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ABSTRACT

The fully nonlinear equations of gas dynamics are solved in the framework of a numerical approach in order to
study the stability of the steady mode of Rayleigh-Bénard convection in compressible, viscous and heat-conduct-
ing gases encapsulated in containers with no-slip boundaries and isothermal top and bottom walls. An initial lin-
ear temperature profile is assumed. A map of the possible convective modes is presented assuming the height of
the region and the value of the temperature gradient as influential parameters. For a relatively small height, iso-
baric convection is found to take place, which is taken over by an adiabatic mode when the height exceeds the
critical value, or by a super-adiabatic mode in case of a relatively high temperature gradient. In the adiabatic
mode, convective flow develops due to adiabatic processes given a stable initial stratification. An analytic formula
for the critical height of the region is derived taking into account and neglecting the dependence of the gas visc-
osity on the temperature. Moreover, an analytic formula is obtained for the upper boundary of the region of
applicability of the Boussinesq approximation for incompressible gases. These models for compressible gases
are relevant to practical situations such as the study of convective flows in spatially extended gas mixtures when
dealing with safety issues related to hydrocarbons stored in gas stations. A dangerous situation arises when the
tank is almost empty but some hydrocarbon is left at the bottom of the tank. In the presence of convective flows,
the vaporized fuel is mixed with the oxidizer (air) forming a gas-vapor medium. However, if the volumetric con-
centration of fuel vapor (hydrocarbon) is in the interval between the lower and upper concentration limits of igni-
tion, then the gas-vapor mixture becomes explosive and any accidental spark is sufficient to cause an emergency.
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Nomenclature
u, v, P, ρ, T Dimensionless velocity, density, pressure, temperature
ψy = ρu, ψx = -ρv Relations for determining the stream function of a stationary solution
Ph Equilibrium (static) pressure distribution
ΔT Dimensionless difference of temperatures between lower and upper horizontal boundaries
H, m Dimensional height of the region
Had, m Dimensional height of the adiabatic plume motion
ν and χ Kinematic and thermal diffusivity coefficients
Ra = Pr∙CF∙M

-2ΔT Rayleigh number

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

DOI: 10.32604/fdmp.2024.048829

ARTICLE

echT PressScience

mailto:palymsky@yandex.ru
https://www.techscience.com/journal/FDMP
http://dx.doi.org/10.32604/fdmp.2024.048829
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/fdmp.2024.048829


Rab Critical values of Rayleigh number for incompressible fluid Boussinesq approximation
Rag Critical values of Rayleigh number for compressible gas
Hcr Dimensional critical height of the region
CF = gH/(γRT0) Parameter of hydrostatic compressibility
γ Adiabatic exponent
x, y and t Dimensionless coordinates and time
tad, s Dimensional time of adiabatic plume rise
Th(y) = 1 - ΔT∙y Equilibrium (static) temperature distribution
ρh Equilibrium (static) density distribution
δT, δρ Deviations of temperature and density from the corresponding static distributions
ρad Density of gas particle at adiabatic motion
Ek Total energy of motion in gas while in convective motion
R Specific gas constant
g Standard acceleration of free fall
ρ0 and T0 Characteristic values for density and temperature
M = ν/((γT0R)

0.5H) Mach number
Pr = ν/χ Prandtl number
Sc Schwarzschild number, ratio of adiabatic gradient to the given
Re = (2∙Ek/π)0.5/M Reynolds number
Ga = gH3/ν2 Galileo number

1 Introduction

Rayleigh-Bénard convection is a classical problem in fluid and gas mechanics, which has mostly been
considered in terms of the Boussinesq approach for an incompressible fluid [1,2]. However, in the case of gas
convection the situation is much more complicated due to gas compressibility. As a result, while studying gas
convection we can only use the Boussinesq approach in laboratory studies, when the height of the layer
measures a couple of centimeters (e.g., for air in normal conditions). In this case, the small height of the
layer causes a relatively little change in the hydrostatic pressure; while calculations of convection in
dozens and more centimeters high regions require taking into account gas compressibility described by
full nonlinear equations of the gas dynamic theory [3–5].

It is necessary to consider convective flows in gas mixtures taking place in large regions when we study
explosion safety issues while keeping hydrocarbons in storage reservoirs at gas stations. An explosive
situation occurs when the tank is almost empty, but some small amount of hydrocarbon remains at the
bottom of the tank. In the presence of convective flow, the fuel (vapors of vaporized hydrocarbon) mixes
with the oxidizer (air), forming a potentially explosive gas-vapor medium. A gas-vapor mixture is
explosive if the volumetric concentration of fuel vapor is between the lower and upper concentration
limits of ignition. In this case, any accidental initiation (for example, a spark when turning on a switch)
can lead to an emergency, the scale of which is determined by the amount of explosive gas-steam mixture
formed. Since the degree of explosiveness of the mixture is determined by the concentrations of the fuel
and the oxidizer, and convective processes lead to mutual movement and mixing of the fuel and oxidizer
masses with changes in their local concentrations in certain areas, an explosion-proof mixture can become
locally explosive and vice versa, an explosive gas mixture can become explosion-proof. The latter
processes require a detailed study, and the mode, structure and intensity of convective motion are of
decisive importance here, since they determine the mutual arrangement, and mixing of fuel, oxidizer and
their concentrations [6–10]. Thus, it is the convective flow in this case that forms a potentially explosive
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gas-vapor medium from vaporized residues of liquid fuel and gaseous oxidizer. Features of the development
of detonation processes in such medium have been studied in numerous works [11–15].

