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ABSTRACT

In this study, we focus on the numerical modelling of the interaction between waves and submerged structures in
the presence of a uniform flow current. Both the same and opposite senses of wave propagation are considered.
The main objective is an understanding of the effect of the current and various geometrical parameters on the
reflection coefficient. The wave used in the study is based on potential theory, and the submerged structures con-
sist of two rectangular breakwaters positioned at a fixed distance from each other and attached to the bottom of a
wave flume. The numerical modeling approach employed in this work relies on the Boundary Element Method
(BEM). The results are compared with experimental data to validate the approach. The findings of the study
demonstrate that the double rectangular breakwater configuration exhibits superior wave attenuation abilities
if compared to a single rectangular breakwater, particularly at low wavenumbers. Furthermore, the study reveals
that wave mitigation is more pronounced when the current and wave propagation are coplanar, whereas it is less
effective in the case of opposing current.
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1 Introduction

One of the problems in the construction of coastal structures is their protection against wave action
which may be partially reflected by changes in the seabed due to changes in depth. To reduce the impact
of wave on coastal installations or natural shores, submerged obstacles are used [1–4], which act as wave
reflectors and represent one of the most effective solutions to the problem of protecting the marine and
coastal environment.

In order to comprehend the mechanisms of wave attenuation and dissipation better, several analytical,
numerical, and experimental research on the hydrodynamic performance of various submerged structures
have been carried out. Indeed, in 1993, Driscoll et al. [5] studied numerically and experimentally the
harmonic evolution of linear monochromatic waves in a wave flume when propagating over a submerged
impermeable rectangular obstacle. Davidson et al. [6] in 1996 proposed a novel non-dimensional
parameter for analyzing wave reflection from rubble mound breakwaters, this parameter offers valuable
insights into the wave interaction with such structures, aiding the understanding and design of breakwater
systems. Later in 2001, Stamos et al. [7] carried out an experimental investigation to examine how rigid
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and flexible rectangular breakwater models, secured to the flume bottom at different immersion depths,
impact the transmission, reflection, and energy dissipation of regular waves. They demonstrated that,
generally speaking, the reflection due to the rigid model exceeds that of the flexible one. In 2008,
Christou et al. [8] conducted a numerical analysis employing the Boundary Element Method (BEM) to
accurately simulate the interaction between regular nonlinear waves with a submerged rectangular
breakwater. An analytical second-order solution approach to effectively address the problem of wave
propagation over a submerged rectangular structure was proposed by Lee et al. [9] in 2014. Recent
studies in this field include those of Patil et al. [10], who used the Multi-Domain Boundary Element
Method (MDBEM) to conduct a numerical analysis of the hydrodynamic performance of diverse types
and forms submerged breakwaters. In addition, Kar et al. [11] in 2019 carried out a numerical study that
relied on the boundary element method, this study aimed to investigate gravity wave transformation
generated by a floating dock of finite size when it encountered sea bottom variations like trenches,
breakwaters, and an appropriate combination of trenches and breakwaters. In 2020, Chanda et al. [12]
investigated wave behavior and interaction with dynamic bottom topography, contributing to the
understanding of wave dynamics in multi-layered fluid environments. The same authors [13] examined
the impact of a porous seabed on wave diffusion, focusing on the interaction between waves and two
vertically immersed thin porous plates. As well as Mahmoudof et al. [14] in 2021, they presented an
experimental investigation of the reflection, transmission and dissipation of irregular waves on three
forms of impermeable submerged breakwaters (rectangular breakwater, trapezoidal breakwater and U-
form breakwater). In order to advance applied ocean research, the same authors [15] did a field
experiment on wave reflection from the permeable rubble mound breakwater at Chabahar Port, by
examining wave behavior in a practical port environment. In the same year, Fu et al. [16] investigated the
wave dissipation performance of a submerged plate breakwater using the High-Order Finite-Difference
Method (HOFDM). In 2022, Nguyen et al. [17] performed the experimental tests on three classes of
breakwaters (hollow triangle, pile-rock, and semi-circular) in order to calculate the wave transmission,
reflection, and dissipation coefficients.

