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ABSTRACT

The thermal behavior of an electrically non-conducting magnetic liquid flowing over a stretching cylinder under
the influence of a magnetic dipole is considered. The governing nonlinear differential equations are solved
numerically using a finite element approach, which is properly validated through comparison with earlier results
available in the literature. The results for the velocity and temperature fields are provided for different values of
the Reynolds number, ferromagnetic response number, Prandtl number, and viscous dissipation parameter. The
influence of some physical parameters on skin friction and heat transfer on the walls of the cylinder is also inves-
tigated. The applicability of this research to heat control in electronic devices is discussed to a certain extent.
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Nomenclature
a Radius of the cylinder mð Þ
c Arbitrary constant
cp Specific heat J kg�1K�1

� �
Cf Skin friction coefficient
f Dimensionless stream function
H Magnetism strength A m�1ð Þ
k Heat transfer coefficient Wm�1K�1

� �
Md Magnetization A m�1ð Þ
Nu Local thermal transport index
Pr Prandtl number
qw local rate of heat transfer Wm�1L�1

� �
Re Reynolds number
T Temperature Kð Þ
Tw Surface temperature Kð Þ
Tc Curie temperature Kð Þ
u Velocity of ferrofluid in r direction m=sð Þ
w Velocity of ferrofluid in z direction m=sð Þ
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r Radial direction m=sð Þ
z Axial direction m=sð Þ
ww Velocity of stretching cylinder m=sð Þ
q Density of nanofluid kg m�3ð Þ
h Similarity variable
b Ferromagnetic interaction number
c Magnetic field strength Am�1ð Þ
h Dimensionless temperature
l Viscosity of the nanofluid kg m�1s�1ð Þ
m Kinematic viscosity m2=sð Þ
sw Stress on the surface of the wall kg m�1s�2ð Þ
k Viscous dissipation parameter
� Magnetic potential Að Þ
e Dimensionless Curie temperature

1 Introduction

Ferrofluids are synthetically developed and comprise magnetic nanoparticles, non-conducting carrier
liquids, and surfactants. The role of surfactants is to prevent the nanoparticles from accumulating. In the
dearth of a magnetic field, the behavior of ferrofluid is like a normal fluid. Nevertheless, when exposed to
a magnetic field, the fluid magnetizes and the magnetization changes the thermal characteristics of
ferrofluid. Based on the thermomagnetic behavior of ferrofluid and magnetization force, the researchers
have shown different types of practical applications of ferrofluid in the field of engineering and medical
science [1–5].

In this section, different physical aspects investigated by researchers for the flow over an elongated
cylinder are presented. Wang [6] presented a theoretical model for the passing of viscous material outside
a stretched cylinder. To calculate the fluid velocity and pressure fields, he devised an analytical solution
and derived equations. In addition, he provided numerical evidence to support his solution. Usman et al.
[7] evaluated the effects of thermal and velocity slippage on Casson nanofluid stream over an inclined
permeable stretched cylinder using a collocation method. This includes looking into how slip parameters,
the Prandtl number, and the Casson parameter affect flow characteristics. They also presented numerical
results to validate their solutions. Tlili et al. [8] investigated the effects of various slip parameters on MHD
non-Newtonian nanofluids passing over a stretched cylinder in a porous medium with radiation and
chemical reaction. This included studying the effects of radiation, chemical reaction, and slip parameters
on the temperature, concentration, and velocity fields of nanofluids. Fang et al. [9] concluded that a
similarity transformation framework can be used to describe unsteady viscous flux over an expanding
elongated cylinder. They demonstrated that the Reynolds and Weber numbers influence the shapes of
velocity distributions near the stretching surface. Munawar et al. [10] investigated the thermal behavior of
an oscillatory stretching cylinder. They developed a numerical scheme based on boundary layer theory and
investigated how to flow parameters such as Reynolds number and oscillation frequency affect system heat
transfer Replace Munawar By Ishak et al. [11] constructed the model for magnetohydrodynamic glide and
heat transmission caused by stretching cylinder. Wang et al. [12] researched the slipstream over a
stretching cylinder and obtained the asymptotic solution large radius of the cylinder. Ishak et al. [13]
considered the impact of suction and injection on the flow due to a stretched cylinder and solved similarity
equations numerically using the finite difference method. Similar flow with different fluid and physical
properties was investigated by researchers [14–16]. Chu et al. [17] used Roseland approximation for the
thermal behavior of hybrid ferrofluid and implemented the control volume finite element method
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(CVFEM) to obtain the solution. Kumar et al. [18] investigated the influence of single-wall and multi-wall
carbon nanotubes on the Maxwell nanofluid flow in the presence of magnetic dipole. Hashmi et al. [19]
studied the Oldroyd-B fluid flow over a stretchable disk and measured the influence of Joule heating and
chemical reaction. Khan et al. [20] used the concept of fractional derivative to investigate the convective
flow and heat transfer between two parallel plates.