The features of convection in a compressible medium have been discussed in a number of monographs
and discussions [16–20]. It is traditionally considered that gas compressibility under convection at laboratory
scales is insignificant, and it is essential only at large (planetary) scales. In this case, both scales (laboratory
and planetary) are considered asymptotic and their intersection is not taken into account.

The planetary atmosphere is treated as a compressible medium in which the flow is assumed to be
adiabatic [18]. It is shown that convective flow in the atmosphere is unstable if the Schwarzschild number
Sc is less than 1 and stable otherwise. The Schwarzschild number is defined in the usual way, i.e., as the
ratio of the adiabatic temperature gradient to a given temperature gradient.

In this connection, we note that gas convection based on the full nonlinear equations of gas dynamics has
been not adequately investigated [16], which is due to technical difficulties associated, firstly, with the large
rigidity of the system of equations and with an extremely low relative pressure change [5,16].

Such rigidity of the system of equations, which leads to the need to perform calculations with an
unreasonably small time step, is due to the coexistence of two types of motion-thermoacoustic waves
propagating at sonic speed (analogs of pressure waves) [21] and relatively slow convective motion
developing against their background. The performed methodological calculations have shown that the
limitations on the time step, which ensure the stability of calculations when using explicit time schemes,
are precisely determined by the need to correctly reflect the development of “fast” thermoacoustic waves,
while the accuracy of the calculation is determined by both “slow” and “fast” motions. In this connection,
we note that the use of implicit schemes makes it possible to multiply the time step of the calculation [2],
but due to the inevitable “smearing” of “fast” thermoacoustic waves, the use of such methods is in a
certain sense equivalent to the use of numerical methods with a filtering algorithm.

Some compromise is achieved with simplified models of gas convection. Derived from the equations of
gas dynamics under the assumption of a small Mach number and hydrostatic compressibility parameter, the
corresponding systems of equations describe the medium in which sound perturbations propagate at an
infinitely large velocity. Mathematically, the structure of the obtained systems is in a certain sense similar
to the structure of the viscous incompressible fluid equations with additional terms to account for
compressibility [22], and, as a consequence, such a system can be successfully used in calculations of
convection in regions of low heights with large variations in temperature and density [22,23]; however,
calculations of convective flows in regions of bigger heights, where the compressibility of the medium
begins to appear fully, require the use of full nonlinear gas dynamics equations.

Jeffrey expanded the scope of application of the Navier-Stokes equations to the case of compressible
flows by taking into account the work of compression forces in the heat transfer equations [4,5]. In this
case, the critical Rayleigh numbers for an incompressible medium in the Boussinesq approximation Rab
and for a compressible gas Rag are related by the relation:

Rab ¼ Rag 1� Scð Þ;
where Sc is the Schwarzschild number. The proposed relation describes the calculated dependence of the
critical Rayleigh number on the height of the layer in the case of convection of a compressible gas with
satisfactory accuracy (with an error up to 25%) and predicts adiabatic suppression of motion at its large
value. By adiabatic suppression of convection here and below we mean the growth of the critical value of
the Rayleigh number as the height of the layer increases.

When considering planetary-scale convective flows, it is proposed to replace a given temperature
gradient with an effective temperature gradient equal to the given one but reduced by the adiabatic
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temperature gradient [18]. This substitution leads to the above-derived Jeffrey’s relation. The authors
observed the stabilizing effect of the adiabatic gradient in atmospheric currents.

It is emphasized that the Boussinesq approximation is applicable when several conditions are satisfied,
of which the most restrictive is the smallness of the Schwarzschild number [18,24]. The latter restriction is
much more stringent than the restriction on the value of the product of the thermal expansion coefficient and
the temperature difference commonly used in experiments [25]. It can be shown that the condition of the
smallness of the Schwarzschild number is equivalent to the requirement of constancy of the critical value
of the Rayleigh number.

The compressibility is very significant in near-critical gas convection and becomes decisive even at a
layer thickness of about 1 mm [24]. The near-zero value of the thermodiffusion coefficient (large Prandtl
numbers) here determines almost complete adiabaticity of the gas flow, and the proximity to the critical
point determines a large variation of density with temperature change. Due to this, a new form of
convective heat transfer in near-critical medium, known as the piston effect, becomes possible. The
author mentions the existence of a region with density-stable stratification at a temperature gradient larger
than adiabatic [26]. However, its study in near-critical gas is difficult due to the vanishing relative width
of this region as 1/γ, which is associated with the adiabatic exponent γ approaching infinity in the vicinity
of the critical point [26].

In numerical simulations, the convection of near-critical gas was considered on the basis of the gas
dynamics equations with the van der Waals equation of state [26]. However, the value of these works is
somewhat reduced by the use of the thermoacoustic wave filtering algorithm meant to save computational
time, due to which the model used is similar to the small Mach number approximation described above
with its inherent limitations.

