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ABSTRACT

The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and
technological processes in fluid-dynamics and related fields. These equations contain derivatives of the first order
with respect to time. The derivation of the equations of continuum mechanics uses the limit transitions of the
tendency of the volume increment and the time increment to zero. Derivatives are used to derive the wave
equation. The differential wave equation is second order in time. Therefore, increments of volume and increments
of time in continuum mechanics should be considered as small but finite quantities for problems of wave forma-
tion. This is important for calculating the generation of sound waves and water hammer waves. Therefore, the
Euler continuity equation with finite time increments is of interest. The finiteness of the time increment makes
it possible to take into account the quadratic and cubic invariants of the strain rate tensor. This is a new branch in
hydrodynamics. Quadratic and cubic invariants will be used in differential wave equations of the second and third
order in time.
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Nomenclature
I1 Linear invariant
I2 Quadratic invariant
I3 Cubic invariant
J ¼ @ u1; u2; u3; . . . ; unð Þ

@ x1; x2; x3; . . . ; xnð Þ the “n” order Jacobian of the velocity field
u1 u is the fluid velocity component along the x-axis
u2 v is the fluid velocity component along the axis y
u3 w is the fluid velocity component along the axis y
P is the fluid pressure
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e.g.
0 Index refers to the start time of the deformation

1 Introduction

The article is devoted to the continuity equation in fluid and gas mechanics. Classical fluid mechanics is
based on the continuity hypothesis. This is expressed in the tendency of infinitely small elementary volumes
dV and time intervals dt to zero. The idea of using the conservation law in a differential form belongs to
d’Alembert. He used it in his work on the cause of the wind.

Euler [1–4] derived a differential continuity equation, which has a general form and is not related to an
applied problem. There are materials on the derivation by some researchers of additional terms in the
continuity equation. In this regard, it is of interest to consider the effect of the finiteness of processes in
time on the Euler equation of conservation.

The terms of the high order of smallness of the continuity equation describe the occurrence of self-
oscillations, vibrations, sound and water hammer. The terms of the high order of smallness of the
continuity equation describe the possible occurrence of the initial stage of turbulent fluctuations. This can
be used to study turbulent stochastic and statistical processes when averaged over time (Taylor) or mass
(Favre).

Here, in the approximation of the finiteness of an infinitesimal time interval dt, a number of applied
problems are considered. As a result, all three invariants of the strain rate tensor are taken into account.
Quadratic and cubic invariants will be used in a second-order differential wave equation in time and in a
third-order differential wave equation in time.

The deformation theory of continuum mechanics [5,6] gives a formula for the cubic expansion
coefficient, which contains three invariants. These are the linear invariant, the quadratic invariant and the
cubic invariant. The formula for the cubic expansion coefficient provides the basis for deriving the
equation for the conservation of the amount of matter. However, the solution of hydrodynamic problems
contains only a linear invariant. In this, one can see the incompleteness of the solution to the problem.
This is an asymmetry between the formulation of the problem and its solution. We can expect the
existence of new solutions that reflect the geometric properties of the quadratic and cubic invariants.
Restoration of symmetry can give new physical properties of the flow and new regimes.

V.M. Bubnov in 1998 pointed out the presence of terms of a high order of smallness in the continuity
equation for an incompressible fluid, which was derived by N.E. Zhukovsky. In 2006, Ovsyannikov [7]
found terms of a high order of smallness in the derivation of the continuity equation in Euler’s work
“Principien motus fluidorum” 1752. Euler calculated the terms of a high order of smallness in terms of
the deformation time of the control figure t � t0, and then destroyed them by passing to the limit
t � t0 ! 0. We know that the intermediate results have a physical meaning. Therefore, we will use
Euler’s intermediate results in the derivation of the wave equation. The wave equation can only be
derived for a compressible medium.

Therefore, in 2006, the continuity equation with terms of a high order of smallness was written for a
compressible fluid [7]. The physical meaning of the terms of a high order of smallness in the continuity
equation for a compressible fluid was understood. These terms generate density waves and pressure
waves against the background of a stationary flow of a compressible fluid. They generate self-oscillations,
vibrations and a solitary pressure wave.