This section presents the description of different techniques used by researchers to obtain the solution of
similarity equations. Malik et al. [21] implemented the RKF algorithm to solve similarity equations of the
Sisko glide of fluid due to stretching cylinder. Kumar et al. [22] employed the RKF fourth-fifth order
algorithm to find the numerical solution of ferromagnetic nanofluid flux over a stretched cylinder. Bilal
et al. [23] solved the similarity equations through the shooting iteration method for the glide of Williamson
nanofluid fluid due to the stretching cylinder. Bhandari [24] has used the finite element methodology to
measure the consequences of radiation and chemical reaction for the magnetohydrodynamic flux of
nanofluid over a stretched sheet. Some of the numerical techniques have been used by researchers to
procure the solution of nonlinear related differential equations for the flow over a stretching cylinder
[25–28]. Salahuddin et al. [29] investigated the flow of hybrid nano liquid over a highly magnetized heated
cylinder. Salahuddin et al. [30] looked into the heat and mass transfer characteristics of viscoelastic fluid
flow in the vicinity of forward and infrequent stagnation spots in two dimensions. Ullah et al. [31] studied
oscillatory mixed convection stratified fluid and heat transfer properties at various stations of a non-
conducting horizontally circular cylinder in the presence of a thermally stratified medium. Song et al. [32]
analyzed the bioconvective flow over a stretching cylinder and measured the role of microorganisms
parameters in the flow. Kumar et al. [33] studied the boundary layer flow of Prandtl fluid due to stretching
surface and used similarity transformation to obtain a set of nonlinear ordinary differential equations from
the governing equations. On magnetic fluid flow across vertically stretched porous material, Kalaivanan
et al. [34] looked into the effects of buoyancy force and activation energy. To research the impact of
radiation and Joule heating, Naseem et al. [35] explored Eyring-Powel fluid flow across an exponentially
stretched sheet.

The ferrohydrodynamic flow over a stretched cylinder is significant because it allows for a better
understanding of how different magnetized fluids behave upon the existence of a magnetic field. This
understanding can be used to develop more efficient methods of controlling and manipulating fluids in a
variety of applications, such as energy conservation, drug delivery, and waste management. Furthermore,
modeling ferrofluid flow provides insight into the consequences of a variety of parameters such as
temperature, viscosity, and magnetism on the motion of ferrofluids, which is important for a variety of
applications. The above-stated literature assessment shows that almost all of the research papers were
communicated on the flow of ordinary viscous fluid and conducting magnetic fluid over a stretched
cylinder. In this paper, the model for the flow of ferrofluid over a stretching cylinder is developed in the
emergence of a bipolar magnet. The governing equations of the flow are converted into non-dimensional
forms using similarity variables. The transformed nonlinear equations are solved numerically by finite
element techniques in COMSOL Multiphysics and the model is validated with the previous numerical
models.