In the ocean environment, the wave is usually accompanied by different currents that can be generated
by winds, tides, river flows, etc. Therefore, the current’s presence must be considered when studying the
behavior of the wave while it is interacting with submerged obstacles. This broad topic has been the
subject of much research in maritime hydrodynamics, ocean engineering and other disciplines.
Furthermore, due to the fact that the wave always accompanied by current, several numerical methods
had been used to describe this interaction. In 2003, Ryu et al. [18] performed a numerical study based on
the Boundary Element Method (BEM) of the nonlinear wave-uniform current interaction. Zhang et al.
[19] in 2014 established a numerical model to study wave-current interaction. This model was formulated
based on Reynolds-Averaged Navier-Stokes (RANS) equations with the k-ε turbulence closure scheme.
Chang et al. [20] in 2016 simulated a combined wave-current flow in a truncated domain, used the
Generation and Absorption Boundary Condition (GABC) of wave and current simultaneously. In 2016,
Kim et al. [21] used the commercial software FLUENT to numerically explore the wave force on
offshore substructures in the presence of a uniform current, they relied on the continuity and Navier-
Stokes equations. Fan et al. [22] in 2018 applied the Generalized Finite Difference Method (GFDM) in
combination with the Runge-Kutta method to study the wave propagation under the influence of current
in inclined and horizontal bottom flumes. In 2019, Gholamipoor et al. [23] proposed a Meshless Method
for simulating completely time-domain nonlinear wave-wave and wave-current interactions. To analyze
the nonlinear wave resonance generated by the oscillations of two cylinders in a uniform current, a
numerical study by the High-Order Finite Element Method (HOFEM) with an eight-node element was
proposed by Huang et al. [24] in 2022.
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In related to the same topic, many investigators have examined the influence of the current on the
interaction between waves and submerged obstacles [25–30]. In 2015, Liang et al. [27] presented a
numerical investigation employing a non-hydrostatic wave model to analyze wave transmission over dual
submerged trapezoidal breakwaters in present of the current. Bai et al. [28] in 2017 studied the forces
applied to a horizontal cylinder when a wave passes in the presence of a sheared current. The propagation
of a nonlinear wave on a rectangular breakwater immersed on a flat seabed in presence of the current was
investigated both numerically and experimentally by Chen et al. [29] in 2017. Naasse et al. [30] in
2019 analytically studied the wave-plate-current interaction taking on consideration the evanescent modes
model, they examined the complex dynamics of this interaction by focusing on the impact of geometrical
parameters. In 2021, Akarni et al. [31] numerically investigated the influence of the geometry of a totally
immersed horizontal plate on the wave reflection in the presence of current.

In the context of the same subject matter, with a focus on enhancing the efficiency of the breakwater
attenuator amid various occurring phenomena, this study was conducted to determine optimal breakwater
dimensions capable of offering superior protection against the influences of waves and currents. This was
achieved through the utilization of a computational framework. The framework entails a numerical
representation of two closely spaced rectangular breakwaters affixed to the bottom of a wave flume,
accounting for wave propagation when a uniform current is present. The model is founded upon the
Boundary Element Method (BEM), and comprehensive numerical experiments are conducted to
systematically explore the impact of both the current velocity and geometric parameters on the resulting
reflection coefficient. A confrontation between our results and those of the experiment is presented to
validate the proposed approach.

2 Problem Position

We assume a monochromatic incident wave of low amplitude a period T and wavelength k propagating
with the existence of a uniform horizontal velocity current Uc in a flat-bottom flume measuring length L and
depth H .

A breakwater system fixed on the bottom of a wave flume consisting of two rectangular obstacles spaced
at a distance d. The length and height of the left obstacle are l1 and h1, respectively, and those of the right one
are l2 and h2. The whole system is related to a Cartesian coordinate system (O, x, z) such that the axis (Oz) is
oriented upwards, the axis (Ox) is coincident with the free surface in the rest position (see Fig. 1).

Figure 1: Descriptive schema of the study domain
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The linear wave theory adopted in this work requires the following hypothesis, the flow is two-
dimensional, periodic and irrotational. The surface tension is neglected and the fluid is assumed to be
homogeneous, inviscid, heavy and incompressible. Furthermore this theory is based on the determination
of velocity potential f x; z; tð Þ and free surface elevation g x; tð Þ, which are believed to be complex and
harmonic in terms of their time dependence.

