
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/fhmt.2024.047879

ARTICLE

Nanofluid Flow across a Moving Plate under Blasius-Rayleigh-Stokes (BRS)
Variable Transport Fluid Characteristics

Hanumesh Vaidya1, Fateh Mebarek-Oudina2,*, K. V. Prasad1, Rajashekhar Choudhari3,
Neelufer Z. Basha1 and Sangeeta Kalal1

1Department of Mathematics, Vijayanagara Sri Krishnadevaraya University, Ballari, Karnataka, India
2Department of Physics, Faculty of Sciences, University of 20 Août 1955-Skikda, Skikda, 21000, Algeria
3Department of Mathematics, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, India

*Corresponding Author: Fateh Mebarek-Oudina. Email: f.mebarek_oudina@univ-skikda.dz

Received: 21 November 2023 Accepted: 23 January 2024 Published: 21 March 2024

ABSTRACT

This investigation aims to analyze the effects of heat transport characteristics in the unsteady flow of nanofluids
over a moving plate caused by a moving slot factor. The BRS variable is utilized for the purpose of analyzing these
characteristics. The process of mathematical computation involves converting the governing partial differential
equations into ordinary differential equations that have suitable similarity components. The Keller-Box technique
is employed to solve the ordinary differential equations (ODEs) and derive the corresponding mathematical
outcomes. Figures and tables present the relationship between growth characteristics and various parameters such
as temperature, velocity, skin friction coefficient, concentration, Sherwood number, and Nusselt number. The
results are assessed by comparing them to previous findings. The observation reveals that higher dimensionless
reference temperature and variable values of the moving slot parameter have a suppressing effect on the velocity
and temperature patterns of nanofluids. Higher values of the dimensionless reference temperature and moving
slot parameter lead to enhancements in the Sherwood number, skin friction coefficient, and Nusselt number. The
conductivity of the nanofluid is ultimately affected by these enhancements.

KEYWORDS
Blasius–Rayleigh–Stokes; stretching sheet; variable viscosity; boundary layer flow; variable thermal conductivity;
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1 Introduction

Nanofluids (NFs), which are suspensions of nanoparticles (NPs) in base fluids, are commonly
used to enhance thermal and mechanical properties. Understanding the flow of nanofluids over
moving plates is crucial for developing effective engineering solutions. Due to the time and location
dependence of parameters like thermal conductivity, viscosity, and density, the flow characteristics
of nanofluids can exhibit unsteady behavior. Accurately modeling nanofluid flow considering these
varying parameters is essential. Nanofluids find applications in various industries, such as heat
exchangers, microfluidics, electronic cooling systems, and aeronautical engineering. For example, they
are used in the electronics sector to improve heat transfer and reduce the temperatures of electronic
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equipment. In the aircraft industry, where engines and power plants experience high temperatures and
thermal stresses, nanofluids are utilized in cooling systems.

Accurate modeling of nanofluid flow over moving plates is crucial for optimization purposes. By
understanding the dynamic behavior of nanofluids, engineers can design more efficient and reliable
cooling systems capable of withstanding significant thermal stresses and temperature gradients. The
study of nanofluid flow over moving plates holds both theoretical and practical value. The Blasius-
Rayleigh-Stokes (BRS) flow, which describes the unsteady flow of a viscous fluid over a flat plate, is
of interest to experts in technology, engineering, science, production, and invention. Boundary layers,
which are thin fluid layers near the plate that experience viscous forces, are formed in this flow. The
BRS flow is named after Heinrich Blasius, Lord Rayleigh, and George Gabriel Stokes, who made
significant contributions to our understanding of this phenomenon. In addition to its fundamental
importance in fluid mechanics, the BRS flow finds applications in aeronautical engineering, chemical
engineering, and materials research, particularly in the design of heat exchangers and cooling systems
involving fluid flow over flat plates.