Lighthill [8,9] proposed a new method for deriving the wave equation. This is the method of acoustic
analogy. It uses the time derivative of the continuity equation for a compressible medium. Such a derivative
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can be easily obtained from the continuity equation, which was derived by Euler in 1752. The continuity
equation with terms of a high order of smallness can be used in Lighthill’s acoustic analogy method.

The inhomogeneous wave equation was derived by Ovsyannikov [10] in 2007. The inhomogeneous part
of the wave equation contains quadratic and cubic invariants of the strain rate tensor. These invariants
describe the generation of density and pressure waves during the flow of a compressible fluid.

Purpose of the review shows that flow regions with different Lagrangian laws of motion of a liquid
particle have different additional terms of a high order of smallness in time. It was realized that quadratic
invariant terms generate density and pressure waves that are close to harmonic oscillations [11,12].
Reviews [11,12] describe solutions to problems of the formation of sound waves with potential air
flowing around a right angle, cylinder. Monograph [10] contains a description of the formation of waves
when air flows into narrow gaps. These papers investigate the formation of waves by incorporating a
quadratic invariant into the continuity equation. The calculation results are consistent with the experiments.

The main contribution of this work is in the study of the physical meaning of the cubic invariant. There
are few works that take into account the cubic invariant [13,14].

Most of the works take into account only the quadratic invariant, which describes harmonic waves
[10,11,12,15]. The quadratic invariant of the strain rate tensor is used in the method of regularization of
the system of hydrodynamic equations [15] to increase the stability of iterations of T.G. Elizarova’s
numerical method.

A.V. Dmitrenko noted that these harmonic waves can be used in stochastic methods for calculating
turbulent flows.

Thus, calculations taking into account quadratic and cubic invariants may give an extension of the area
of application of hydrodynamic equations. The final answer can be given by comparing the calculations with
the experimental results.

2 Materials and Methods

Section 2 presents simple geometric constructions that show the reason for the appearance of a high-
order term of smallness in the continuity equation for a plane two-dimensional flow with a linear law of
deformation of the control figure in time. Here is the reason why mathematicians are divided into two
camps. Newton’s followers considered the differential to be an infinitesimal quantity. They had to replace
it with zero. Leibniz’s followers considered the differential to be a small but finite value. They were
required to perform arithmetic operations with differentials according to the rules for quantities of finite
size. This is discussed in Carnot’s book.

There are two main derivations of the differential continuity equation for an incompressible fluid. This is
Euler’s derivation and Ostrogradsky’s derivation. Both conclusions are based on geometric constructions. If
Euler’s geometrical derivation is used in exact form, then it gives terms of a high order of smallness. This
article studies the physical meaning of terms of a high order of smallness.

The reason for the appearance of terms of a high order of smallness in the equation of continuity lies in
the use by Euler, Zhukovsky, Ostrogradsky of the Lagrangian law of motion of a liquid particle linear in time.
We will demonstrate this by deforming the control square. The side of this square is equal to one. We will
take into account only compression and tension deformations.

The side of the square, which is parallel to the x axis, changes its length according to such a linear law
with time t � t0ð Þ

1þ @u

@x
t � t0ð Þ (1a)
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Here u is the fluid velocity component along the x-axis, t is the time, t0 is the start time of the
deformation. The side of the square, which is parallel to the y axis. Changes its length according to such
a linear law with time t � t0ð Þ

1þ @v

@y
t � t0ð Þ (1b)

Here v is the fluid velocity component along the axis y. Change in the area of the control figure with time

S ¼ 1þ @u

@x
t � t0ð Þ

� �
1þ @v

@y
t � t0ð Þ

� �
(1c)

Let us equate the area of the deformed control figure and the area of the initial square

1þ @u

@x
t � t0ð Þ

� �
1þ @v

@y
t � t0ð Þ

� �
¼ 1 (1d)

A simplification of this formula gives the continuity equation with a term of high order of smallness in
time

@u

@x
þ @v

@y
þ t � t0ð Þ @u

@x

@v

@y
¼ 0 (1e)

Euler made similar calculations for a three-dimensional flow with allowance for the shear deformation
in 1752.

