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ABSTRACT

Transporting and storing hydrogen is a complex technological task. A typical problem relates to the need to mini-
mize the strength of fluid motion and heat transfer near the walls of the container. In this work this problem is
tackled numerically assuming an infinite cavity of pipe square cross-section, located in a constant external tem-
perature gradient. In particular, a method based on the application of vibrations to suppress the gravitational con-
vection mechanism is explored. A parametric investigation is conducted and the limits of applicability of the
method for small Grashof numbers (10e4) are determined. It is shown that it is possible to minimize the intensity
of the vibrogravitational flow for any values of the problem parameters if correction factors are specified. The
results obtained can be applied in technological processes associated with the transportation, storage and use
of hydrogen: pumping the working fluid through pipes, storage in tanks, as well as flow processes in the combus-
tion chambers of power plants.
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1 Introduction

The global trend is the transition to clean and renewable energy sources, one of which is hydrogen. On
the one hand, its use in the energy sector leads to a reduction in harmful emissions, and on the other, its
transportation and storage are associated with the risk of explosion and increased requirements for the
tightness of containers and pipelines.

In the Russian Federation, hydrogen and hydrogen-containing mixtures are transported through
pipelines for use in the gas and oil transportation industries, combustion chambers are being developed
for hydrogen-containing fuels in aviation, and combustion processes of hydrogen jets are being studied in
the energy sector.

In this regard, there is an urgent problem of ensuring safety when working with hydrogen. The article
discusses mechanisms that allow minimizing the kinetic energy of hydrogen flow during its transportation
and storage.
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The features of vibration-convective flow in closed cavities are also studied by other scientists. In [1], set
of fixed mutual orientations of vibration and heating directions at which the state of mechanical
quasiequilibrium [2,3] is possible have been determined The theory of vibrational-convective stability
was extended to binary mixtures in [4–7]. In [8,9], the influence of the vibration direction at a fixed angle
between the heating direction and gravity was considered. In [10,11], the issues of controlling the
structure of vibration convection modes are considered. Works [12,13] are devoted to the consideration of
porosity, temperature inversion of density. Thermovibrational convection in a horizontal layer of fluid
between isothermal solid boundaries heated to different temperatures in the presence of longitudinal
vibrations is considered in [14]. It is shown that the model predicts the drastic excitation of stationary
supercritical vibrational convection in the case of heating from the top. Cyclic variation of the
gravitational Rayleigh number leads to hysteretic transitions between stationary solutions. The importance
of viscoelastic properties of fluids is considered in [15–17]. The simulations [18] of thermal vibrational
convection in cubic cavities have shown that an increase in the system (spatial) dimensionality has a
dramatic influence on the richness of the fundamental modes of convection that can be excited.

Under a simple condition previously obtained in [19], two mechanisms of thermal vibrational and
thermal gravitational convection can completely suppress each other in a cylindrical cavity. To determine
the structures that arise when this condition is met, a study was conducted [20] for the square shape
of the cavity. Research [20] presented an analytical model of vibrogravitational gas flow, implemented by
the Sturm-Liouville method for microgravity conditions that correspond to very small Grashof numbers
(Gr < 100). The problem is solved for a square cavity with a constant gas temperature gradient without
the possibility of changing it–the temperature distribution is specified linearly as a boundary condition.
An analytical condition was also obtained for minimizing the intensity of the vibrogravitational flow, in
which the vibrational convection mechanism compensates for the gravitational one:

Gr sina� Grv
4

sin 2b ¼ 0 (1)

This paper presents a mathematical model implemented by an explicit finite difference method (FDM),
in which the distribution of gas temperatures is not specified as a boundary condition but is determined by
direct numerical modeling. The problem was solved for low-speed, small Reynolds numbers (Re < 100),
convective flow of hydrogen under Earth conditions, which increased the Grashof number to 104.

In addition, since the applied problem of ensuring safety during the transportation and storage of
hydrogen is being solved, it is necessary to assess the limits of applicability of Condition (1) for Grashof
numbersequal to 104.