Gas convection in a horizontal layer with horizontal boundaries free of tangential stresses is considered
analytically in the linear approximation and numerically in the nonlinear approximation [27]. It is shown that
convection can develop when the Schwarzschild number is strictly less than 1. It is argued that convection is
impossible in the adiabatic mode and convective motion can develop only when the temperature gradient
exceeds the adiabatic gradient [3,18].

Numerous works on the numerical study of convection in compressible gas have shown qualitatively
correctly the presence of adiabatic suppression of convection; however, due to technical difficulties, the
given values of the determining dimensionless parameters in this series of works are far from the real
ones. For instance, the value of the hydrostatic compressibility criterion characterizing the relative
pressure change and the resulting relative density change is overestimated by three orders of magnitude
[27,28].

The necessity to take into account the adiabatic temperature gradient (gas compressibility) with
corresponding corrections of the measurement results is indicated by numerous experimental works of a
French group of scientists, where the temperature convection in gaseous helium at a cryogenic
temperature of about 5 K was studied. It was shown that even at a relatively small height of 0.2 m,
the correction for the adiabatic temperature gradient significantly changes the measured value of heat
transfer [25].

Consideration of gas compressibility is particularly relevant in the experimental study of asymptotic
modes of convection at extremely large values of the Rayleigh number because of the use in such
experiments of regions up to 3.3 m high [29].

We should note that new technical possibilities have now appeared. The unconditional validity of the
remark about the rigidity of the system of equations and the necessity to perform calculations with a
small time step is partially leveled by the possibility of performing calculations according to an explicit
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scheme with massively parallel data processing on multicore CPUs or/and GPUs using OpenMP or CUDA
technology [4,5]. The advantages of massively parallel data processing appear the stronger the larger the
amount of information processed, so such computations are especially promising for detailed two-
dimensional and three-dimensional calculations.

Note also that in terms of the special geometry of the region and not very high supercriticality the
convection develops as a roll quasi-two-dimensional [5], which gives grounds for consideration of
compressible and incompressible convective flows in the two-dimensional formulation.

The present work is devoted to the study of the features of convective instability in a bottom-heated gas
layer, for certainty, in air under normal conditions. The convective two-dimensional and unsteady flow of a
viscous incompressible fluid in a horizontal layer under bottom heating in the Boussinesq approximation is
preliminarily considered. The critical value of the Rayleigh number and the values of the basic integral
quantities are calculated, with their subsequent comparison with the corresponding values obtained in the
case of a compressible gas. Then, the stability characteristics of the static convection mode of the gas
layer are investigated, the role of adiabatic processes in the development of convective instability is
discussed, and a diagram of convection modes is proposed. Finally, we have derived a formula for the
upper limit of applicability of the Boussinesq approximation in the calculation of gas-layer convection.

2 Numeric Models and Methodology

Preliminarily, we consider the stability characteristics of the static Rayleigh-Bénard convection mode of
an incompressible fluid in the Boussinesq approximation. It is obtained that the critical Rayleigh number is
equal to 1971.4 at the relative horizontal extent of the flow region equal to π. For calculations of convective
flows, the numerical method of longitudinal-transverse run in the modification of V.I. Polezhaev with the
author’s method of calculating vortex values on rigid boundaries of the region based on the algorithm of
fast Fourier transformation [2] was used on the basis of finite-difference representation of the solution.
All boundaries of the region were considered rigid and isothermal and calculations were performed on a
grid of (257∙65) nodes. The stream function was determined from the vortex values using the fast Fourier
transform algorithm [2].

Now consider the convective flow in a compressible, viscous, and thermally conductive gas in the field
of gravity, which can be described by the following system of equations [1,28]:

qt þ q div u!þ u � qx þ v � qy ¼ Mr2ðq� qhÞ;

ut þ u � ux þ v � uy ¼ � 1

cq
ðqTÞx þM

4

3
uxx þ uyy þ 1

3
vxy

� �
;

vt þ u � vx þ v � vy ¼ � 1

cq
ðqTÞy þM vxx þ 4

3
vyy þ 1

3
uxy

� �
� CF ;

Tt þ u � Tx þ v � Ty ¼ M

Pr
r2T � c� 1

c
T div u!; P ¼ qT :

(1)

Here u, v, P, ρ and T are dimensionless components of velocity, pressure, density and temperature,
M = ν/((γT0R)

0.5H) = 4.608∙10−8∙H−1 is the Mach number, where the velocity calculated from kinematic
viscosity is related to the adiabatic speed of sound, T0 = 300°K is taken as the characteristic value for
temperature, the selected values of specific gas constant R = 287 J/(kg∙K), adiabatic index γ = 1. 4,
kinematic viscosity ν = 16∙10−6 m2/s and Prandtl number Pr = 0.71 correspond to air, where χ denotes the
gas diffusivity and CF = gH/(γRT0) = 8.130∙10−5∙H is the hydrostatic compressibility. As the length scale
we chose the height of the region H, for temperature and density-their values T0 and ρ0 at the lower
horizontal boundary, for the velocity-adiabatic speed of sound (γRT0)

0.5, for the pressure-Rρ0T0 and time-
H/(γRT0)

0.5. The dependence of viscosity and thermal conductivity coefficients on temperature is
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neglected in the calculations. The height of the convection region in the calculations varied from 0.004 to
0.5 m.