The terms of the high order of smallness reflect the simultaneity of deformations that occur in
perpendicular directions. The terms of the high order of smallness reflect the volume that is obtained due
to the deformation of the deformations. Hydrodynamicists must calculate the basic problems of wave
formation, the results of which can be verified experimentally.

When using the exponential Lagrangian law of motion of a liquid particle, terms of a high order of
smallness do not arise. In this case, the continuity equation contains three terms of the velocity vector
divergence. This conclusion is contained in Section 5.

Thus, we propose to use the completely geometric characteristics of the flow, which are contained in the
quadratic and cubic invariants.

Similar terms of a high order of smallness can be seen in the geometric constructions of Ostrogradsky
before making the transition from geometric objects of finite size to infinitely small objects. It is also
necessary to point out the historical reasons for the elimination by Euler of the terms of the high order of
smallness of the continuity equation. Modern integral and differential calculus appeared as a result of the
merging of Leibniz’s theory of infinitesimals and Newton’s theory of vanishingly small quantities. They
were created independently at the same time. There are slight differences in these theories.

The analysis of the differences was made by Lazar Carnot. Leibniz considers the differential to be a
small quantity with which mathematical operations can be carried out according to the rules of arithmetic
of finite quantities.

Newton in his theory considers the analogue of the differential as a vanishingly small value, which is
equal to zero. A mathematician must consider the result of multiplying a number by such a differential
equal to zero.

L. Carnot divided the mathematicians and mechanics of his era into two lists. Euler is written on the list
of mathematicians who supported Newton’s mathematical theory. This position of Euler can explain the
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reason for his exclusion of terms of the high order of smallness of the continuity equation by passing to the
limit t � t0ð Þ ! 0.

In engineering calculations, it is necessary to choose the most dangerous situation. For example, a
seismologist must predict the possibility of an earthquake using the continuity equation, which contains
terms of a high order of smallness.

3 Results

3.1 Euler’s Continuity Equation with Terms of High Order of Smallness
Euler’s 1752 derivation of the continuity equation for the three-dimensional flow of an incompressible

fluid, taking into account tensile and shear deformations, gave the following result:

@u

@x
þ @v

@y
þ @w

@z
þ t � t0ð Þ @u=@x @u=@y

@v=@x @v=@y

����
����þ @v=@y @v=@z

@w=@y @w=@z

����
����þ @w=@z @w=@x

@u=@z @u=@x

����
����

� �

þ t � t0ð Þ2
@u=@x @u=@y @u=@z

@v=@x @v=@y @v=@z

@w=@x @w=@y @w=@z

�������
������� ¼ 0

Let us analyze a similar continuity equation for a compressible fluid, published in 2006. Methods for
deriving the continuity equation in hydrodynamics and elasticity theory are similar in geometric
constructions.

The theory of deformations studies the general approach to the construction of equations for the theory
of elasticity and for hydrodynamics. The textbook by Sedov [5] considers these disciplines at the same time.
In this textbook, the theory of deformations for a solid elastic body and for an incompressible fluid is given
from the standpoint of the general properties of the strain tensor and the strain rate tensor.

These properties are the same since the components of the strain tensor and the strain rate tensor are
related to each other. When deriving the expression for the coefficient of cubic expansion h in the theory
of elasticity in paragraph 5 of chapter 2 of the first volume of the textbook [5], the formula (5.37) was
obtained

h ¼ 1þ 2I1 þ 4I2 þ 8I3ð Þ0;5 � 1 (1f)

In this formula, I1; I2; I3 are the linear, quadratic and cubic invariants of the strain tensor k eij k. The
coefficient of cubic expansion for finite deformations of the control figure is equal to the relative change
in its volume. After deriving Eq. (1f), Sedov [5] considers only infinitesimal deformations. For
infinitesimal deformations, the quadratic and cubic invariants are eliminated from the formula for the
cubic expansion coefficient by using the passage to the limit when the deformation time tends to zero.
Sedov obtains an approximate formula for the coefficient of cubic expansion in the theory of elasticity h � I1.