2 Problem Formulations, Assumption System

The assumption system is formulated as follows:

1. Pure hydrogen in the gaseous state is considered as the working fluid; the thermophysical properties
are described through the Prandtl number (Pr = 0.7);

2. Gravity is taken into account using the Grashof number (Gr);

3. The hydrogen is viscous and incompressible due to small Reynolds numbers (Re < 100), the
Boussinesq approximation is considered;

4. Gas-dynamic processes are considered in a two-dimensional non-stationary formulation;

5. It is assumed that vibrations act on the entire volume of hydrogen according to the harmonic law; the
vibration intensity is given by the Grashof vibration number (Grv);

6. The stability of the calculation scheme was ensured by fulfilling the Courant-Friedrichs-Levy
condition;
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7. Wall roughness is not taken into account due to low flow rates;

8. The walls are impenetrable, non-deformable;

9. The aeroelasticity of the structure is not taken into account due to low flow velocities;

10. Due to their small size, electromagnetic processes are not taken into account;

11. Radiative convection is not taken into account due to the low radioactivity of the hydrogen.

Unsteady regimes of vibration-convective flow of viscous incompressible pure hydrogen in the gaseous
phase in an infinite cavity of square cross-section are investigated. For one pair of opposite faces a constant
temperature difference is maintained, and the other pair is thermally insulated. The geometric formulation of
the problem (Fig. 1) was used similarly to work [11].

The cavity is in α gravitational field with intensity g = −gn, where n is a unit vector directed upwards.
The angle α of inclination is counted clockwise from the axis z to n. The range of angle α change is
0 � a � 2p, and at α = 0 the upward direction coincides with the axis z.

The cavity performs harmonic oscillations with amplitude a and cyclic frequency ω along a unit vector k
located in the plane XOZ. Angle β, which specifies the direction of vibration, is counted counterclockwise
from the axis x to k. The range of angle β change is 0 � b � p, and at β = 0 the direction of vibrations
coincides with the axis x.

The results of more than 170 numerical experiments using the developed mathematical model were
obtained and analyzed.

3 Mathematical Model

The problem is solved in dimensionless variables, to go to which the following dimensionless quantities
are used: the unit of length is the side of the cavity d, time–d2

�
n, speed–n=d and temperature–�.

The problem solution is found in a two-dimensional formulation using a two-field method and Navier-
Stokes equation [2] in Helmholtz form [20]:

Figure 1: 2D pipe cross section
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@j
@t

þr � Vjð Þ ¼ Djþ Gr n�rTð Þy þ Grv r W � kð Þ � rT½ �y;
@T

@t
þr � VTð Þ ¼ DT

Pr
;DF ¼ rT � kð Þy;

Dcþ j ¼ 0;
V ¼ curl w; u ¼ curl V; W ¼ curl F;

z ¼ 0; 1 : w ¼ @w
@x

¼ 0;F ¼ 0;

x ¼ 0; 1 : w ¼ @w
@z

¼ 0;F ¼ 0;

z ¼ 0; 1 : T ¼ 1; 0;

x ¼ 0; 1 :
@T

@x
¼ 0:

(2)

where the index y means that only the vector component (scalar) along the axisy is used. The dimensionless
Grashof number, the vibrational Grashof number and the Prandtl number are determined using dimensional
parameters:

Gr ¼ gb�d3

v2
; Grv ¼ 1

2

avb�d

v

� �2

; Pr ¼ v

x
; (3)

where the coefficient of the thermal expansion of the fluid b ¼ 1

273; 15

1

K

� �
.