In perspective it is supposed to consider convection of not homogeneous gas mixture in which molecular
masses of gas mixture components (fuel and oxidizer) differ significantly, for example, vapor densities of
gasoline and air differ in 3.5 times. Therefore, in the equation for density (the first equation of the system
(1)) a term describing mass diffusion is introduced taking into account that in a perfect gas the
coefficients of kinematic viscosity and mass diffusion coefficients coincide in value. Note that to the
analogous equation for density, one can come also in the Boussinesq approximation [1], if to take into
account the linear dependence of density on temperature and substitutes the corresponding relation in the
equation for temperature. Such regularization of the density equation is not essential for relatively slow
convective flows, where viscosity and heat conduction are already fully manifested due to the smallness
of the Reynolds number.

Fig. 1 shows the formulation of the problem in dimensionless form. In dimensional units, the height of
an area and its horizontal extent change simultaneously, but the aspect ratio remains constant, the
dimensionless geometry of the region does not change and the horizontal size of the region referred to the
vertical always is equal to π. And thus, the dependence of the solution to the problem on the dimensional
height of the region H in the dimensionless formulation under consideration is determined only by the
dependence of the parameters M and CF on H. The formulas for determining the parameters M and CF

are given above.

At all boundaries of the region, the values of density are derived from the system of Eq. (1) taking into
account the absence of motion:

ðqhThÞy ¼ �cqhCF ; ThðyÞ ¼ 1� DT � y: (2)

The calculations were performed using the explicit scheme in time, and since the appearance of shock
waves in the solution was not expected, the convective nonlinear and diffusion terms were approximated by
the monotonic scheme of [2], and thus the numerical method used was of the first order of approximation in
time and the second order in space.

All calculations were performed on a grid of (241∙81) nodes with a dimensionless time step of 0.01. Test
calculations on more detailed space and time grids showed sufficient accuracy and stability of the algorithm
used.

All calculations were carried out near the stability threshold with the Reynolds number value as follows:

Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ek=p

p
�M�1;

which did not exceed values of the order of 10. Here Ek denotes the total kinetic energy of the entire
convective motion of the gas mass [2].

Figure 1: Formulation of the problem
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Due to the low velocity of convective flows, the main contribution to the pressure variation is made by
its hydrostatic component [5].

The numerical study was organized according to the following scheme.

By calculations with different ΔT, the critical value of the temperature difference was determined, at
which the solution has zero increment, i.e., it does not increase or decay in time. Then, the critical
Rayleigh number was calculated from the obtained temperature difference as follows:

Rag ¼ PrCFM
�2DT ¼ gH3DT=ðvmÞ:

Here and below, we used the dimensionless temperature difference, i.e., the temperature difference
related to the temperature value of the lower horizontal boundary of the region. We should note that the
used technique works well for small values of H, when the perturbations of the static solution develop
monotonically in time. However, oscillations were observed in the immediate vicinity of H = 0.5 m and
therefore the corresponding data in Figs. 2–4 can probably be refined. In this connection, we note that
regular and irregular oscillations are observed in the linear [1] and developed nonlinear [2] modes of
incompressible fluid convection in the Boussinesq approximation.

Figure 2: Critical dimensionless temperature difference

Figure 3: Critical value of Rayleigh number
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3 Analysis of Stability of Convective Flow and Applicability of the Boussinesq Approximation

Figs. 2–4 show the data as functions of the dimensional height of the region H, with H presented in
meters for clarity, and the temperature difference ΔT in Figs. 2 and 4 is dimensionless.

As functions of the region height, the critical dimensionless temperature difference and the critical
Rayleigh number are shown in Figs. 2 and 3. At the same time, the solid lines 1 in Figs. 2 and 3
correspond to the adiabatic temperature difference [4,5]:

DT ¼ ðc� 1ÞCF ; DT ¼ ðc� 1ÞgH=ðcRT0Þ; (3)

lines 2 correspond to the critical temperature difference for the incompressible fluid convection in the
Boussinesq approximation:

DT ¼ Rabvm=ðgH3Þ; Rab ¼ gH3DT=ðvmÞ ¼ 1971:4; (4)

and dots represent the numerical results of the present work.

All results of systematic simulation presented here correspond to the convection mode with three
vortices.

In Fig. 2, curve 3 also shows the Jeffrey’s result obtained theoretically [4,5]:

DT ¼ Rabvm=ðgH3Þ þ ðc� 1ÞgH=ðcRT0Þ; (5)

which taking into account the maximum divergence of 25%, qualitatively corresponds to the result of the
present work. We should note also that at increasing H the curve (5) asymptotically passes to the
adiabatic temperature difference.

According to the condition of constancy of the critical value of Rayleigh number for compressible,
viscous and heat-conducting gas given in Fig. 3, we can see that the range of applicability of the
Boussinesq approximation extends all over the height of the region from 1 to 10 cm. At a lower height of
the region the use of the Boussinesq approximation becomes inappropriate because of large variations in
temperature and density, and at higher heights-because of relatively strong changes in hydrostatic
pressure and the resulting compressibility. Note also that at sufficiently large heights of the region H the
calculated critical Rayleigh number grows as H4 and has close values to those calculated from the
adiabatic temperature gradient.