Let us pay attention to the inexact equal sign in this formula. In the sections that study Hydrodynamics,
Sedov considers the strain rate tensor k eij k. Sedov does not take into account the quadratic and cubic
invariants of the strain rate tensor for ease of calculation with low accuracy. The components of the strain
rate tensor invariants are multiplied by the deformation time increment in various powers. A high
invariant number corresponds to a high degree of time increment.

To solve problems of non-stationary hydrodynamics, taking into account quadratic and cubic invariants,
it is necessary to use differential equations of the second and third order in time. Before excluding terms with
higher invariants, it is necessary to understand their physical meaning. This became possible, when Lighthill
[8,9] proposed the method of acoustic analogy for deriving the wave equation from the system of equations
of motion and continuity.
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In the same years, Truesdell [2] translated from Latin into English the first version of Euler’s classic
work Principia motus fluidorum [1]. There is now a translation of the first version of Euler’s work
Principia motus fluidorum 1752 [1] into various languages [3]. A detailed translation of Euler’s work into
English [4] was made in 2008.

C. Truesdell drew attention to Euler’s intermediate result in the form of a complete continuity equation,
which contains terms of a high order of smallness in time

@u

@x
þ @v

@y
þ @w

@z
þ t � t0ð Þ @ u; vð Þ

@ x; yð Þ þ
@ v;wð Þ
@ y; zð Þ þ

@ w; uð Þ
@ z; xð Þ

� �
þ t � t0ð Þ2@ u; v;wð Þ=@ x; y; zð Þ ¼ 0 (2)

Here u, v, w are the velocity components along the x, y, z axes; t � t0 is the time interval of deformation

of the control figure;
@ u; vð Þ
@ x; yð Þ and

@ u; v;wð Þ
@ x; y; zð Þ are the second and third-order Jacobians of the velocity field,

respectively. C. Truesdell combined the terms of this equation into the Jacobians of the second
@ u; vð Þ
@ x; yð Þ

and the third
@ u; v;wð Þ
@ x; y; zð Þ orders.

Lectures on hydroaeromechanics by Wallander [6] contain such formulas for the invariants of the strain
rate tensor k eij k.

Linear invariant is I1 ¼ e11 þ e22 þ e33 ¼ @u

@x
þ @v

@y
þ @w

@z
. Quadratic invariant is

I2 ¼ e11 e12
e21 e22

����
����þ e22 e23

e32 e33

����
����þ e33 e21

e13 e11

����
���� ¼ @ u; vð Þ

@ x; yð Þ þ
@ v;wð Þ
@ y; zð Þ þ

@ w; uð Þ
@ z; xð Þ : (3)

Cubic invariant

I3 ¼ det k eij k ¼ @ u; v;wð Þ=@ x; y; zð Þ (4)

If we use the expressions for the invariants of the strain rate tensor (3), (4), then the Euler continuity
equation for an incompressible fluid (2) takes the form

@u

@x
þ @v

@y
þ @w

@z
þ t � t0ð Þ I2 þ t � t0ð Þ2 I3 ¼ 0: (5)

After deriving the continuity Eq. (2) or (5), Euler made the following passage to the limit t� t0 ! 0.
Eq. (5) eliminates the quadratic and cubic invariants. Eq. (5) takes such an approximate form for an

incompressible fluid
@u

@x
þ @v

@y
þ @w

@z
� 0. This approximate equation of hydrodynamics is consistent with

the approximate equation of the theory of elasticity, which Sedov wrote in the first volume of the
textbook [5] h � I1.

