275854.

34. Palmer HJ. The hydrodynamic stability of rapidly evaporating liquids at reduced pressure. J Fluid Mech.
1976;75(03):487–511. doi:10.1017/S0022112076000347.

FDMP, 2024, vol.20, no.11 2563

https://doi.org/10.1017/S0022112088002484
https://doi.org/10.1063/1.3275854
https://doi.org/10.1017/S0022112076000347

	Stability of the Liquid-Vapor Interface under the Combined Influence of Normal Vibrations and an Electric Field
	Introduction
	Statement of the Problem
	Equations and Boundary Conditions
	Base State and Perturbation Problem
	Floquet Theory
	Results
	Conclusion
	References