In 1997, Todd [1] developed a time-dependent flow class via a moving surface created by a slot
with a specific accretion or ablation rate. He presented an innovative sequence of reactions employing
the BRS variable to lower the controlling PDEs to a similar condition. Therefore, Ramesh et al. [2]
thoroughly examined a various fluid dynamics problems with nanofluids. Qin et al. [3] used Cattaneo-
Christov theory to include the magnetohydrodynamic BRS flow of a hybrid NF with silver and
magnesium oxide NPs and water moving past a stretching sheet with ablation or accretion, melting
heat, chemical reaction, viscous dissipation, and Stefan blowing. They asserted that the retardation
effect occurs due to a more accurate assessment of the magnetic and volume fraction parameters,
resulting in a rise in liquid speed. In addition, as the Stefan blowing parameter is estimated more
precisely, the thickness and velocity of the fluid improve. Using the BRS variable, Ishaq et al. [4]
analyzed the uneven flow of a nanoliquid toward an isothermal magnetized plate emerging from a
stirring slot. Al-Nuwairan et al. [5] assessed the BRS flow over a plate using a computational technique
that accounted for magnetic fields and nonlinear thermal radiation. MWCNT is more susceptible to
the effects of a magnetic field than SWCNT. Kumar et al. [6] analyzed the hybrid nanofluid flow of
synchronized Blasius and Rayleigh-Stokes fluids in a synchronized magnetic field. Lu et al. [7] explored
the time-dependent flow of a viscous-based liquid motivated via pedesis and Lugwig-Soret diffusion
based on the movement of the moving slot using the Blasius-Rayleigh-Stokes variable. Fang et al. [8]
determined the thermal transport features of boundary layer (BL) flow. Khan et al. [9] examined the
influence of non-Fourier heat flux through the relevance of hybrid nanoparticles across a plate in
an unstable Blasius-Rayleigh-Stokes flow. It has been discovered that hybrid nanoparticles raise the
temperature while decreasing velocity. In addition, friction factor increases of up to 1.4399 percent and
a heat transfer rate increase of up to 1.123 percent have been detected. Jiang et al. [10] explored the
role of Stefan driving through the Cattaneo-Christov features of the BRS flow of hybrid nanofluids
and found that the damping effect increases the liquid velocity for more significant amounts of the
magnetic property and volume fraction term. The articles [11–15] contain additional research utilizing
the Blasius–Rayleigh–Stoke attribute and [16–21] for nanofluids.

In the past few years, the investigation of BL mobility and heat transport in the thin liquid
film via a stretching sheet has fascinated many due to its wide range of food processing, continuous
casting, and chemical processing equipment. Considering this characteristic, Crane [22] was the
first to explore Newtonian fluid’s constant two-dimensional BL motions due to a linearly stretched
sheet. McCormack et al. [23] investigated how an elastic flat sheet’s deformation affected a liquid’s
two-dimensional motion. Due to its practical applicability, the stretching sheet problem has involved
various researchers over the past four decades, including Wang [24,25] and Andersson et al. [26,27].
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Prasad et al. [28] considered temperature-dependent viscosity through the mobility and heat transport
of a nanoliquid passing a flat sheet. Prasad et al. [29] reported convective boundary conditions and
temperature-dependent fluid characteristics of a magnetohydrodynamic liquid’s mixed convective
motion and heat transport via a variable-thickness elastic sheet. Prasad et al. [30,31] explored the
influence of varying fluid characteristics and a transverse magnetic field on a non-Newtonian’s
motion, energy, and concentration transfer in the presence of combined temperature and species
concentration effects.