The change in density can be taken into account by replacing the velocity components u; v; w in the
continuity equation with the products of the velocity components and the density qu; qv;qw. The
continuity equation will look like this

@r

@t
þ @ ruð Þ

@x
þ @ rvð Þ

@y
þ @ rwð Þ

@z
þ t � t0ð Þ r�1 @ ru; rvð Þ

@ x; yð Þ þ @ rv; rwð Þ
@ y; zð Þ þ @ rw; ruð Þ

@ z; xð Þ
� �

þ t � t0ð Þ2 r�2@ ru; rv; rwð Þ=@ x; y; zð Þ ¼ 0

(6)

Factors r�1 and r�2 are introduced in front of the Jacobians to preserve the dimension of various terms.
We can simplify the Eq. (6) to this form [7]
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@r

@t
þ @ ruð Þ

@x
þ @ rvð Þ

@y
þ @ rwð Þ

@z
þ t� t0ð Þr @ u; vð Þ

@ x; yð Þ þ
@ v;wð Þ
@ y; zð Þ þ

@ w;uð Þ
@ z; xð Þ

� �
þ t� t0ð Þ2r@ u; v;wð Þ=@ x; y; zð Þ ¼ 0

or

@r

@t
þ @ ruð Þ

@x
þ @ rvð Þ

@y
þ @ rwð Þ

@z
þ t � t0ð ÞrI2 þ t � t0ð Þ2r I3 ¼ 0 (7)

Here r is the density. The deformation time t � t0ð Þ of the control figure does not exceed the time

differential in the derivative
@r

@t
. In a compressible medium, density waves and pressure waves can occur.

Euler obtained such a formula for the equation of continuity of a compressible fluid

@r

@t
þ @ ruð Þ

@x
þ @ rvð Þ

@y
þ @ rwð Þ

@z
¼ 0 (8)

The continuity Eqs. (6) and (7) for a compressible fluid are more accurate.

Must have a finite time increment value t � t0ð Þ > t� to take into account the quadratic I2 and cubic I3
invariants in Eq. (7). But the deformation time of the control figure t � t0ð Þ should not exceed the time

differential t�� in the derivative
@r

@t
. Therefore, the wave processes under consideration must arise and

develop within a time limited by the values of t� and t��

t� < t � t0ð Þ < t��

Large values of additional terms in the continuity Eq. (7) can arise with large values of the invariants
I2 and I3, which arise when there is strong heterogeneity in the x, y, z coordinates of the stationary
velocity field.

3.2 Derivation of the Wave Equation by Lighthill’s Acoustic Analogy Method
Lighthill’s method consists in creating a d’Alembert operator on the left side of the wave equation. To

preserve the square and cubic invariants in the system of fluid dynamics equations, it is necessary to take the
time derivative of the right and left sides of the continuity Eq. (7).

When taking the time derivative, the time increment t � t0 in front of the quadratic invariant I2
disappears and the order of smallness of the time increment t � t0 in front of the cubic invariant I3
changes from second to first.

@2r

@t2
þ rI2 þ 2 t � t0ð Þr I3 ¼ 0 (9)

The time derivative is taken from the continuity equation for an unsteady flow of a compressible fluid.

Taking the derivative creates a second-order derivative of the density with respect to time
@2r

@t2
. It will be

converted to the second derivative of pressure with respect to time using the speed of sound. This is the
first step in Lighthill’s acoustic analogy method for deriving the wave equation. The derivative with
respect to coordinates is taken from the equation of motion at the second step of deriving the wave

equation. The equation of motion for an inviscid fluid has the form r
dV
dt

¼ � grad p. Here
dV
dt

is the

total derivative of the velocity vector V , p is the pressure. As a result, the second-order derivatives of the
pressure along the x, y, z coordinates are obtained.
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Lighthill’s acoustic analogy method yields an inhomogeneous second-order differential wave equation
in time

@2p

@x2
þ @2p

@y2
þ @2p

@z2
� 1

c20

� �
@2p

@t2
¼ q0

@ u; vð Þ
@ x; yð Þ þ

@ v;wð Þ
@ y; zð Þ þ @ w; uð Þ

@ z; xð Þ
� �

þ t � t0ð Þq02
@ u; v;wð Þ
@ x; y; zð Þ

or

@2p

@x2
þ @2p

@y2
þ @2p

@z2
� 1

c20

� �
@2p

@t2
¼ q0 I2 þ t � t0ð Þq02I3 (10)

Here c0 is the speed of sound, q0 is thermodynamic density.