The variables of this system are temperature T and dynamic flow parameters: stream function –w and
vorticity –u:

u ¼ 0; j; 0ð Þ; w ¼ 0; c; 0ð Þ; F ¼ 0; F; 0ð Þ: (4)

Analytically in [20], the Navier-Stokes equation was obtained in the Boussinesq approximation in the
Helmholtz form, where the vorticity function is represented through the vibrational and gravitational
components of the convective gas flow:

Djþ Gr n�rTð Þy þ Grv r W � kð Þ � rT½ �y ¼ Dj� Gr sinaþ Grv
sin2b

4
þ

þ Grv
7p2sin2b

2500
sinðpzÞ shðpxÞ þ shðp� pxÞ½ ��f sinðpxÞ shðpzÞ þ shðp� pzÞ½ �g�

� Grv
7p2cos2b
1250

cosðpzÞ chðpxÞ � chðp� pxÞ½ �þf cosðpxÞ chðpzÞ � chðp� pzÞ½ �g ¼ 0:

(5)

In this work, a mathematical model has been developed in a two-field formulation (vorticity function u
and stream function w), implemented by the finite difference method using an explicit scheme for solving
non-stationary equations of free thermal convection on a uniform structured rectangular mesh:

xi ¼ ih; i ¼ 0; 1; :::; N ;

zk ¼ kh; k ¼ 0; 1; :::; N ;
(6)

where h ¼ 1=N–dimensional mesh step; N ¼ 64.

The Poisson equation was solved by the method of sequential upper relaxation using the Gauss-Seidel
method for the stream function.

By approximating the derivatives in expressions (61), (62), which are given in [20], by central
differences, finitedifference equations for the stream function and vorticity at the internal nodes of the
mesh model are obtained. Resolving them relative to the central node of the template, we obtained
iterative expressions using the Gauss-Seidel method:
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(7)

In a similar way, iterative formulas for solving the Poisson equation were obtained to find the stream
function cn i; kð Þ at internal mesh nodes:

ci
k ¼ ji

kh
2 þ ciþ1

k þ ci�1
k þ ci

kþ1 þ ci
k�1

� 	
=4; (8)

where jn i; kð Þ derived from (5).

For vorticity at the boundaries, the Thom formulas are used:

jnþ1
0;k ¼ � 2cnþ1

1;k

h2
; jnþ1

N ;k ¼ � 2cnþ1
N�1;k

h2
; jnþ1

i;0 ¼ � 2cnþ1
i;1

h2
; jnþ1

i;N ¼ � 2cnþ1
i;N�1

h2
; (9)

Based on the obtained values of the stream function field, a new temperature field is calculated at the
next iterative step:

Tn ¼ Dt
1

h2Pr
Tiþ1
k þ Ti�1

k þ Ti
kþ1 þ Ti

k�1 � 4Ti
k

� 	 �
�

þ ci
kþ1 þ ci

k�1

� 	
Tiþ1
k � Ti�1

k

� 	
4h2

� ciþ1
k þ ci�1

k

� 	
ci
kþ1 þ ci

k�1

� 	
4h2

�
þ Tn�1 i; kð Þ

(10)

The procedure for obtaining a numerical solution is described below:

Step 1. At the zero iteration (n ¼ 0), the initial state was set:

c0
i;k
¼ 0;j0

i;k
¼ 0; T0

i;k
¼ 1� z: (11)

or determined from the previous calculation.

Step 2. Using Formula (7), we determine the vorticity values jnþ1 i; kð Þ at the next iteration (nþ 1) at
the internal mesh nodes.

Step 3. Based on the calculated values jnþ1 i; kð Þ at the internal mesh nodes, we obtain, using
Formula (8), the values of the stream function cn i; kð Þ at the internal mesh nodes.

Step 4. Based on the calculated values cn i; kð Þ at the internal mesh nodes, we obtain, using
Formula (10), the values of the temperature field Tn i; kð Þ at the internal mesh nodes.

Step 5.Using new values of the stream function at the boundary mesh nodes, using (9) we determine the
boundary values of vorticity at the next iteration.
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Steps 2–5 are repeated until stable values of c, j and T are obtained. The values of the specified grid
functions, together with physical and numerical parameters for a given value of the Grashof vibration number
Grv and inclination angle b, are stored in external memory.

Step 2. 

Determine the 

vorticity 

values 

Steps 3–4. 

Determine the 

stream function and 

temperature field

Step 1. 