The velocity potential f x; z; tð Þ is a superposition of two potential functions fw x; z; tð Þ and fc xð Þ,
respectively representing the potential generated by the wave and that generated by the current, where x
and z denote spatial variables and t denotes time [18,30–32]:

f x; z; tð Þ ¼ fw x; z; tð Þ þ fc xð Þ (1)

With:

fc ¼ Uc x
fw x; z; tð Þ ¼ ’w x; zð Þeixt

�
(2)

where g is the gravitational acceleration, i is the complex number and x ¼ 2p
T

is the pulsation of the incident
wave.

The velocity potential associated with the linear wave must verify the following equations [18]:

In the study domain D:

Dfw ¼ 0 (3)

The impermeability condition at the bottom:

@fw

@z

� �
z¼�H

¼ 0 (4)

The kinematic condition at the free surface:

@g
@t

þ Uc
@g
@x

� @fw

@z

� �
z¼0

¼ 0 (5)

The dynamic condition at the free surface:

@fw

@t
þ ggþ 1

2
U2

c þ 2Uc
@fw

@x

� �
¼ 0 (6)

3 Numerical Formulation

The basic idea of the integral formulation of the Boundary Element Method (BEM) is to transpose the
internal problem to the boundary using Green’s identity. The application of Green’s second identity allows
the wave velocity potential ’w to be expressed in the following integral form:

c pð Þ ’w pð Þ ¼
Z
G

G q; pð Þ @’w qð Þ
@n

� ’w qð Þ @G q; pð Þ
@n

� �
ds (7)

where p is the source point of coordinates x; zð Þ, q is the current point of the study domain of coordinates
x0; z0ð Þ and n is the exterior normal on the domain boundary G. The coefficient of the free term c pð Þ is
determined by:

c pð Þ ¼
0 p � x; zð Þ =2DUG
1

2
p � x; zð Þ 2G

1 p � x; zð Þ 2D

8><
>: (8)
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The Laplace equation in two dimensions is represented by the Green’s function G and its normal

derivative
@G

@n
, which are defined by:

G ¼ �1

2p
ln rð Þ and @G

@n
¼ �1

2pr
@r

@n
(9)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ z� z0ð Þ2

q
is the distance between p and q.

The domain boundary G is subdivided into N segments with N ¼ P4
i¼1 Ni. The bottom boundary GB is

subdivided into N1 elements, the downstream boundary GD into N2 elements, the free surface boundary GF

into N3 elements and the upstream boundary GU into N4 elements (see Fig. 2).

Each segment has a length of Dl and a singularity is implied on each one for obtaining numerically the

wave velocity potential ’w and its normal derivative
@’w

@n
on the whole of this boundary G. Then the integral

on each segment can be given by applying a singularity located in the center of each segment, the calculation
of the wave velocity potential ’w on the domain boundary comes down to solving a matrix system.

ci’i
w ¼

XN

j¼1
Eij

@’ j
w

@nj
� Hij’

j
w (10)

The influence matrices H and E have the following explicit form:

� For i 6¼ j: Hij ¼
Z

Dljð Þ
@G

@n
dl and Eij ¼

Z
Dljð Þ

Gdl

� For i ¼ j : Hij ¼ 2p and Eij ¼ 2 1� ln Dlj
� 	� 	

Dlj

As a result, the new matrix form of Eq. (10) is as follows:

’wf g ¼ A½ � @’w

@n

� 

(11)

In this system the number of equations is inferior to the number of unknowns (N equations with 2N
unknowns). The N supplementary equations are given by the following boundary conditions:

� Boundary condition on GB

The bottom of the flume and the solid surfaces of the structures fixed on the bottom (i.e., the boundary
GB are impermeable and are specified as solid walls (no fluid can penetrate them). The gradient of the

Figure 2: Domain discretization
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unsteady wave velocity potential ’w in the normal direction (n) of the boundary GB is null [18,31–32]:

@’w

@n
¼ 0 on GB (12)

� Boundary condition on GF

In the absence of current at the free surface, we can write [20]:

g
@’w

@z
¼ �c20

@2’w

@x2
(13)

where c0 ¼ k
T
is the celerity of the incident wave when no current is present.