It can be shown that at sufficiently large heights of the region, the critical temperature difference
corresponds to stable stratification of the medium by density and convection develops at decreasing with
height gas density due to adiabatic processes in the gas mixture.

Figure 4: Diagram of gas convection modes
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Let us consider Eq. (2) for the gas density in the static state (in the absence of convective motion). For
clarity and simplicity, let us write out asymptotic distributions for density, temperature and pressure, which
can be obtained from Eq. (2) at small ΔT and CF:

qh ¼ ð1� cCFyÞ=ð1� DT yÞ ¼ 1þ ðDT � cCFÞ � y; ThðyÞ ¼ 1� DT y; Ph ¼ 1� cCFy: (6)

The above relations show that Ph and Th always decrease with increasing y, and the density distribution
at ΔT > γ∙CF (in other words, Sc < (γ - 1)/γ) corresponds to unstable stratification, and at ΔT < γ∙CF (or
(γ - 1)/γ < Sc) to stable stratification, where the gas density decreases with increasing y.

At adiabatic ascent of an ideal gas particle, its adiabatic density (the density of the particle at adiabatic
motion, i.e., without heat exchange with the medium) decreases according to the Poisson adiabat due to the
static pressure drop:

qad ¼ P1=c
h ¼ ð1� cCFyÞ1=c ¼ 1� CFy: (7)

Comparing the relations for static (6) and adiabatic (7) densities, it can be seen that the adiabatic density
of the gas particle (7) is less than the static (6) and the particle floats at:

DT > ðc� 1ÞCF ;

or, equivalently, Sc < 1. And at Sc > 1, the adiabatic density of the gas particle is greater than the static density
(the particle returns to its initial position) and the static solution in this approximation is stable.

Thus, when choosing the value of the dimensionless temperature difference from the interval (γ − 1)∙CF

< ΔT < γ∙CF (or the Schwarzschild number in the range (γ − 1)/γ < Sc < 1), convection develops at density-
stable stratification, and it is the adiabaticity of gas flow that determines the possibility of convective
instability at density-stable stratification. In this connection, we emphasize that the lower boundary of the
region of density-stable stratification coincides with the adiabatic temperature difference (3).

The value of the dimensionless temperature difference at which density-neutral stratification is realized
(the gas density does not depend on the height y) is defined as:

DT ¼ cCF ; DT ¼ gH=ðRT0Þ; (8)

and the critical height of the regionHcr, above which convection under density-stable stratification is possible
due to adiabatic processes (we will call such convection adiabatic), can be found as the point of intersection
of the neutral stratification curve (8) and the distribution (5):

Hcr ¼ ðRab m2cT0=ðPr g2ÞÞ0:25; (9)

which for a gas under the considered conditions is equal to 17.3 cm.

In the author’s earlier work [5], the value of the critical height was determined as the point of intersection
of the critical curves corresponding to the adiabatic temperature difference (3) and the Boussinesq
approximation (4). The formula obtained in [5] differs by a constant multiplier from the above formula
and gives a value of 21.7 cm, which is 25% higher than the value obtained in the present work.

We should note that without taking into account the dependence of viscosity and diffusivity of the gas on
temperature, the value of the critical height (9) grows in proportion to the root of the fourth degree from the
temperature of the medium.

However, the situation changes significantly if we take into account the dependence of viscosity on
temperature according to Sutherland’s formula [19] and take into account the equation of state of an ideal
gas. Then the formula for the dependence of kinematic viscosity on temperature and the expression for
the critical height take the form:
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mðTÞ ¼ l0
P

T0 þ C

T þ C

T

T0

� �1:5

RT ; Hcr ¼ RabcR3l20ðT0 þ CÞ2
g2 Pr T3

0

 !0:25

� T6

P2ðT þ CÞ2
 !0:25

: (10)

The expression in the first brackets in the formula (10) for the critical height represents a constant, and
the expression in the second bracket for simplicity we consider at high-temperature T >> C, where C = 120°K
and μ0 = 18.71∙10−6 Pa∙s [19]. The value of dynamic viscosity of air here μ0 corresponds to the selected
temperature T0 = 300°K.

Then, for the critical height in air, it can be obtained that:

Hcr ¼ 0:000684 � Tffiffiffi
P

p � 1� 60

T

� �
: (11)

Here the pressure P is expressed in atmospheres. It can be seen that at a high temperature the value of the
critical height (11) grows linearly with increasing temperature and decreases inversely proportional to the
square root of the pressure. Of course, given the range of applicability of Sutherland’s formula, we do not
consider here high temperatures of the order of thousands of degrees and pressures of the order of tens of
atmospheres [19].

As it is described in detail in classical monographs [1,18] and noted above, the Boussinesq
approximation is applicable under a number of conditions: small temperature variation, small density
variation due to temperature variation, and much smaller density variation due to hydrostatic pressure
drop. In our case, these constraints are satisfied. However, in the case of a compressible gas, there
appears a more significant limitation on the applicability of the Boussinesq approximation-the smallness
of the ratio of the adiabatic temperature gradient to the temperature gradient in the Boussinesq
approximation [24]. This ratio at small height of the region corresponds to the Schwarzschild number Sc.
It can be shown that the requirement of smallness of the Schwarzschild number is equivalent to the
requirement of constancy of the critical Rayleigh number.

