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ABSTRACT

In this paper, we study the onset and development of three-dimensional convection in a tilted porous layer satu-
rated with a liquid. The layer is subjected to a gravitational field and a strictly vertical temperature gradient. Typi-
cally, problems of thermal convection in tilted porous media saturated with a liquid are studied by assuming
constant different temperatures at the boundaries of the layer, which prevent these systems from supporting con-
ductive (non-convective) states. The boundary conditions considered in the present work allow a conductive state
and are representative of typical geological applications. In an earlier work, we carried out a linear stability ana-
lysis of the conductive state. It was shown that at any layer tilt angles, the most dangerous type of disturbances are
longitudinal rolls. Moreover, a non-zero velocity component exists in z-direction. In the present work, three-
dimensional non-linear convection regimes are studied. The original three-dimensional problem is reduced to
two-dimensional one with an analytical expression for the velocity z-component vz ¼ vz x; yð Þ. It is shown that
the critical Rayleigh number values obtained through numerical solutions of the obtained 2D problem by a finite
difference method for different layer inclination angles, are in a good agreement with those predicted by the linear
theory. The number of convective rolls realized in nonlinear calculations also fits the linear theory predictions for
a given cavity geometry. Calculations carried out at low supercriticalities show that a direct bifurcation takes place.
With increasing supercriticality, no transitions to other convective regimes are detected. The situation studied in
this problem can be observed in oil-bearing rock formations under the influence of a geothermal temperature
gradient, where the ensuing fluid convection can affect the distribution of oil throughout the layer.
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1 Introduction

Lyubimov [1] studied stationary two-dimensional convection in a closed porous cavity with perfectly
conductive boundaries. The cavity was heated from below. It was found that stationary flows and their
stability in a horizontal layer are the same for both a porous layer and a liquid layer in a non-porous
medium. But if the liquid layer is tilted relative to the horizon, then differences appear between the
porous and non-porous layers.
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Tilted porous layer convection often arouses interest when it comes to the exploitation of geothermal
reservoirs and groundwater flows [2]. In industrial applications, it is possible to increase the efficiency of
heat exchangers by tilting them at some angle to the horizon, thereby causing tilted layer convection [3].
Other important areas are pollutant transport, oil production and food processing [4,5]. Convection in a
porous layer is considered in the literature [6].

Gershuni et al. [7] investigated the stability of the conductive state of a tilted layer of liquid under the
influence of a vertical temperature gradient. Two-dimensional disturbances were studied. It was found that,
depending on the layer tilt angle, the most dangerous disturbances can be cellular (non-zero wave number) or
longwave (zero wave number). Accordingly, there is a critical angle at which one type of instability passes
into another.

Weber [8] carried out a linear investigation of tilted porous layer convection. It was assumed that the
layer is limited by impermeable, perfectly conductive solid boundaries. The boundaries have different
temperatures. Along each boundary the temperature is constant. In this case, the temperature gradient is
not vertical, therefore a non-convective state is impossible. For any arbitrarily small temperature
difference between the boundaries of the layers, a stationary plane-parallel convective flow arises. It is
shown that the wave vector of the most dangerous type of disturbances is perpendicular to the velocity
vectors of the base flow (longitudinal rolls).

Bories et al. [9] experimentally investigated the same problem. It has been found that at layer tilt angles
less than approximately 15°, the flow has the form of hexagonal cells. This can be explained by nonlinear
effects such as the dependence of thermal diffusivity and viscosity on temperature [10,11] or changes in
average temperature [12]. At large tilt angles, the disturbances become two-dimensional with the axes of
the rolls corresponding to the longitudinal rolls.

Various experiments indicate that during natural convection in a porous layer with large lateral
dimensions, there are different flow configurations, which are determined by the layer tilt angle, the
Rayleigh number, and the layer spatial configuration. Caltigirone et al. [13] used linear stability theory
and three-dimensional numerical modeling to study these flows. It was found that theoretical prediction of
flow structures observed in the experiment is possible.

Rees et al. [14] carried out a linear analysis of the stability of Darcy–Boussinesq convection in a tilted
porous layer. Only disturbances with axes perpendicular to the velocity vectors of the base flow (transverse
rolls) were considered. As in [8], it was assumed that the boundaries of the layer are impermeable and
constant temperatures are maintained on them, different for the upper and lower boundaries. It was found
that transverse rolls exist only up to a layer tilt angle of 31:49�. All realized perturbations are cellular.