Using Eq. (13), the free-surface condition in the presence of uniform current can be written [31]:

@’w

@n
¼ @’w

@z
¼ x c20 2Uck � xð Þ

g Uc
2 � c20

� 	 ’w on GF (14)

� Boundary condition on GD

Downstream, the wave is assumed to propagate without reflection, we can write:

’w ¼ A Te�i kþxcosh kþ zþ Hð Þð Þ (15)

So we can deduce the downstream condition [31]:

@’w

@n
¼ @’w

@x
¼ �ikþ’w on GD (16)

� Boundary condition on GU

Upstream, when the wave encounters a change in depth, it is partly reflected and partly transmitted. We
will have on the upstream boundary GU a superposition of two waves incident and reflected upstream:

’w ¼ ’wi þ ’wr (17)

Knowing that the potential and its normal derivative upstream are continuous, we can write:

’w ¼ f zð Þ þ R0f 0 zð Þ (18)

@’w

@n
¼ � @’w

@x
¼ i kþf zð Þ � k�R0f 0 zð Þ½ � (19)

With f zð Þ and f 0 zð Þ are functions linked to the wave features as follows :

f zð Þ ¼ A cosh kþ zþ Hð Þð Þ
f 0 zð Þ ¼ A cosh k� zþ Hð Þð Þ

�
(20)

The upstream condition can be rewritten as [31]:

@’w

@n
¼ i k� þ kþð Þf zð Þ � ik�’w on GU (21)
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With:

A ¼ ai g

x� kþUcð Þcosh kþHð Þ
R0 ¼ ar g

xþ k�Ucð Þcosh k�Hð Þ
1

A

T ¼ at g

x� kþUcð Þcosh kþHð Þ
1

A

8>>>>><
>>>>>:

(22)

where ai, ar and at are respectively the amplitude of the incident wave, the reflected wave and the transmitted
wave at the free surface in the presence of the current. Meanwhile, kþ and k� are the wavenumbers that
represent the solutions of the following dispersion equations:

ðx� Uck
�Þ2 ¼ gk�tanh k�Hð Þ (23)

Finally, the boundary conditions can be expressed as follows:

@’w

@n

� 

¼ B½ � ’wf g þ SNf g (24)

By injecting Eq. (24) into Eq. (11), the determination of the wave velocity potential ’w is therefore
reduced to solving the following system:

C½ � ’hf g ¼ SNf g (25)

The numerical solution of the Eq. (25) can be done in a classical way by the Gauss method. When

applying the numerical method, the correlation
Dl

k
<

1

9
must be respected, this correlation is also referred

to by other authors [31,33,34].

� Reflection coefficient R

The reflection coefficient R is defined as follows:

R ¼ ar
ai

¼ xþ k�Ucð Þcosh k�Hð Þ
x� kþUcð Þcosh kþHð Þ R0 (26)

Since the reflection coefficient R is determined locally, we perform an arithmetic mean to express it
globally.

4 Results and Discussions

4.1 Validation (Without Current Uc ¼ 0 )
In this part, the proposed numerical approach will be validated by a comparative study of its results with

the experimental ones. In order to do that, we are interested on one hand in the experiment of Driscoll et al.
[5] concerning a rectangular breakwater of length l ¼ 0:79 m and height h ¼ 0:38 m with a water depth
H ¼ 0:5 m. On the other hand, to the experiment of Mordane et al. [35] based on the study of two
breakwaters of the same height h ¼ 0:5 H and the same length l ¼ 2:27 h, spaced by a distance d ¼ l
with a water depth H ¼ 2:5 m.