2 Mathematical Formulation of the Theoretical Model

Fig. 1 graphically shows the diagram of ferrofluid movement attributable to a stretching cylinder in the
axial direction. In this flow, altitudinal axis z is assumed along the line of the cylinder, and radial axis r is
assumed a radial path. The magnetic dipole is kept at a distance a from the center. The elongation
cylinder is maintained at a constant temperature Tw lower than the Curie temperature Tc. The fluid atoms
away from the cylinder are considered to be at a temperature T ¼ Tc. The fluid element at T ¼ Tc is
Unmagnetizable until this layer begins to cool due to the adjacent integument layer in the flow. The
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governing equations of the assumed flow are as follows [6,11,36]:
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Boundary conditions for considered flow:

u ¼ 0; w ¼ ww; T ¼ Tw at r ¼ a; w ! 0; T ! T1 as r ! 1 (4)

Magnetic dipole potential can be calculated as [37–39]:
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The Magnetic Flux Intensity (Hz, Hr) along z and r lines can be stated as:
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The total strength of the magnetic field is:
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The magnitude of the magnetic charge strength change alongside the z and r lines is:
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We consider magnetization as a linear function of temperature. It can be expressed as:

Md ¼ Ka Tc � Tð Þ (11)

To obtain the non-dimensional equations, we use the following similarity transformation [6,11]:

h ¼ r

a

� �2
; u ¼ �ca

f hð Þffiffiffi
h

p ; w ¼ 2c
df

dh
z; h hð Þ ¼ Tc � T

Tc � Tw
(12)
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Using Eq. (12), the governing equations of the flow take the following form:
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The boundary conditions in Eq. (4) become:

f 1ð Þ ¼ 0;
df

dh

� �
h¼1

¼ 1; h 1ð Þ ¼ 1;
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The non-dimensional quantities are as follows:
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The coefficient of viscous friction and the Nusselt coefficient can be defined as:

Cf ¼ 2sw
qw2

w

; Nu ¼ aqw
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The measurement of viscous friction and heat propagation rate can be obtained from:
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Using Eq. (12), the non-dimensional form of these quantities for the present study is as follows:

Cf Re z

a
¼ f 00 1ð Þ; Nu ¼ �2h0 1ð Þ (19)

Figure 1: Ferrofluid flow layout over a stretched cylinder upon the existence of a permanent dipole
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3 Problem Solution and Its Validation

The Finite Element Method (FEM) is a numerical procedure for addressing differential equations
associated with physical phenomena in the COMSOL Multiphysics software. The FEM divides the entire
domain into elements and then approximates the equation solutions. Using variational calculus, linear
algebra, and numerical integration techniques, a system of linear equations is derived from the differential
equations, leading to an approximate solution at the element nodes. COMSOL Multiphysics finite
element procedure is exercised to simulate an extensive range of physical phenomena by utilizing
advanced features such as adaptive meshing, visualization tools, and parametric studies. To implement the
confined element approach in COMSOL Multiphysics, we reduce the order of the differential equations.

Eqs. (13)–(15) are reduced using the transformation f ¼ L,
df

dh
¼ M . The reduced equations are as

follows:

dL

dh
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L 1ð Þ ¼ 0; M 1ð Þ ¼ 1; h 1ð Þ ¼ 1; M 1ð Þ ¼ 0; h 1ð Þ ¼ 0 (23)

Fig. 2 demostrates the convergence plot for the present numerical solution. During solution, we
considered the element size as 0.0001. The present numerical solution is correct up to six decimal places.
Table 1 represents the authentication of the present conceptual model with the available theoretical model
in the literature. If we consider the values of the parameters Re ¼ 10, Pr ¼ 7 and b ¼ 0, the values of the
f 00 1ð Þ and u0 1ð Þ has a match that is sympathetic to the former results [6,11].

Figure 2: Convergence plot of numerical solution
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4 Findings and Analysis

Present numerical results are obtained after the numerical solution of non-dimensional similarity
equations using the Confined Element program in COMSOL Multiphysics Software. The Velocity and
temperature distribution profiles are obtained here with the existence of ferromagnetic response number
bð Þ, Prandtl number Prð Þ, Reynolds number Reð Þ and viscous dissipation parameter kð Þ. The
ferromagnetic interaction number has an impact on the momentum and energy equations. It is mainly
contingent on the intensity of the magnetic charge. The viscous dissipation parameter represents the role
of viscous forces in heat conveyance in the flow.