Nanofluids, an innovation of research groups in the growing field of nanotechnology, leverage
materials’ thermal properties to recover a liquid’s thermal conductivity. Choi [32] proposed the
word “nanofluids,” which considerably boosted the heat transfer performance of diverse fluids. The
suggested model is based entirely on nanoparticle distribution, such as metals, polymers, and non-
metals in a particular base liquid such as water or other fluids. The improved thermal behavior of
nanofluids may set the framework for a significant revolution in heat transfer acceleration, which
is crucial for a range of manufacturing sectors involving nuclear power, computing, biotechnology,
and agriculture. A circumstance evolved because of extensive and rapid heat transference in different
equipment for more effective and increased thermal control. The current examination suggests and
scrutinizes a new category of uneven BL via a stretching surface in response to Todd’s [1] examination
of a novel family of time-dependent boundary layers. To the best of the author’s awareness, no study has
until now investigated the Blasius–Rayleigh–Stokes flow of nanoliquid with variable fluid properties.
The impact of temperature-dependent transport characteristics on unsteady BRS nanofluid flow and
heat transport via a moving plate generated by a moving slot is investigated, and the obtained results
are compared to the findings reported in the literature by Grubka et al. [33], Ali [34], and Chen [35].
Several new mass, momentum, and heat transfer features of this flow pattern will be looked at and
studied.

2 Formulation

It is to be anticipated that an incompressible nanofluid with varying liquid properties would flow
in two dimensions in a time-dependent manner through a permeable, movable plate that coincides
with the y = 0 plane (Fig. 1). The x-axis coincides with the principal flow direction, and the y-axis is
perpendicular to the plate’s motion. The fluid is at a standstill. The plate stretching speed is Uw and the
slot moving speed will be given in the following. The x-axis runs along the sheet stretching direction
and the y-axis is perpendicular to it. Under these assumptions and using the standard BL estimation,
the governing equations of momentum, mass, and heat transfer for the unsteady flow issue under
consideration with changing liquid characteristics (i.e., fluid viscosity and thermal conductivity) may
be written as follows. Todd [1] provided the governing continuity, velocity, energy, and mass equations
for an unsteady flow condition with variable fluid parameters.
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Figure 1: Systematic diagram of the problem

Variable viscosity μ varies as an inverse function of temperature defined as

1
μ

= 1
μ∞

[1 + δ (T − T∞)] , i.e.,
1
μ

= δ (T − Tr), (5)

where a = δ

μ∞
and Tr = T∞ − 1

δ
. (6)

Here both a and Tr are constants, which depends on δ, generally, a < 0 corresponds to gases and
a > 0 to liquid. T∞ and μ∞ are the constant values for temperature and the coefficient of viscosity
away from the sheet. Temperature conditional thermal conductivity and diffusivity are defined as:
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where ε1 and ε2 are the erratic thermal conductivity and erratic diffusivity parameter, respectively. The
impact of these small parameters is to enhance the thermal as well as species distribution thickness,
respectively.

Substituting Eqs. (5)–(7) in Eqs. (2)–(4), we find:
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The impact of the small parameters, namely, ε1 and ε2 is to enhance the thermal as well as species
distribution thickness, respectively. The associated BCs are (Todd [1]):
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u = uw, v = 0, T = Tw C = Cw at y = 0,

u → 0, T → T∞, C → C∞ as y → ∞, (11)

Since the unsteady flow is a generalized case of a steady flow. Todd [1] generalized the Blasius and
Rayleigh-Stokes variables to get similar equations for the boundary layer flow of viscous fluid over a
moving surface termed as Blasius Rayleigh- Stokes variable which is represented as:

η = y/
√

cos α ν∞t + sin α (ν∞x/uw) (12)

This variable depicts that the slot at Y = 0 is moving with a constant speed −uw cot α. To obtain
similarity solutions for the system of Eqs. (8)–(10), we introduce the following similarity variables.
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Using Eqs. (12), (13), we obtain the following equation:(
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and they are subjected to BCs
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f′
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Here θr = Tr−T∞
Tw−T∞ = − 1
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, Le = ν∞

DB∞
, Pr = ν∞

α∞ , Nb = τDB∞(Cw−C∞)

v∞ . and , Nt = τDT(Tw−T∞)

T∞v∞ are
erratic viscosity factor, Lewis number, Prandtl number, Brownian factor and Thermophoresis factor,
respectively.