The comparison concerns the variation of the reflection coefficient R with the dimensionless
wavenumber kH in the first case (Fig. 3) and with the dimensionless wavenumber kh in the other case
(Fig. 4). The comparative studies show a good agreement between our numerical results obtained by the
BEM and the experimental ones.
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4.2 Wave-Rectangular Breakwaters-Current Interaction

4.2.1 Comparison between a Single and a Double Rectangular Breakwater
In this part, a comparison between a rectangular breakwater and an identical double rectangular one is

presented in order to show the importance of using this type of geometry. The configurations are taking at the
same height h ¼ 0:5 H with a length of l ¼ l1 þ l2 þ dð Þ for the single breakwater and l1 ¼ l2 ¼ 1:5 Hð Þ for
the double one spaced at a distance d ¼ 0:5 H (see Fig. 5). The variations of the reflection coefficient R are
presented in Fig. 6 as a function of kH with a current velocity Uc ¼ 0:2 m=s.

1 1.5 2 2.5 3
kH

0

0.2

0.4

0.6

0.8

R

Experimental (Driscoll et al. [5])

BEM

Figure 3: Comparative study of the variation of R vs. kH for rectangular breakwater

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
kh

0

0.1

0.2

0.3

0.4

0.5

R

Experimental (Mordane et al. [35])

BEM

Figure 4: Comparative study of the variation of R vs. kh for two rectangular breakwaters

Figure 5: The different configurations
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The results of the comparative study show that the maximum reflection coefficient of the different
configurations is around kH ¼ 0:9. Knowing that a good wave attenuator corresponds to a higher
maximum reflection coefficient and a wider reflection bung, therefore the single rectangular breakwater is
the best wave attenuator compared to the double one in the zone of large wavenumbers k (the short
waves). On the other hand in the zone of the small wavenumbers k (the long waves) the double
rectangular breakwater is the best.

It is clear that in case 2’, a reflection superposition phenomenon occurs, involving both the first and
second breakwaters. When short-wavelength waves encounter this scenario, they are unable to reach the
second breakwater, leading to an overall reflection confined to the contribution of the first breakwater.
Consequently, the maximum reflection coefficient in case 2’ is lower due to the shorter length of the
breakwater, in contrast to case 1’.

Conversely, in the presence of long-wavelength waves, they are able to reach the second breakwater,
leading to a combined effect of reflections from both breakwaters. This results in a higher maximum
reflection coefficient in case 2’ compared to the first, attributed to the additive nature of the two reflections.

4.2.2 The Case of Two Identical Rectangular Breakwaters
This part is dedicated to the study of the influence of two identical rectangular breakwaters (of the same

length l1 ¼ l2 ¼ 1:25 H and the same height h1 ¼ h2 ¼ 0:5 H) spaced by a distance d ¼ 0:5 H on the
propagation of a monochromatic incident wave with an amplitude of a ¼ 0:01 m, that is propagating in a
wave flume characterized by a length of L ¼ 30 m and a depth of H ¼ 2:50 m, in the presence of the
current. This study will focus on the effect of the current and the effects of the geometrical parameters on
the reflection coefficient. All the figures below show the variation of the reflection coefficient R with the
dimensionless wavenumber kH.

� Effect of the current

Firstly, we are interested in studying the influence of the current velocity on the maximum value of the
reflection coefficient and the width of the reflection band for different cases of the currents; without current,
coplanar current and opposing current (Fig. 7).

Figure 6: Variation of R vs. kH for Uc ¼ 0:2 m=s
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According to Fig. 7, we note that if the current is flowing in in the same direction to that of the incident
wave (Uc ¼ 0:2 m=s) the reflection bandwidth and the maximum value of the reflection coefficient increase
with a shift of the latter towards the large wavenumber k. In contrary, the opposite is observed if the current is
flowing in the opposite direction to that of the incident wave Uc ¼ �0:2 m=s). This is because the incident
wave is amplified by the current when they are in the same direction (coplanar current), which results in a
stronger collision of the wave with the rectangular breakwaters leading to a higher reflection. Contrary to the
case where the current and the incident wave are in opposite directions (opposing current), the latter is
extinguished, leads to less reflection compared to the cases without current and coplanar current.

� Effects of the geometrical parameters

In this part, we are interested in the effect of geometrical parameters on the reflection coefficient in the
presence of current. These geometrical parameters are the length and height of two rectangular breakwaters
and the spacing between them. Where calculations have been made in the presence of a current velocity
Uc ¼ � 0:2 m=s.