3.3 Physical Meaning of the Quadratic Invariant
We will use the method of successive approximations to calculate the intensity of the generation of

density waves and pressure waves for a stationary velocity field. We will use in the inhomogeneous part
of the wave equation the invariants I2 and I3, which are calculated for a stationary velocity field. Solution
of the wave equation without a cubic invariant I3

@2p

@x2
þ @2p

@y2
þ @2p

@z2
� 1

c20

� �
@2p

@t2
¼ q0 I2 (11)

described in articles [11,12]. The right side of the wave equation with the d’Alembert operator describes the
process of transmission through the elementary volume of the waves existing in the fluid. The quadratic
invariant I2 describes the emergence of new harmonic density and pressure waves. The wave Eq. (11) has

a solution of the lagging potential type for the sound pressure p r; tð Þ ¼ q0
4p

Z
I2 jt�R=cR

�1dW . Here

R ¼ jr � r1j, r is the radius vector of the observation point, r1 is the radius vector of the point in the
region of integration.

The intensity I of generation of periodic oscillations in a two-dimensional flow can be estimated from

the following formula I ¼ p2

c0q0
¼ q0I

2
2 W 2

16p2c0r2
if the difference between the quadratic invariant I2 from zero is

observed only in the volumeW . In this case, the intensity of the emerging waves is proportional to the square
of the quadratic invariant I2. Wave Eq. (11) and its solution do not depend on the deformation time of the
control figure t � t0.

The situation will be different when the cubic invariant I3 is taken into account.

4 Physical Meaning of the Cubic Invariant

In recent years, reference [13] have been carried out to study the physical meaning of a term with a cubic
invariant I3. It is obtained that it describes the occurrence of hydraulic shock of N.E. Zhukovsky by a
differential equation of the third order in time.

Let us assume that the solution to the wave Eq. (10) is the sum of the solution to the inhomogeneous Eq.
(11) and the solution to Eq. (12)

� 1

c20

� �
@2p

@t2
¼ t � t0ð Þq02

@ u; v;wð Þ
@ x; y; zð Þ

or

� 1

c20

� �
@2p

@t2
¼ t � t0ð Þq02 I3
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or

� 1

c20

� �
@3p

@t3
¼ q02 I3 (12)

The solution of Eq. (11) has a complex form and is obtained using retarded potential method. But this
solution does not tend to strongly increase in time. The solution of Eq. (12) will contain the deformation time
of the control figure t � t0 to a high degree. Therefore, let us estimate the pressure increase regime by solving
a simple Eq. (12).

The wave Eq. (12) describes the possibility of increasing the pressure as a cubic function of time

p ¼ � q0
3

c0
2 I3 t � t0ð Þ3 (13)

The solution of the differential Eq. (12) depends on the value of the deformation time of the control
figure t � t0. The deformation time is chosen differently for different tasks. Zhukovsky’s classical
algebraic formula Dp ¼ q0uc0 gives an increase in hydraulic shock pressure during one-dimensional fluid
motion along the pipeline. Here u is the fluid flow velocity along the pipeline before the valve closes.
The new differential Eq. (12) describes the occurrence of hydraulic shock in a three-dimensional flow.
The cubic invariant I3 controls the rate of pressure rise.

It is necessary to solve the system of four differential Eqs. (8), (9), (11), (12) in order to use the three
invariants of the strain rate tensor. In this case, a complete solution to the problem is obtained. We use
the method of successive approximations. We will find the velocity and pressure field from the system of

the classical continuity Eq. (8)
@r

@t
þ @ ruð Þ

@x
þ @ rvð Þ

@y
þ @ rwð Þ

@z
¼ 0 and the equation of motion

r
dV
dt

¼ � grad p. Then we find the wave pressure from the differential wave Eq. (11) of the second

order in time

@2p

@x2
þ @2p

@y2
þ @2p

@z2
� 1

c20

� �
@2p

@t2
¼ q0 I2 (14)

and the differential Eq. (12) of the third order in time. The solution of Eq. (12) has the form of a power
function of time.

p ¼ � q0
3

c20 I3 t � t0ð Þ3 (15)

This function increases as the third power of time. This deformation time t � t0 is determined by the
content of the problem. The power function describes Zhukovsky’s hydraulic shock. The approximate
similarity of the solution to the wave equation of the third order in time with the Zhukovsky water
hammer wave is shown by d’Alembert’s method of selecting a solution. A more accurate solution of the
wave equation can be made by developing the retarded potential method and practicing solving numerical
methods of finite-difference equations corresponding to the complete Euler continuity equation.