The data in Fig. 3 show that the value of the calculated critical Rayleigh number is constant and close to
that calculated for convection of an incompressible medium in the Boussinesq approximation at the height of
the region from 1 to 10 cm, which determines the range of applicability of the Boussinesq approximation for
convection in air under normal conditions. At smaller heights of the region the Boussinesq approximation is
not applicable due to too large variations of temperature and density, and at larger heights the compressibility
of the medium should be taken into account. In this connection, in addition, we note that at the height of the
region from the range of applicability of the Boussinesq approximation H = 0.05 m and supercriticality r
from 1.1 to 45 (supercriticality is the ratio of Rayleigh number to its critical value), the difference
between the values of Nusselt number Nu and Reynolds number Re calculated by different convection
models is of the order of 3% and 2%, respectively.

Simple calculations show that at the height of the region H equal to 10 cm, the value of the
Schwarzschild number Sc is 0.05. Choosing this value as a threshold value for the upper limit of
applicability of the Boussinesq approximation, we obtain:

Hb ¼ 0:05

c� 1

� �0:25

� Hcr ¼ 0:5946 � Hcr ¼ 0:5946 � ðRab m2cT0=ðPr g2ÞÞ0:25: (12)

It follows from relations (12) that the position of the upper limit of applicability of the Boussinesq
approximation is proportional to the critical height. As a consequence, without taking into account the
temperature dependence of gas viscosity and diffusivity, the position of the upper limit of applicability of
the Boussinesq approximation is proportional to the root of the fourth degree of the medium temperature.
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Taking into account the noted proportionality between Hb and Hcr, we can derive an asymptotic
expression for the position of the upper limit of applicability of the Boussinesq approximation:

Hb ¼ 0:5946 � 0:00068396 � Tffiffiffi
P

p � 1� 60

T

� �
¼ 0:0004067 � Tffiffiffi

P
p � 1� 60

T

� �
: (13)

Of course, the asymptotic representation for Hb (13) is valid under the same assumptions as the
corresponding asymptotics for Hcr (11).

The above consideration allows us to present the following diagram of convection modes in a
compressible viscous and thermally conductive gas on the plane where dimensionless temperature
difference is height of the region (Fig. 4).

The solid line 2 with points in Fig. 4 is constructed according to the analytical Jeffrey’s result (5, at H ≤
0.2 m) and numerical results of calculations of the present work (at H > 0.2 m). Line 1 corresponds to the
adiabatic temperature difference (3), and curve 3 is the line of neutral stratification (8), as it separates the
regions with stable and unstable stratification of the static solution.

The critical height Hcr in Fig. 4 corresponds to the change of modes, namely, at the height of the region
less than critical H < Hcr, the isobaric mode of convection (small variation of hydrostatic pressure) is
realized, and at higher H > Hcr and relatively large variation of hydrostatic pressure-adiabatic and
superadiabatic modes are realized. The adiabatic mode is realized in the narrow knife-shaped region in
Fig. 4 and is bounded from below by the line of adiabatic temperature difference (3) (line 1 in Fig. 4) and
from above by curve 3 corresponding to neutral stratification (8). The superadiabatic mode lies in Fig. 4
above the narrow knife-shaped region corresponding to the adiabatic mode and convection develops there
at stable stratification; from below this mode is limited by curve 3 corresponding to neutral stratification
(8). For gas under the considered conditions, the critical height Hcr is equal to 17.3 cm.

As already mentioned above, in this work, systematic research calculations were carried out only for the
three-vortices convection regime. Bifurcations of convective regimes are not studied in this work, since such
a goal has not yet been set.

Thus, in all calculations in this work, the convection mode has a qualitatively identical three-vortices
structure. Below are shown the stream function of the stationary solution (Fig. 5), the deviations of
temperature (Fig. 6) and density (Fig. 7) from their static distributions at H = 0.5 m and Sc = 1.05. The
selected parameter values correspond to a point in a narrow region between the adiabatic gradient curve
1 and the solid line with dots in Fig. 4. All data in Figs. 5–7 multiplied by 107. Arrows in Fig. 5 shows
the directions of rotation of the vortices. The intensity of the calculated three-vortices structure gradually
decays as it approaches the neutral curve.

Figure 5: Stream function of the stationary solution
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Convective vortices work as a kind of pumps; they lift the heated medium up to the upper horizontal
boundary, and the cold medium down to the lower horizontal boundary.

Depicted in deviations from the static solution, the distributions of density and temperature differ only in
sign. Namely, low temperature corresponds to a heavy medium, and high temperature corresponds to a
lighter medium.

To clarify the relationship between deviations of temperature and density, we consider the equation of
state, while we assume that the pressure is equal to the static pressure, and the deviations of temperature δT
and density δρ from the corresponding static distributions are small. These assumptions are consistent with
the assumptions about the region’s height not too high and low supercriticality adopted in this work.