Fig. 3 represents the behavior of temperature distribution with the variation of Prandtl number ðPrÞ. The
range of Prandtl numbers for varied types of ferrofluids is available in the literature [3]. In ferrofluids, heat
transfer occurs due to fluid momentum rather than fluid conduction. Enhancement in the Prandtl number
diminishes the temperature field since this enhancement in Pr reduces the thermal boundary layer. This
type of behavior of the Prandtl number is also available in the literature [11]. Figs. 4 and 5 demonstrate
the control of the Reynolds number Reð Þ on the velocity f 0ð Þ and temperature hð Þ. As we boost the value
of the Reynolds number in the flow, it indicates that inertial forces dominant over viscous forces. The
Reynolds number is also useful to differentiate the nature of the passage that whether it is orderly or
chaotic. However, the present range keeps the flow laminar but heightening the values of Re reduces the
velocity and temperature in stream. In case of ordinary viscous fluid, the velocity and temperature
decreases for increasing Reynolds number and this pattern [6,11]. This pattern of reduction in the velocity
and temperature is also for ferrofluids.

Table 1: The validation of the present numerical solution with the previous numerical results for Re ¼ 10,
Pr ¼ 7 and b ¼ 0

f 00 1ð Þ �h0 1ð Þ
Munawar et al. [11] −3.3444 6.1592

Wang [6] −3.34445 6.160

Present result −3.3443756 6.158766

Figure 3: The repercussion of Pr on the temperature profile (θ) for given Re ¼ 2, b ¼ 5, k ¼ 0:01, and
e ¼ 2
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Figs. 6 and 7 describe the persuasion of ferromagnetic response numbers on the velocity and temperature
profiles bð Þ. The parameter b exhibits the interaction of magnetization and thermal forces. A case b ¼ 0
shows that there is no impact of magneto-thermomechanical interaction. This case can be achieved in the
absence of a magnetic flux. The magnetic dipole reduces the ferrofluid velocity and enhances the
temperature of the fluid. The parameter b has a crucial role in the heat transfer enhancement in
ferrhydrodynamic flow. Fig. 8 represents the role of the viscous dissipation parameter kð Þ in temperature
distribution. The parameter shows the impact of shear forces on heat transfer. The parameter k does not
affect the temperature distribution when shear forces are small. Despite that, for higher range of k is
useful to heat transfer enhancement.

Table 2 represents variation in friction coefficient and surface Nusselt number for different ranges of
physical characteristics. The friction and the thermal flow rate are higher in the present study as compared
to ordinary viscous fluid reported in the previous investigations [6,11]. Enhancing the values of Re
intensifies the friction on the surface of the cylinder and favors the local heat transfer. This range of heat
transfer in ordinary viscous fluid is attained for Re ¼ 100 where the Prandtl number is taken seven [11].
In the present model, magnetization force and Prandtl number influence the range of local heat transfer.

Figure 4: The repercussion of Re on the velocity profile f 0ð Þ for given Pr ¼ 10, b ¼ 5, k ¼ 0:01, and e ¼ 2

Figure 5: The repercussion of Re on the temperature profile (θ) for given Pr ¼ 10, b ¼ 5, k ¼ 0:01, and
e ¼ 2
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Figure 7: The repercussion of b on the temperature profile hð Þ for given Pr ¼ 10, Re ¼ 2, k ¼ 0:01, and
e ¼ 2

Figure 6: The repercussion of b on the velocity profile f 0ð Þ for given Pr ¼ 10, Re ¼ 2, k ¼ 0:01, and e ¼ 2

Figure 8: The repercussion of k on the temperature profile hð Þ for given Pr ¼ 10, Re ¼ 2, b ¼ 5, and e ¼ 2
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5 Conclusions

The present study demonstrates the influence of the parameters Pr, Re, b and k on the velocity and
temperature in the flow of ferrofluid due to the stretching cylinder. The Prandtl number for ferrofluid
keeps higher heat transfer on the surface of the cylinder as compared to ordinary viscous fluid. At the
lower span of Reynolds numbers from 1 to 10, the magnetic dipole intensifies the heat transfer in
the magnetic fluid. However, for ordinary viscous fluid, this amount of heat transfer can be obtained, if
the Reynold number is greater than 100 [6,11]. When inertial forces dominate over viscous forces, the
velocity, and temperature in the flow decrease. Boosting the amounts of ferromagnetic response number
enhances the magnetism-thermomechanical linkage in the course of flow and this interaction reduces the
velocity and enhances the temperature.
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