Arora et al. [15] studied the nonlinear stability of natural convection in a tilted layer of liquid that has a
uniform internal source (or, on the contrary, a sink) of heat, while a constant temperature is maintained at the
boundaries of the layer. It has been established that the stability region is significantly determined by the layer
tilt angle and the value of the Prandtl number. The most unstable orientation of the layer to arbitrary
perturbations is vertical.

Storesletten et al. [16] studied the occurrence of convection in a tilted porous layer which is heated
internally by a uniform distribution of heat sources. The linear stability of the basic parallel flow and the
influence of layer tilt angle, internal heat generation and anisotropy on it were studied. It has been
established that when convection occurs, the convective motion significantly depends on the anisotropy
of the layer (n) and on the layer tilt angle (a). With lower permeability along the x-axis relative to the y-
and z-axes (n < 1), longitudinal rolls are realized at all layer tilt angles. For n > 1, at a small layer tilt
angle, transverse rolls are realized, and at a large layer tilt angle, longitudinal rolls are realized. At
intermediate tilt angles, the orientation of the rolls gradually transitions between these two extremes.
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In the mentioned works, problems were studied in which a conductive (non-convective) state is
impossible. The conductive state is possible only in the case of a temperature distribution at the
boundaries of the layer corresponding to a strictly vertical temperature gradient. Situations with boundary
conditions of this type can occur when it comes to geological applications [17]. For example, in oil-
bearing rock formations, which are a porous medium, vertical temperature gradients can arise.

Kolesnikov et al. [18] studied tilted porous layer convection. A strictly vertical temperature gradient is
maintained at the boundaries of the layer. Two-dimensional disturbances were studied. A linear analysis of
the stability of the conductive state was carried out. It was found that for a vertical layer, the instability is
long-wave, but for any other layer orientation, cellular disturbances are the most dangerous, although
long-wave instability also exists for them.

Lyubimova et al. [19] considered the same problem, but stability to three-dimensional disturbances was
studied. It was found that the most dangerous type of disturbances are longitudinal rolls (rolls with axes
directed along the layer and perpendicular to the axis relative to which the layer is tilted). At the layer tilt
angle a < 45�, longwave disturbances are realized, and at a > 45�, cellular disturbances are realized.

In the present work, the onset and development of longitudinal convection rolls in a tilted porous layer
saturated with liquid under a vertical temperature gradient is studied numerically. We study three-
dimensional non-linear convection regimes arising after the conductive (non-convective) state loses
stability. The three-dimensional problem is reduced to a two-dimensional one with analytical expression
for z-component of the velocity vz ¼ vz x; yð Þ which substantially simplifies the problem and makes
possible a comprehensive numerical investigation for any layer tilt angles in a wide range of
supercriticalities.

2 Formulation of the Problem

Let us consider an infinitely long tilted porous layer saturated with liquid. Fig. 1 shows a layer infinite
along the z-axis and x-axis, which can be tilted by an angle a relative to the vertical (vector c). The effect of
gravity is taken into account. The layer boundaries perpendicular to the y-axis are solid and perfectly
conductive. The temperature distribution at these boundaries corresponds to a strictly constant vertical
temperature gradient.

To describe thermal convection in a porous layer saturated with liquid, the Darcy-Boussinesq model will
be used [20]:

�rP � ql
v

K
v þ qlgbTc ¼ 0

Figure 1: Geometry of the problem
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qcp
� �

s

@T

@t
þ qcp
� �

lvrT ¼ jsDT (1)

div v ¼ 0

Here v is the velocity of convective filtration in a porous medium; T is the temperature deviation from
the average constant temperature taken as the reference point; P is the deviation of pressure from hydrostatic
pressure corresponding to the average constant temperature; K is the permeability coefficient of the medium;
js is the effective thermal conductivity of a porous medium saturated with liquid; c is a unit vector directed
vertically upward. The remaining designations are conditional. Values indicated by the subscript « l » refer to
liquid, and the subscript « s » refers to porous media.