� Effect of the length of two rectangular breakwaters

We are interested in studying the effect of the length of two breakwaters on the reflection coefficient R
for different values of each breakwater length (l ¼ H, 1.25 H and 1.5 H). The curves in Fig. 8 show that in
both cases coplanar current and opposing current, the maximum value of the reflection coefficient increases
with the length of the rectangular breakwaters. This increase is accompanied by a shift of the maximum value
of the reflection coefficient towards low wavenumbers k. On the other hand, the reflection bandwidth
decreases. Regarding the current, we see the same effects observed in Fig. 7.

� Effect of the height of two rectangular breakwaters

We now present the effect of the height of two breakwaters on the reflection coefficient R for different
heights of each breakwater (h¼ 0.25 H, 0.5 H and 0.75 H). Fig. 9 reveals that the maximum of the reflection
coefficient increases with a shift to low wavenumbers k and the reflection bandwidth decreases when the
height of the rectangular breakwaters increases. This is explained by the fact that when the height of two
breakwaters increases (the rectangular breakwaters approach the free surface) the reflected wave will
amplify which results in a higher maximum reflection coefficient leading to a greater reduction in wave
dissipation.

Figure 7: Variation of R vs. kH for Uc ¼ 0 m=s, Uc ¼ 0:2 m=s and Uc ¼ �0:2 m=s
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� Effect of the distance d

To study the influence of the spacing between the two breakwaters on the reflection coefficient in the
presence of current, we depict the variations of this coefficient for different spacing (d ¼ 0.5 H, 0.75 H
and H). Based on the curves shown in Fig. 10, we notice that for the first band the maximum value of the
reflection coefficient increases when the spacing between the two rectangular breakwaters d increases,
unlike for the second band, the opposite is observed. Then the same thing happens periodically.

4.2.3 The Case of Two Different Rectangular Breakwaters
In this part, we will present a comparison between different configurations by studying the variation of

the reflection coefficient in the presence of a current velocity Uc ¼ � 0:2 m=s. The different configurations
are shown Fig. 11 with a water depth H ¼ 2:50 m.

Figure 8: Variation of R vs. kH for (l1 ¼ l2 ¼ H, 1.25 H and 1.5 H). (a): Uc ¼ 0:2 m=s and (b):
Uc ¼ �0:2 m=s

Figure 9: Variation of R vs. kH for (h1 ¼ h2 ¼ 0:25 H , 0:5 H and 0:75 H). (a): Uc ¼ 0:2 m=s and (b):
Uc ¼ �0:2 m=s
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The curves illustrated in Fig. 12 show that whatever the position of two breakwaters of the same height
with different lengths (Case 1 and Case 2) or of the same length with different heights (Case 3 and Case 4),
the variation of the reflection remains practically unchanged.

Figure 10: Variation of R vs. kH for (d¼ 0.5 H, 0.75 H and H). (a): Uc ¼ 0:2 m=s and (b): Uc ¼ �0:2 m=s

Figure 11: The different configurations

Figure 12: Variation of R vs. kH . (a): Uc ¼ 0:2 m=s and (b): Uc ¼ �0:2 m=s
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5 Conclusion

The current study focused on numerically investigating the interaction between waves and two
rectangular breakwaters positioned at a certain distance from each other and fixed to the flat bottom of a
wave flume. This investigation was carried out considering the presence of a uniform current. To validate
the numerical approach based on the Boundary Element Method (BEM), a comparison with experimental
results was conducted. The aim was to gain a better understanding of the mechanisms involved in wave
attenuation and dissipation when the current is present, by studying the influence of the current velocity
and the geometric parameters of the two rectangular breakwaters on the reflection bandwidth and the
maximum reflection coefficient.

Based on our findings, we can conclude that the double rectangular breakwater provides better wave
attenuation compared to a single breakwater, particularly for low wavenumbers. Furthermore, in the
presence of a coplanar current, both the reflection bandwidth and the maximum reflection coefficient
increase. Conversely, in the case of an opposing current, these parameters decrease. Additionally, as the
length and height of two rectangular breakwaters and the spacing between them increase, the maximum
reflection coefficient also increases, this implies an important reduction of the wave.
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