Initial state 

0n �

Step 4. Determine the 

boundary values of 

vorticity at the next 

iteration

4 Numerical Simulation Results

When Condition (1) is met, the flow in an infinite cavity of square pipe cross-section has a minimum
intensity of kinetic energy (Fig. 2). With a slight deviation of any of the parameters, the kinetic energy of
the averaged flow increases. It should be taken into account that there is some small deviation from the
real minimum, which is determined in the process of a numerical experiment.

The motion intensity was estimated according to the kinetic energy formula for convective flow:

E ¼ 1

2

Z1

0

Z1

0

cj dxdz: (12)

A simplex lattice plan was compiled, on the basis of which a number of numerical experiments were
carried out for a wide range of cavity inclinations and vibration directions, as well as Grashof numbers,
in order to determine the limits of applicability of the solution and analyze the influence of each
parameter of convection mechanisms on the flow intensity.

The calculation results are presented in Figs. 3–8.

Analysis of the obtained results showed that for any values of Gr (Grashof numbers) and a (inclination
angles of the acceleration action vector relative to the temperature influence vector), there are two
characteristic ranges of b values (inclination angles of the vibration action vector relative to the
temperature influence vector). In the first range, for values of angles b from 0 to bk , the kinetic energy is
close to 0, that is, the effect of acceleration on the intensity of the convective flow is almost completely
compensated by the effect of vibration. In the second range for values of angles b from bk to p=2,
kinetic energy is significant.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

32000 34000 36000 38000 40000 42000 44000 46000 48000 50000

Ekin

Grv

Formula Numerical 
minimum

Figure 2: Dependence of kinetic energy on the vibrational Grashof number (Gr ¼ 9500, a ¼ 60�, b ¼ 60�)
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Figure 3: Dependence of kinetic energy on b (Gr ¼ 9500, a ¼ 1�)

Figure 4: (Continued)
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(a) (b) (c) (d)

Figure 4: Dependence of kinetic energy on b (Gr ¼ 9500, a ¼ 30�)

(a) (b) (c) (d)

Figure 5: Dependence of kinetic energy on b (Gr ¼ 9500, a ¼ 60�)
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(a) (b) (c) (d)

Figure 6: Dependence of kinetic energy on b (Gr ¼ 9500, a ¼ 90�)

Figure 7: (Continued)
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In the case when the vibration vector is directed along the normal to the heated surface, i.e., is co-
directional to the heat flux at β = 90˚, it was not possible to find a stationary solution for some cavity
angles α. This is due to the nonstationary behavior of the gas flow, as well as to the fact that the solution
is periodic in time.

(a) (b) (c) (d)

Figure 7: Dependence of kinetic energy on b (Gr ¼ 9500, a ¼ 135�)

(a) (b) (c) (d)

Figure 8: Dependence of kinetic energy on b (Gr ¼ 9500, a ¼ 179�)
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In this case, the value of the angle bk depends almost linearly on the angle a and depends little on the
Grashof number (Fig. 9).

A sharp transition to a developed flow at increased flow intensity occurs at the same time when, in an
infinite cavity of square cross-section, a significant maximum deviation from the linear temperature
distribution is not realized, and the isotherms have a complex curved structure.

When hydrogen in a cavity is exposed only to gravity and temperature, the flow intensity, determined by
kinetic energy, has a nonlinear dependence on the angle of inclination of the cavity (Fig. 10). In this case,
there is an increased intensity of the flow, comparable for cases when two mechanisms of
vibrogravitational convection cannot compensate each other.

It should also be noted that for cases where the flow in the cavity is realized at the limiting values of the
angle of influence of vibration bk , and the condition for minimizing kinetic energy stops working; in this
case, there also remains some point, different from Condition (1), at which the minimum kinetic energy
will be realized (Fig. 11).