At the boundaries of the layer, impermeability conditions and a temperature distribution corresponding
to a strictly vertical temperature gradient are set: vn ¼ 0, T ¼ �A z� z0ð Þ c � ezð Þ ¼ �A z� z0ð Þ cosa:

The problem formulated above admits a solution corresponding to the conductive state:

v0 ¼ 0; rT0 ¼ �Ac; rP0 ¼ qlgbT0c (2)

Introduce the values h as the scales of length, h2 qcp
� �

s=js as the scales of time, gbAKvv�1ð Þ1=2 as the
scales of velocity, Ah as the scales of temperature, gbAh2K�1vvq2l

� �1=2
as the scales of pressure. Here

v ¼ js= qcp
� �

l. Thus, the obtained dimensionless equations:

�rP � v þ CTc ¼ 0

@T

@t
þ CvrT ¼ DT (3)

div v ¼ 0

Here, C2 � gbAh2K= vvð Þ ¼ Ra, Ra is the Rayleigh number.

3 Reducing a Three-Dimensional Problem Statement to a Two-Dimensional One

Fig. 2 shows a cell of an infinitely extended layer, in which the structure of the convective flows that we
are considering is schematically shown. We consider convective rolls whose axes are perpendicular to the
axis relative to which the layer is tilted (longitudinal rolls).

Let us consider nonlinear convection regimes in a region representing a cross-section of a cell of an
infinitely extended layer (Fig. 3).

Figure 2: Schematic structure of flow in a cell of an infinitely extended layer
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Let us rewrite Eq. (3), highlighting the part in temperature corresponding to the vertical temperature
gradient T ¼ T0 þ T 0 and using the equilibrium equations:

�rP0 � v þ CT 0c ¼ 0 (4)

@T 0

@t
þ CvrT 0 � Cvc ¼ DT 0 (5)

div v ¼ 0 (6)

The boundary conditions have the form:

T 0 ¼ 0; vn ¼ 0

Applying the rotzrot operation to Eq. (4), we obtain:

Dvz ¼ C cosa DT 0 (7)

and applying the rotz operation to Eq. (4), we obtain:

D� ¼ �C sina
@T0

@y
; vx ¼ @�

@y
; vy ¼ � @�

@x
(8)

Taking into account (8), the energy Eq. (5) is rewritten as:

@T 0

@t
þ C

@�

@y

@T 0

@x
� @�

@x

@T 0

@y

� �
� C

@�

@y
�sinað Þ þ vzcosa

� �
¼ DT 0 (9)

As was shown in [19], the most dangerous in this problem at any layer tilt angle are longitudinal
disturbances (a ¼ kz=k ¼ 0). For these perturbations vz can be found explicitly. Let us apply the roty
operation to Eq. (4):

@vx
@z

� @vz
@x

¼ �C cosa
@T 0

@x
� C sina

@T 0

@z
(10)

For
@

@z
¼ 0; we have:

@vz
@x

¼ C cosa
@T 0

@x
(11)

Figure 3: Cell of an infinitely extended layer (I–section under investigation; II and IV–infinitely extended
boundaries; III and V–periodic boundaries; boundaries parallel to the xz plane are solid, perfectly conductive,
and the temperature profile on them has the form of a vertical gradient)
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Now apply the rotx operation to Eq. (4):

@vz
@y

� @vy
@z

¼ C cosa
@T 0

@y
(12)

For
@

@z
¼ 0, we have:

@vz
@y

¼ C cosa
@T 0

@y
(13)

Eqs. (11) and (13) have a joint solution:

vz ¼ C cosa T 0 þ f tð Þ (14)

The function f tð Þ is determined from the condition of the absence of total fluid flow in the direction of
the z axis:

Z 1
�1

hvziydx ¼ 0; hvziy � lim
L!1

1

2L

Z L
�L

vzdy

� �
(15)

f tð Þ ¼ � 1

2

Z 1
�1
hC cosa T 0iydx; hC cosa T 0iy � lim

L!1
1

2L

Z L
�L

C cosa T 0dy
� �

(16)

vz ¼ C cosa T 0 � 1

2

Z 1
�1

hT 0iydx
� �

(17)

Thus, the boundary conditions have the form:

y ¼ �1: � ¼ 0; T 0 ¼ 0

and periodicity conditions at the lateral boundaries.