It is important to note that as γ → 0, specifically when μ = μ∞ (a constant), θr tends towards
infinity. The polarity of varies depending on the state of matter, θr with a negative value for liquids and
a positive value for gases. The reason for this is that, typically, the viscosity of a liquid tends to decrease
as the temperature rises, whereas for gases, it tends to increase. The chosen reference temperatures for
the correlations have proven to be highly valuable for a wide range of applications. When the value
of θr is large or the difference between T∞ and Tw is small, it may be feasible to ignore the effects of
fluctuating viscosity on the flow.

2.1 The Engineering Quantities of Interest
The article focuses on analyzing the behavior of the nanofluid by examining the skin friction

coefficient, local Nusselt number, and local Sherwood number. These parameters are defined as
follows:
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Using (13) and (19) in Eq. (18), the following dimensionless form of the skin friction, local Nusselt
number and the local Sherwood number are obtained.
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where the expression of local Reynolds number is Rex = −U∞x1
λ∞

.

3 Numerical Procedure

Eqs. (14)–(17) represent a system of coupled ODEs, with orders ranging from second to third.
These equations exhibit a notable degree of nonlinearity. The Keller-Box method, a highly influential
numerical technique, has been adopted due to the impracticality of finding an exact analytical solution
for the entire set of Eqs. (14)–(17). This method utilizes a second-order finite difference scheme. The
given coupled boundary value problem (14) to (17) is of third order in f and second order in θ and
φ. By applying the method of superposition and assuming f = f1, f ′ = f2, f ′′ = f3, θ = θ1, θ ′ =
θ2, φ = φ1 and φ ′ = φ2, the problem has been transformed into a system of seven simultaneous
ordinary differential equations of first order for five unknowns. In order to solve this system of
equations, it is necessary to have a total of seven initial conditions. However, we currently only have
two initial conditions, f (0), f ′ (0) on f , one initial condition θ (0) on θ , and one initial condition
φ (0) on φ. The values of f ′ (η), θ (η) and φ (η) are known at η = ∞, while the initial conditions
for f ′′ (0), θ ′ (0) and φ ′ (0)are unspecified. A numerical Keller-Box scheme is used in this approach,
which incorporates two boundary conditions to determine two unknown initial conditions as η = 0.
The process of selecting η∞ involves starting with an initial guess value and solving the boundary value
problem using specific parameters. This allows us to obtain the values of f ′′ (0), θ ′ (0) and φ ′ (0). The
initial approximation for the variables is as follows: f3 (0) = α0 and θ2 (0) = β0 and φ2 (0) = γ0. Let
α, β and γ represent the accurate values of f3 (0), θ2 (0) and φ2 (0), respectively. The resultant system
of five ordinary differential equations is integrated using the fourth-order Runge-Kutta method. The
values of f3 (0), θ2 (0) and φ2 (0) are denoted. The solution process is iterated using a larger value of
η∞. This is done until two consecutive values of f ′′ (0), θ ′ (0) and φ ′ (0) differ only after the desired
digit that represents the limit of the boundary along η. The final value of η∞ is selected as the
suitable value for the given set of terms. The problem has been successfully resolved by employing
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the Keller-Box technique, a second-order finite difference scheme. The process of obtaining numerical
solutions involves four steps. These steps are as follows:

1. Convert Eqs. (14) and (17) into a system of first-order equations.

2. Express the difference equations using central differences.

3. Apply Newton’s technique to linearize the algebraic equations and represent them in matrix-
vector form.

4. Solve the linear system using the block tri-diagonal elimination technique.

In order to perform numerical calculations, it has been determined that a uniform step size of
Δη = 0.01 is sufficient. Additionally, the solutions are obtained with an error tolerance of 10−6 in all
cases. In order to assess the effectiveness of the current method, we analyze the skin friction and wall
temperature gradient by comparing them to previously reported results. These comparisons can be
found in Table 1.