Figure 9: Dependence of bk (the inclination angle of the vibration impact vector relative to the temperature
impact vector, at which the vibration effect ceases to compensate for the effect of acceleration on the intensity
of the convective flow) by a (the inclination angle of the acceleration impact vector relative to the
temperature impact vector)

Figure 10: Dependence of kinetic energy on the angle of inclination of the vector of the influence of gravity
relative to the vector of the influence of temperature, which shows how much the intensity of kinetic energy
can be compensated (Gr ¼ 9500)
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5 Conclusion

1. From the obtained results, it can be concluded that Condition (1) works as long as the temperature
field does not change significantly with respect to its initial linear distribution and indicates the parameter
values at which the intensity of the averaged flow is practically equal to zero;

2. In the case where the intensity of convective flow significantly changes the initial temperature
distribution, calculations have shown that a combination of parameters is possible at which the intensity
of the flow as in the case of a linear temperature distribution, can be practically above zero. The role of
Formula (1) is now reduced to the fact that it can be used to find the region near which one should search
for the point where both convection mechanisms almost completely compensate each other, as can be
seen in Fig. 11. In the following, we would like to define a correction to Condition (1), which allows us
to determine the minimum of kinetic energy in the general case;

Figure 11: Dependence of kinetic energy on the vibration Grashof number for the limiting values of the
vibration impact angle bk (Gr ¼ 9500, a ¼ 30�, b ¼ 45�)
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3. The effect of mutual suppression of the mentioned mechanisms of thermal convection obtained in
calculations should be used in solving one of the main problems–hydrogen leakage through the walls of
pipes and cavities.

Acknowledgement: None.

Funding Statement: The research was carried out with financial support from the Russian Ministry of
Education and Science, project FSNM-2023-0004 “Hydrogen energy. Materials and technology for
storage, transportation and use of hydrogen and hydrogen-containing mixtures”.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Tatiana P. Lyubimova, Vladimir Ya. Modorskii, Albert N. Sharifulin; data collection: Sergey A.
Plotnikov, Sergey S. Neshev; analysis and interpretation of results: Stanislav L. Kalyulin, Sergey A.
Plotnikov, Albert N. Sharifulin; draft manuscript preparation: Stanislav L. Kalyulin, Sergey S. Neshev.
All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Data on which this paper is based is available from the authors upon
reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Demin VA, Gershuni GZ, Verkholantsev IV. Mechanical quasi-equilibrium and thermovibrational convective

instability in an inclined fluid layer. Int J Heat Mass Transf. 1996;39(9):1979–91. doi:10.1016/0017-9310(95)
00239-1.

2. Gershuni GZ, Lyubimov DV. Thermal vibrational convection. New York: Willey; 1998. p. 1–372.

3. Sharifulin AN. Vibrational convection in cylindrical cavity under arbitrary direction of heating. Convective Flows
Perm. 1981;22–9.

4. Gershuni GZ, Kolesnikov AK, Legros JC, Myznikova BI. On the vibrational convective instability of a horizontal,
binary-mixture layer with the Soret effect. J Fluid Mech. 1997;330:251–69. doi:10.1017/S002211209600376X.

5. Gershuni GZ, Kolesnikov AK, Legros JC, Myznikova BI. On the convective instability of a horizontal binary
mixture layer with Soret effect under transversal high frequency vibration. Int J Heat Mass Transf.
1999;42(3):547–53. doi:10.1016/S0017-9310(98)00154-9.

6. Smorodin BL, Myznikova BI, Legros JC. Evolution of convective patterns in a binary-mixture layer subjected to a
periodical change of the gravity field. Phys Fluids. 2008;20(9):496. doi:10.1063/1.2978065.

7. Elhajjar B, Mojtabi A, Charrier-Mojtabi MC. Influence of vertical vibrations on the separation of a binary mixture
in a horizontal porous layer heated from below. Int J Heat Mass Transf. 2009;52(1–2):165–72.

8. Bouarab S, Mokhtari F, Kaddeche S, Henry D, Botton V, Medelfef A. Theoretical and numerical study on high
frequency vibrational convection: influence of the vibration direction on the flow structure. Phys Fluids.
2019;31(4):043605.