The transformation we propose allows us to reduce a three-dimensional problem to a two-dimensional
one and obtain an analytical expression for the z-component of velocity. This significantly simplifies the
problem and allows for a comprehensive numerical study of the behavior of the system for various
parameters.

4 Nonlinear Three-Dimensional Convective Regimes

To solve the problem (8), (9), (17), the finite difference method was used. An explicit scheme of second
order accuracy in spatial variables was used. The grid was used with square cells and a spatial step of 1/30.
Table 1 presents data from a grid sensitivity study. As can be seen from the table, the grid resolution used in
the calculations makes it possible to calculate the critical Rayleigh number with high accuracy and is
sufficient for modeling the flow structures that are realized in this problem for the studied system
parameters. The main calculations were carried out for a cavity with an aspect ratio of 6 × 1 (xy).
Accordingly, the number of grid nodes was 180 × 30 (xy). At the lateral boundaries (x ¼ 1, x ¼ 180),
periodicity conditions were used. The upper and lower boundaries (y ¼ 1, y ¼ 30) were considered solid
(� ¼ 0) and perfectly conductive (T 0 ¼ 0). The no-slip condition was not used.

Fig. 4 shows the dependence of the critical Ra on the layer tilt angle, obtained as a result of nonlinear
calculations in this work, and a comparison of these results with the linear theory [19]. To find the convection
threshold for each value of the tilt angle a, the value of the maximummodulus of the stream function Max �j j
was found at several Rayleigh numbers close to the threshold. Further, the found dependence Max �j j from
the Rayleigh number was extrapolated to the zero value Max �j j under the assumption that this dependence is
a square root law. This suggests that convection in the system occurs through direct bifurcation. Looking
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ahead, we can say that this actually occurs for all layer tilt angles. As can be seen from Fig. 4, as a result of
nonlinear calculations, values of the Ra were obtained that were close to the values obtained from the linear
stability theory [19] for all layer tilt angles.

Figs. 5 and 6 show the dependences of the integral characteristics of the flowMax �j j and Max vzj j on the
Ra at a ¼ 40�. Up to supercriticality of about 15%–20%, this dependencies correspond to the root law
(dashed curve), therefore direct bifurcation takes place. At other layer tilt angles, a similar dependence is
observed.

Fig. 7 shows the dependence of the wave number on the layer tilt angle, found as a result of linear
calculations (solid curve). In nonlinear calculations, when using periodic conditions on the lateral
boundaries, it is possible to implement convective modes only with an integer number of wavelengths,
i.e., an even number of vortices. As calculations have shown, at layer tilt angles a < 53� a 2-vortex
structure is realized (the maximum wavelength possible for periodic boundary conditions), at a > 53�

there is a transition to a 4-vortex regime, at a > 66� a transition to 6-vortex regime. Thus, the number of
vortices realized in nonlinear calculations corresponds to the linear theory.

Figs. 8–10 show the fields of the stream function �, the fields of the velocity components vz (in
projection onto the xy plane) and the temperature fields for various layer tilt angles at small
supercriticalities. For convenience, the y-axis length range will take values 0; 2½ � instead of �1; 1½ �. As
can be seen, there is a fairly strong flow along the z-axis. The structure of the velocity field also
corresponds to that predicted in [19].

Figure 4: Dependence of the critical Rayleigh number on the layer tilt angle (dashed curve–linear theory,
solid curve–data of nonlinear calculations)

Table 1: Grid sensitivity study for a ¼ 40�

Number of nodes along the y axis The critical Rayleigh number found as a
result of nonlinear calculations

20 4.3553

25 4.3584

30 4.3601

35 4.3610

40 4.3613
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Figure 6: Dependency Max vzj j on the Rayleigh number at a ¼ 40�

Figure 5: Dependency Max �j j on the Rayleigh number at a ¼ 40�

Figure 7: Dependence of the critical wave number on the layer tilt angle (solid curve–linear theory for an
infinitely extended cavity, dots–data from nonlinear calculations)
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The fields of the temperature components T 0 are similar to the fields of the velocity component vz,
differing mainly in quantitative values. The total temperature field T ¼ T0 þ T 0 also includes a
temperature component corresponding to the equilibrium vertical temperature gradient T0. Specific values
of the vertical temperature gradient T0 depend on the value of the Rayleigh number, the layer tilt angle
and the system parameters included in the Rayleigh number. Further, to visualize temperature fields,
system parameters typical for rocks saturated with hydrocarbons will be used.