Then from the equation of state we can obtain:

ðqh þ dqÞ � ðTh þ dTÞ ¼ Ph; Ph ¼ 1� cCF y; dq ¼ � qh
Th

dT : (14)

Now, taking into account the above relations (14) for the static distributions of temperature and density
and the smallness of the values of ΔT and CF, we find:

dq ¼ �ð1þ ð2 � DT � cCFÞyÞ � dT ; dq ¼ � dT : (15)

Figure 6: Temperature deviation from the static distribution

Figure 7: Density deviation from the static distribution
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The last relation (15) explains the correspondence obtained during calculations with the distributions of
temperature and density deviations (up to sign) shown in Figs. 6 and 7, respectively.

The three-vortices convection regime with the above-mentioned correspondence between the
temperature and density fields was observed with stable and unstable initial stratification, in isobaric,
adiabatic, superadiabatic convection regimes and in a narrow region between the adiabatic gradient curve
(curve 1 in Fig. 4) and the neutral curve (solid line with points in Fig. 4).

4 On the Role of Adiabatic Processes in the Convection of a Compressible Gas

Let us explain the role of adiabatic processes and compressibility of the medium in convection at the
subcritical height of the region.

Considering that the value of the critical height Hcr (9) for convection in air under normal conditions is
17.3 cm, we consider the motion of a heated plume, for certainty, at the subcritical height of the region
H = 0.1 m and at the supercritical height H = 0.5 m.

Calculations of the model problem on the rise of a heated plume (convective motion can be represented
as the motion of rising and falling plumes) in a compressible medium show qualitatively different
mechanisms of flow development at subcritical and supercritical heights. In the following test series of
calculations, the initial conditions for the vertical velocity at the lower boundary are initiated by a rising
heated plume; all other boundary conditions coincide with those described above. Observation of the
plume motion is performed using special tracers, which are treated as passive admixture.

In Fig. 8, line 1 shows the density of the rising plume at H = 0.5 m and supercriticality r = 2 (the ratio of
the Rayleigh number to its critical value), with line 2 corresponding to the static (initial) distribution and
curve 3 to the Poisson adiabat.

It can be seen that at the supercritical height of the region H = 0.5 m, the density of the rising plume
approximates the Poisson adiabat, indicating that the flow is close to adiabatic. This is also true for the
temperature distribution in the rising plume.

A significantly different situation is observed at the subcritical height of the region H = 0.1 m. Fig. 9
shows the density of the rising plume at H = 0.1 m and the same value of supercriticality r = 2; the
notations are the same.

A comparison of the plume density dependences at supercritical heights (H = 0.5 m, Fig. 8) and
subcritical (H = 0.1 m, Fig. 9) shows a qualitatively different mechanism of flow development, namely, at
supercritical heights the plume rises adiabatically, while at subcritical heights the density rather follows a
static distribution (line 2), which is due to heat conduction alone without taking convection into account.
The above is also true for the temperature distribution in the rising plume. The determining role of
adiabaticity is also seen at increasing supercriticality r, in the superadiabatic mode.

Figure 8: Density of the rising plume at H = 0.5 m
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Adiabatic flow mode is energetically more efficient than isobaric flow mode. Physically, it is connected
with the fact that at the adiabatic motion of a gas particle there is no heat exchange with the medium and it
causes a large energy of a particle, increase of kinetic energy of flow and heat exchange. Thus, when the
height of the region exceeds the critical value, the development of adiabatic processes should lead to
intensification of the flow.

For example, let us consider the Nusselt number as a function of supercriticality r (Fig. 10) at H = 0.1 m
(lower curve 1) and H = 0.5 m (upper curve 2); line 3 shows the results of verification calculations with
doubled number of points in both spatial directions (480 ∙ 160). For definiteness, a two-vortices stationary
convection mode is considered here.

The approximation curves take the following form at H = 0.5 m and H = 0.1 m, correspondingly:

Nu0:5 ¼ 2:25 � r0:390; Nu0:1 ¼ 1:38 � r0:274:
At the same value of supercriticality r = 10, the values of the Nusselt number at the subcritical height of

the region H = 0.1 m and the supercritical one H = 0.5 m differ more than twice with a significant difference
in the indices of power laws. A similar situation is observed for the Reynolds number.

5 Criterion Analysis

Fig. 3 shows the distribution of the critical Rayleigh number as a function of the height of the region.
Taking into account the constant value of the Prandtl number, the Rayleigh criterion can be interpreted as the
ratio of buoyancy forces to viscous forces. The data shown in Fig. 3 show that the role of viscous forces
compared to buoyancy forces gradually increases as the height of region H decreases.

Let us also consider the Galileo number:

Ga ¼ gH3

m2
; (16)

Figure 9: Density of the rising plume at H = 0.1 m

Figure 10: Nusselt numbers as functions of supercriticality at various height of region
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which is the ratio of gravitational forces to viscous forces. The Galileo number (16) is directly proportional to
the third power of the height of the regionH. It follows from the latter that the role of viscous forces increases
rapidly compared to gravitational forces as the height of region H decreases.