9. Mokhtari F, Kaddeche S, Henry D, Bouarab S, Medelfef A, Botton V. Three-dimensional effect of high frequency
vibration on convection in silicon melt. Phys Rev Fluids. 2020;5(12):123501.

10. Shevtsova V, Ryzhkov II, Melnikov DE, Gaponenko YA, Mialdun A. Experimental and theoretical study of
vibration-induced thermal convection in low gravity. J Fluid Mech. 2010;648:53–82.

11. Gaponenko Y, Shevtsova V. Mixing under vibrations in reduced gravity. Microgravity Sci Technol. 2008;20:
307–11.

FDMP, 2024, vol.20, no.12 2787

https://doi.org/10.1016/0017-9310(95)00239-1
https://doi.org/10.1016/0017-9310(95)00239-1
https://doi.org/10.1017/S002211209600376X
https://doi.org/10.1016/S0017-9310(98)00154-9
https://doi.org/10.1063/1.2978065


12. Kolchanova EA, Kolchanov NV. The interaction of thermal vibrational and thermal gravitational mechanisms of
convection onset in a fluid-porous layer. Microgravity Sci Technol. 2021;33(3):1–15. doi:10.1007/s12217-021-
09895-3.

13. Lyubimov DV, Sharifulin VA, Lyubimova TP, Sharifulin AN. Thermal vibrational convection of water near its
density inversion point in a cylindrical cavity with constant heat flux at the boundaries in low gravity
conditions. Microgravity Sci Technol. 2019;31(3):269–78. doi:10.1007/s12217-019-9686-1.

14. Sharifulin VA. Thermovibrational low-mode model of convection in a horizontal layer with longitudinal
vibrations. J Sib Fed Univ Math Phys. 2017;10(2):158–69. doi:10.17516/1997-1397-2017-10-2-158-169.

15. Boaro A, MacDowall G, Lappa M. Symmetry properties and bifurcations of viscoelastic thermovibrational
convection in a square cavity. Phys Rev E. 2023;108(6):065101. doi:10.1103/PhysRevE.108.065101.

16. Boaro A, LappaM. Competition of overstability and stabilizing effects in viscoelastic thermovibrational flow. Phys
Rev E. 2021;104(2):25102. doi:10.1103/PhysRevE.104.025102.

17. Boaro A, Lappa A. Multicellular states of viscoelastic thermovibrational convection in a square cavity. Phys
Fluids. 2021;33(3):33105. doi:10.1063/5.0041226.

18. Crewdson G, Lappa M. Spatial and temporal evolution of three-dimensional thermovibrational convection in a
cubic cavity with various thermal boundary conditions. Phys Fluids. 2021;34(1):014108.

19. Sharifulin AN. Controllable equilibrium of an inhomogeneously heated liquid in a vibrational field. J Exp Theor
Phy. 2010;110(1):157–61. doi:10.1134/S1063776110010188.

20. Sharifulin AN, Plotnikov SA, Lyubimova TP. Influence of the directions of vibrations and gravity on the formation
of vortex structures of a nonuniformly heated fluid in a square cavity. Microgravity Sci Technol. 2022;34(5):97.
doi:10.1007/s12217-022-10016-x.

2788 FDMP, 2024, vol.20, no.12

https://doi.org/10.1007/s12217-021-09895-3
https://doi.org/10.1007/s12217-021-09895-3
https://doi.org/10.1007/s12217-019-9686-1
https://doi.org/10.17516/1997-1397-2017-10-2-158-169
https://doi.org/10.1103/PhysRevE.108.065101
https://doi.org/10.1103/PhysRevE.104.025102
https://doi.org/10.1063/5.0041226
https://doi.org/10.1134/S1063776110010188
https://doi.org/10.1007/s12217-022-10016-x

	A Method Based on Thermo-Vibrational Effects for Hydrogen Transportation and Storage
	Introduction
	Problem Formulations, Assumption System
	Mathematical Model
	Numerical Simulation Results
	Conclusion
	References