As can be seen from Figs. 8–10, with increasing layer tilt angle, the temperature gradient increases,
and the influence of convective flows on the temperature distribution in the section under consideration
weakens.

Figure 8: Fields of � (top), vz (middle) and T (bottom) for a ¼ 30�, Ra ¼ 3:80 (xy projection)

Figure 9: Fields of � (top), vz (middle) and T (bottom) for a ¼ 60�, Ra ¼ 7:84 (xy projection)
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Calculations were also carried out for a cavity with an aspect ratio of 10 × 1 and also using solid
impermeable thermally insulated side boundaries. Fig. 11 shows the fields of the stream function � and
the velocity components vz for the layer tilt angle a ¼ 30� in a cavity with an aspect ratio of 10 × 1 using
periodic boundary conditions. As can be seen, as with the aspect ratio 6 × 1, 2-vortex convection is
realized, which corresponds to the maximum possible wavelength.

For a cavity with solid lateral boundaries, the maximum wavelength of disturbances should correspond
to one vortex for the entire cavity. As can be seen from Fig. 12, under such boundary conditions, most of the
cavity is actually occupied by one vortex, but along with it, small side vortices are realized at the side
boundaries, the direction of rotation of which is opposite to the direction of rotation of the main vortex.

Figure 10: Fields of � (top), vz (middle) and T (bottom) for a ¼ 85�, Ra ¼ 10:24 (xy projection)

Figure 11: Fields of� (top), vz (middle) and T (bottom) for a ¼ 30�, Ra ¼ 3:80 (xy projection, 10 × 1 area,
periodic boundaries)
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At layer tilt angles corresponding to multicellular convection, no side vortices are formed at the layer
boundaries and the realized number of vortices corresponds to the linear theory. In particular, Fig. 13
shows the fields of the stream function � and the velocity components vz for the layer tilt angle a ¼ 60�

in a cavity with an aspect ratio of 10 × 1 and solid lateral boundaries.

In calculations for various layer tilt angles at high supercriticalities, no transitions to other convective
regimes were revealed, in addition to the main one predicted by the linear theory. However, with
increasing supercriticality, the shape of the convective rolls may be somewhat distorted. The relative
dimensions of the rolls may also change (Fig. 14). The higher the a, the higher the supercriticality, at
which convective rolls begin to distort (the main mode is more stable).

Figure 12: Fields of � (top), vz (middle) and T (bottom) for a ¼ 30�, Ra ¼ 4:00 (xy projection, 6 × 1 area,
solid boundaries)

Figure 13: Fields of� (top), vz (middle) and T (bottom) for a ¼ 60�, Ra ¼ 7:84 (xy projection, 10 × 1 area,
solid boundaries)
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5 Conclusion

1) The onset and development of longwave and multicellular longitudinal convection rolls in a tilted
porous layer saturated with liquid under a strictly vertical temperature gradient have been studied
numerically.

2) The three-dimensional problem is reduced to two-dimensional one with analytical expression for
z-component of the velocity vz ¼ vz x; yð Þ which substantially simplifies the problem and makes
possible a comprehensive numerical investigation for any layer tilt angles in a wide range of
supercriticalities.

3) The number of rolls (wave number) realized in nonlinear calculations corresponds to the linear theory
[19].

4) The values of the critical Rayleigh number obtained in nonlinear calculations for different layer tilt
angles correspond with good accuracy to the values predicted by linear theory [19].

5) As a result of nonlinear calculations, the structure of the velocity field vz and its evolution with
increasing supercriticality were studied. In particular, the existence of a non-zero fluid flow
velocity along the z-axis, predicted in [19], was confirmed. The resulting structure of the velocity
field vz suggests that the trajectories of liquid particles within each convective roll are not just
circles, but ellipses with a normal perpendicular to the gravity vector and tilted at a certain angle
relative to the xz plane. As supercriticality increases, this angle increases.

6) Calculations carried out at low supercriticalities showed that at all layer tilt angles, direct bifurcation
takes place.

7) No transitions to other convective regimes with increasing supercriticality were found.
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