Table 1: Comparison of −θ ′ (0) for our results and of Grubka et al. [33], Ali [34] and Chen [35], when
θr → ∞, Le = 1.0, Nb = Nt = ε1 = ε2 = 0, α = 900

Pr 0.01 0.72 1.0 3.0 10.0

Grubka et al. [33] 0.0197 0.4631 0.5820 1.1652 –2.3080
Ali [34] – 0.4617 0.5801 1.1599 2.2960
Chen [35] 0.091 0.46315 0.5819 1.16523 2.3079
Present results 0.019723 0.808681 1.00000 1.923687 12.2941

4 Results and Discussion

The figures and tables presented in the text (Figs. 2–5 and Tables 2–4) demonstrate the use of a
numerical approach known as the Keller-Box technique. This technique is widely regarded as accurate
in providing solutions for the Nusselt number, skin friction, and Sherwood number.

(a) (b)

Figure 2: (a) Horizontal velocity profile for different values of θr and α with Pr = 1 Le = 0.22, Nt =
0.5, Nb = 0.5, ε1 = 0.1, ε2 = 0.1. (b) Temperature profile for different values of θr and α with Pr = 1.0
Le = 0.96, Nt = 0.5, Nb = 0.5, ε1 = 0.1, ε2 = 0.1
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(a) (b)

(c) (d)

Figure 3: (a) Temperature profile for different values of Pr and α with θr = −5.0 Le = 1.0, Nt = 0.5,
Nb = 0.5, ε1 = 0.1, ε2 = 0.1. (b) Concentration profile for different values of Le and α with θr = −5.0
Pr = 1.0, Nt = 0.5, Nb = 0.5, ε1 = 0.1, ε2 = 0.1. (c) Temperature profile for different values of Nb and
α with θr = −5.0 Le = 1.0, Nt = 0.5, Pr = 1.0, ε1 = 0.1, ε2 = 0.1. (d) Concentration profile for different
values of Nb and α with θr = −5.0 Le = 1.0, Nt = 0.5, Pr = 1.0, ε1 = 0.1, ε2 = 0.1
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(a) (b)

Figure 4: (a) Temperature profile for different values of Nt and α with θr = −5.0 Le = 1.0, Nb = 0.5,
Pr = 1.0, ε1 = 0.1, ε2 = 0.1. (b) Concentration profile for different values of Nt and α with θr = −5.0
Le = 1.0, Nb = 0.5, Pr = 1.0, ε1 = 0.1, ε2 = 0.1

(a) (b)

Figure 5: (a) Temperature profile for different values of ε1 and α with θr = −5.0 Le = 1.0, Pr = 1.0, Nt
= 0.5, Nb = 0.5, ε2 = 0.1. (b) Concentration profile for different values of ε2 and α with θr = −5.0 Le
= 1.0, Pr = 1.0, Nt = 0.5, Nb = 0.5, ε1 = 0.1

Table 2: Skin friction and Nusselt number for different values θr with Le = Pr = 1.0, Nb = Nt =
0.5, ε1 = ε2 = 0.1

θr f ′′ (0) θ ′ (0)

α α

−300 −150 00 150 300 −300 −150 00 150 300

∞ −0.4163 −0.5048 −0.5642 −0.5998 −0.6135 −0.3998 −0.4854 −0.5428 −0.5772 −0.5905

(Continued)
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Table 2 (continued)

θr f ′′ (0) θ ′ (0)

α α

−300 −150 00 150 300 −300 −150 00 150 300

−10.0 −0.4447 −0.5385 −0.6014 −0.6390 −0.6533 −0.4019 −0.4863 −0.5428 −0.5764 −0.5889
−5.0 −0.4717 −0.5704 −0.6366 −0.6760 −0.6909 −0.4038 −0.4872 −0.5428 −0.5757 −0.5875
−2.0 −0.5452 −0.6573 −0.7322 −0.7766 −0.7928 −0.4089 −0.4894 −0.5428 −0.5737 −0.5836
−1.5 −0.5820 −0.7006 −0.7800 −0.8268 −0.8437 −0.4113 −0.4905 −0.5428 −0.5727 −0.5820