Mathematicians must give the equation of continuity with terms of high order of smallness to
seismologists and acousticians. For rigorous quantitative calculations of the intensity of generated waves,
engineers need to obtain from mathematicians various solutions to the wave equation using the retarded
potential method. We pose this problem to mathematicians in this review.

5 A Flow for Which the Continuity Equation Does Not Contain Terms of a High Order of Smallness

Let us show that the continuity equation can have different forms in flow regions with different
Lagrangian laws of motion of a liquid particle and with different Euler velocity fields. Demonstration of
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the differences in the continuity equation for different places in the velocity field is the main goal of this
review.

There are two ways to describe the motion of a fluid [13]. This is Lagrange’s law of motion of a liquid
particle. This is the Euler velocity field. We know the Lagrange variables

x ¼ f1 a; b; c; tð Þ
y ¼ f2 a; b; c; tð Þ

Z ¼ f3 a; b; c; tð Þ
We know the Euler variables

u ¼ F1 x; y; z; tð Þ
v ¼ F2 x; y; z; tð Þ

w ¼ F3 x; y; z; tð Þ
Euler used the linear-in-time Lagrange law of motion of a fluid particle in deriving the 1752 continuity

equation. These are the Cauchy-Helmholtz formulas with a linear dependence of the coordinates x; y of
points during deformation on time t. For a plane two-dimensional flow, they have the form

x ¼ 1þ atð Þxb þ btyb
y ¼ ctxb þ 1þ jtð Þyb

(16)

Here xb; yb are the initial values of the coordinates of the point at t ¼ 0.

a ¼ @u

@x
; b ¼ @u

@y
; c ¼ @v

@x
; j ¼ @v

@y

Let us calculate the velocity components along the coordinate axes

u ¼ dx

dt
¼ axb þ byb

v ¼ dy

dt
¼ cxb þ jyb

(17)

The linearity in time of the Lagrange law of motion of a liquid particle [1–3] gives terms of a high order
of smallness in the continuity Eq. (2). The exponential law of motion of a liquid particle gives the exact
fulfillment of the continuity equation without additional terms.

@u

@x
þ @v

@y
þ @w

@z
¼ 0

The exponential law of motion of a liquid particle can be obtained by replacing the initial values xb and
yb of the coordinates by x and y on the right side of the system of Eq. (17). The system of equations will have
the following form:

dx

dt
¼ axþ by

dy

dt
¼ cxþ jy

(18)
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Initial conditions

x ¼ xb; y ¼ yb at t ¼ 0 (19)

The solution of the system of Eq. (18) with initial conditions (19) is contained in the book [10] and gives
the exponential Lagrange law of motion of a liquid particle with time.

x ¼ s2 � a
s2 � s1

ets1 � s1 � a
s2 � s1

ets2
� �

xb þ b
s2 � s1

ets2 � ets1ð Þyb

y ¼ s1 � að Þðs2 � aÞ
bðs2 � s1Þ ets1 � ets2ð Þxb þ s2 � a

s2 � s1
ets2 � s1 � a

s2 � s1
ets1

� �
yb

(20)

Here

s1 ¼ 1=2ð Þ aþ jþ a� jð Þ2 þ 4bc
h i0:5� �

s2 ¼ 1=2ð Þ aþ j� a� jð Þ2 þ 4bc
h i0:5� � (21)