Taking into account that viscosity and diffusivity are related by the Prandtl number, which is considered
constant in this study, we conclude that the role of viscosity and diffusivity increases as the height of the
region H decreases. In turn, it is diffusivity that is responsible for the equalization of the medium
temperature in the convection region, and hence it follows that the adiabatic motion at a small subcritical
height of the region cannot be stable and exist long enough since the moving plume is eroded by
diffusion processes related to viscosity and diffusivity, the role of which at decreasing height of the
region H steadily increases.

The above is illustrated by Fig. 9, from which it can be seen that at a small subcritical height of the region
H = 0.1 m the rising plume loses adiabaticity at about a height of 0.02 m, while Fig. 8 shows that at large
supercritical height of the region H = 0.5 m, the rising plume moves adiabatically up to its collision with
the upper horizontal boundary.

Thus, decreasing the height of the convection region H leads to the blocking of adiabatic processes.

To illustrate our conclusions, let us consider the dependence of the height Had, up to which the plume
moves adiabatically, as a function of the height of the convection region H.

Our analysis of the calculated data shows that the required dependence is described by the relation (at H
≤ 0.4 m):

Had ¼ 0:10272 � H þ 0:75435 � H2: (17)

At small height of the region H the relation (17) showed becomes asymptotic:

Had ¼ 0:10272 � H ; Had � 0:1 � H :

Taking into account that the initial velocity of the plume in this series of calculations was set equal to
0.00205 m/s and considering it constant at a relatively small height of the adiabatic motion, we conclude that
the approximate dependence of the adiabatic motion time on the height of the region has the form (at H ≤
0.4 m):

tad ¼ 50:122 � H þ 368:09 � H2: (18)

At small height of the region H the relation (18) becomes asymptotic:

tad ¼ 50:122 � H ; tad � 50 � H :

We emphasize that in the above relations the values H, Had, and tad are dimensional. And thus, a gradual
decrease in the height of the convection region H leads to a consistent decrease in the adiabatic motion time
and the distance covered by the rising plume in the adiabatic mode, which means a consistent blocking of
adiabatic processes due to the dilution of the plume by diffusion processes related to viscosity and
diffusivity, the role of which increases with decreasing height of the region H.

6 Discussion

The degree of change in hydrostatic pressure over the height of the region and the compressibility of gas
particles is determined by the value of the weight (hydrostatic) compressibility criterion CF = gH/
(γRT0) = 8.13∙10−5∙H, which is equal to the relative change in hydrostatic pressure over the height of the
region divided by γ.
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Of course, expressed in units of relative volume, the compressibility of gas at the height of the region
H = 0.5 m is a negligible value, and this creates the impression that it can be neglected and the medium can be
considered incompressible. However, this impression is deceptive. In fact, exceeding the critical value of the
region height allows adiabatic processes to develop, which leads to a significant intensification of the flow.

The results of calculations shown in Figs. 2 and 4 show that at H ≥ 0.322 m convection can develop at a
temperature gradient much smaller than the adiabatic one, when the Schwarzschild number Sc takes values
up to 1.16. The latter is probably due to the effect of gas viscosity and thermal conductivity. Thus, the
statement about sufficiency and overestimation of the condition Sc > 1 for the absence of convection
seems not quite reasonable [27]. This also applies to the results of linear analysis, where it is claimed that
the critical value of the Schwarzschild number is always strictly less than unity [27]. However, as already
mentioned, authors of this work performed the study of stability characteristics for the case of horizontal
boundaries free from tangential stresses. Therefore, the transfer of conclusions from convection with rigid
boundaries to that with free boundaries is not completely strict and requires additional consideration.

7 Conclusion

Let us formulate the main conclusions:

1. As follows from the diagram of convection regimes presented in the work, the critical height of the
region Hcr separates the convection modes, and at the height of the region less than critical H < Hcr the
isobaric mode is realized (a special case of which is the convection mode in the Boussinesq
approximation), and at H > Hcr the adiabatic and superadiabatic modes are realized. In gas under normal
conditions, the value of the critical height is 17.3 cm. According to the analytical formula obtained under
the assumption of constant viscosity, the critical height of the region is proportional to the root of the
fourth power from the absolute temperature of the gas mixture. However, the situation changes
significantly if we take into account the dependence of viscosity on temperature according to the
Sutherland’s formula. In this case, asymptotically at high temperature, the critical height is directly
proportional to temperature and inversely proportional to the square root of the pressure. In this regard,
we note that the diagram of convection regimes and all analytical formulas for the critical height were
obtained for the first time and these results are new.

2. The position of the upper limit of applicability of the Boussinesq approximation is always
proportional to the value of the critical height of the region, with the proportionality coefficient
determined only by the value of the adiabatic index. Consequently, the conclusions valid for the upper
limit of applicability of the Boussinesq approximation and for the critical height of the region are the same.

3. When the height of the region exceeds the critical value for Hcr, the flow modes change–the isobaric
mode of convection changes to adiabatic and then to superadiabatic. Moreover, in the adiabatic mode
convection can develop even at stable density stratification, which fundamentally distinguishes
convection in a compressible medium from convection in an incompressible medium and has not been
observed before. Thus, when the height of the region exceeds its critical value, consideration of gas
compressibility becomes obligatory.

4. For the first time it was shown, that exceeding the height of the region of its critical value allows
adiabatic processes to develop, which, as a consequence, leads to a significant intensification of the flow.
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