Table 3: Nusselt number via physical parameters for θr = −0.5, Le = 1.0, ε2 = 0.1

ε1 Nt Nb Pr
θ ′ (0)

−300 −150 00 150

0.1 0.5 0.5
0.023 −0.1344 −0.1376 −0.1395 −0.1402
1.72 −0.3493 −0.4161 −0.4600 −0.4850
1.0 −0.4002 −0.4824 −0.5373 −0.5697

0.1 0.5

0.05

1.0

−0.4002 −0.4824 −0.5373 −0.5815
0.2 −0.3707 −0.4468 −0.4976 −0.5385
0.3 −0.3519 −0.4241 −0.4723 −0.5111
0.4 −0.3317 −0.4022 −0.4479 −0.4847

0.1

0.0

0.5

−0.4074 −0.4908 −0.5465 −0.5794
0.1 −0.3932 −0.4741 −0.5282 −0.5602
0.2 −0.3796 −0.4581 −0.5106 −0.5418
0.3 −0.3665 −0.4426 −0.4936 −0.5239

0.0
0.5

−0.4027 −0.4855 −0.5408 −0.5735
0.1 −0.3795 −0.4566 −0.5081 −0.5383
0.2 −0.3598 −0.4322 −0.4803 −0.5085

Table 4: Sherwood number via the physical parameters for θr = −0.5, Pr = 1.0, ε1 = 0.1

Nt Nb ε2 Le
φ ′ (0)

−300 −150 00 150

0.5 0.5 0.1
0.22 −0.1646 −0.1787 −0.1867 −0.1885
1.0 −0.2494 −0.2831 −0.3033 −0.3091
1.5 −0.2781 −0.3181 −0.3426 −0.3525

(Continued)
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Table 4 (continued)

Nt Nb ε2 Le
φ ′ (0)

−300 −150 00 150

0.5 0.5
0.0

1.0
−0.2507 −0.2845 −0.3049 −0.3134

0.1 −0.2391 −0.2711 −0.2903 −0.2983
0.2 0.2292 −0.2596 −0.2779 −0.2853

0.5

0.05

0.1 1.0

−0.2494 −0.2831 −0.3033 −0.3118
0.2 −0.3817 −0.4558 −0.5045 −0.5324
0.3 −0.3965 −0.4748 −0.5267 −0.5567
0.4 −0.4037 −0.4842 −0.5377 −0.5688

0.0

0.5 0.1 1.0

−0.4177 −0.5032 −0.5604 −0.5941
0.1 −0.0925 −0.0763 −0.0609 −0.0449
0.2 0.1887 0.2987 0.3816 0.4448
0.3 0.4288 0.6252 0.7708 0.8784

The purpose of Figs. 2a, 2b is to illustrate the influence of selected terms of θr and α on f ′ (η)

with varying values. It is essential to illustrate in Fig. 2a that rising values of θr via f ′ (η) with
corresponding varying values of α = 30, 0.0, −30 results in depleting function of nanofluid velocity
(f ′ (η)). Similarly, Fig. 2b expresses the effect of moving slot parameter α = 30, 0.0, −30 and different
values of θr on θ (η), the boundary layer thickness ascribed to θ (η)experienced a depletion in the
nanofluid motion consequently upon the augmentation of θr. As Pr is inversely proportional to
thermal conductivity, the Prandtl number conveys a decline in θ (η) with an elevation of the Prandtl
number and in alignment with a corresponding increase/decrease of α seen in Fig. 3a. Hence, a higher
fall on the thermal boundary layer (BL) thickness for θ (η) through elevation of Prandtl number is
observed. It is important to display that Fig. 3b shows the rising values of Lewis number on φ (η)