Let us derive the continuity equation for Lagrange’s exponential law of motion (20), (21). Let the control
figure have the shape of a unit square with the following coordinates of the corner points (0, 0), (0, 1), (1, 1),
(1, 0). The control figure will have the shape of a parallelogram after being deformed for time t. Parallelogram
corner points 2 and 4 will have these coordinates.

x2 ¼ b
s2 � s1

ets2 � ets1ð Þ

y2 ¼ s2 � a
s2 � s1

ets2 � s1 � a
s2 � s1

ets1

x4 ¼ s2 � a
s2 � s1

ets1 � s1 � a
s2 � s1

ets2
� �

y4 ¼ s1 � að Þðs2 � aÞ
bðs2 � s1Þ ets1 � ets2ð Þ

The area of a parallelogram can be calculated using this formula.

S ¼ y2x4 � y4x2

Equation of conservation of area in time

s2 � a
s2 � s1

ets2 � s1 � a
s2 � s1

ets1
� �

s2 � a
s2 � s1

ets1 � s1 � a
s2 � s1

ets2
� �

þ

s1 � að Þðs2 � aÞ
ðs2 � s1Þ2

ets2 � ets1ð Þ2
( )

¼ 1

The area conservation equation after simplifying the notation has the following form:

et s1þs2ð Þ ¼ 1
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or

t s1 þ s2ð Þ ¼ 0

or

t
@u

@x
þ @v

@y

� �
¼ 0

We get the continuity equation after dividing by time

@u

@x
þ @v

@y
¼ 0

This continuity equation is realized in the case of a linear field of velocity components (18) along the
coordinates x; y

u ¼ axþ by

v ¼ cxþ jy

Liquid particles have an accelerated Lagrange law of motion. There will be no turbulent pulsations in the
place of the accelerated Lagrange law of motion. In place of the accelerated law of motion of Lagrange, there
will be no generation of sound vibrations.

The real velocity field in problems of hydrodynamics cannot be linear in the entire flow region. Terms of
a high order of smallness will appear in the equation of continuity at the point of violation of the linear field of
the velocity components. The terms of a high order of smallness will generate sound waves and disturbances
at the point of violation of the linear field of the velocity components.

Koppel et al.’s experiments [16] on fluid flow with acceleration demonstrate an increase in the critical
Reynolds number for the transition from laminar to turbulent flow by a factor of 30–100. This is an
experimental confirmation of the disappearance of terms of a high order of smallness in the continuity
equation for a flow with acceleration. In the place of the linear field of the velocity components along the
coordinates, there will be no generation of sound vibrations, self-oscillations.

Here we also emphasize that for stochastic processes in hydrodynamics, the question of finiteness in
space and time of infinitesimal perturbations plays a key role [17–21] in the statistical theory and [22–26]
in nonline theory. This leads to the appearance of additional fluctuation terms in the right part of the
equations of conservation laws [27–31] in the chaos theory and in the theory of attractors [32–34]. As a
result, on the basis of the law of interaction between deterministic and random motion [35–39], the
transition from deterministic motion to chaotic, turbulent is realized [40–44]. The solutions considered in
the article, albeit in the first approximation, but raise questions for numerical methods such as RANS
[45–50], LES [51–53] and DNS methods for bifurcation of periodic solutions [54–58] and methods for
simulation of a complete transition to turbulence [59–61]. Note that at the same time, the numerical
TDNS method is emerging [36,37,62]. In it, differential equations with a random term on the right side
have the ability to take into account the influence of various invariants.

6 Conclusions

1. A review of articles that take into account the quadratic and cubic invariants of the strain rate tensor in
the continuity equation for a compressible fluid is presented.

2. The quadratic invariant describes self-oscillations, which are similar to harmonic oscillations. These
are vibrations, sound generation, and the initial stage of turbulence.
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3. The cubic invariant describes the occurrence of pressure waves that rapidly increase in time. They are
similar to a soliton or Zhukovsky hydraulic shock.

4. These invariants can be taken into account in solving the wave equations, which are derived by the
method of acoustic analogy, taking into account the terms of the high order of smallness of the continuity
equation.

5. Taking into account quadratic and cubic invariants is important when analyzing emergency situations.
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