by definition. The ratio between heat and mass diffusivity is the Lewis number; Given the elevation
of the Lewis number, the mass diffusivity increases and, as a result φ (η) depletes with an enriched
asymptotically behavior of α. Fig. 3c elucidates the impact of Nb on θ (η) with the effect of the moving
slot parameter α = 30, 0.0, −30. It is factual through Fig. 3c that rising values of Nb upswing θ (η) with
synchronized growing effect of moving slot parameter within the BL thickness due to the tendency
in thermal disparity. At the same time, the reverse implication is perceived for φ (η) in Fig. 3d with
the simultaneous growing effect of Nb. and α = 30, 0.0, −30 vis-a-vis Fig. 3c. Fig. 4a displays the
effect of Nt on θ (η) with varying moving slot parameters. It is discovered from Fig. 4a that increasing
values of Nt implies the larger difference between ambient temperature and wall temperature and hence
produces a synchronized growing varied α temperature distribution.

Furthermore, Fig. 4b demonstrates the effect of Nt on φ (η) with varying moving slot parameters.
It is found from Fig. 4b that increasing values of Nt generates a robust sequential concentration
distribution growth with αdisparity. Figs. 5a and 5b shows the impact of enhanced thermal and
concentration distribution thickness for ε1 and ε2 on θ (η) and φ (η), respectively. As ε1 and ε2 has
direct impact on thermal conductivity and diffusivity of the fluid, it is reported in Figs. 5a and 5b that



76 FHMT, 2024, vol.22, no.1

higher values of ε1 and ε2 elevates temperature and concentration distributions lead to the enhanced
and concentration boundary layer thickness.

Table 2 captures the computation of f ′′ (0) and θ ′ (0) for the selected parameter of θr and α through
Le = Pr = 1.0, Nb = Nt = 0.5, ε1 = ε2 = 0.1. It is quite evident from the table that (f ′′ (0)) and (θ ′ (0))
are empowered by rising values of θr and α invariably influencing the thermal conductivity of the
NF. More so, in Table 3, the numerical output of θ ′ (0) for varying values of α, Pr, Nb, Nt, ε1 keeping
other variables of θr = −0.5, Le = 1.0, ε2 = 0.1 constant. It is clear from the table that (θ ′ (0)) escalates
with the growing values of α, Pr, Nb, Nt, ε1 enriching the thermal conductivity of the nanoliquid. In
Table 4, demonstrated the numerical output of φ ′ (0) for varying values of Nb, Nt, ε2, Pr, where θr =
−0.5, Pr = 1.0, ε1 = 0.1 are constant values. It is obvious from the table that Sherwood number (φ ′ (0))
rises through the larger values of Nb, Nt, ε2, Pr, enriching the species distribution of the nanofluid.

5 Conclusions

The time-dependent BRS flow of nanofluid over a moving surface incorporating Brownian
motion, moving slot effect, and thermophoretic diffusion are investigated in this scientific paper. The
following is a summary of the results using the Keller-Box method:

➤ The Prandtl number and Lewis number are important dimensionless parameters in fluid
mechanics that characterize the relative magnitudes of momentum and thermal diffusivities
in a fluid. The depletion of and distributions with increasing moving slot parameter implies
that the transport properties of the fluid are changing, affecting the flow characteristics near
the moving plate.

➤ The enhancement of on and with varying values tends to a downswing of nanofluid velocity
and temperature distributions, suggesting that the nanofluid’s thermal and mass transport
properties are affected by the flow over the moving plate. The variation in influences the rate
of heat transfer and mass transfer in the nanofluid.

➤ The Nb variable is a dimensionless parameter that characterizes the thermophoretic diffusion
of NPs in the NF. An increase in the moving slot term elevates the Nb variable, indicating that
the transport of nanoparticles is affected by the flow over the moving plate. This, in turn, has
a reverse effect on the distribution.

➤ The Nt factor is a dimensionless parameter that characterizes the effect of the thermal
conductivity of the NF on the temperature distribution. The increase in the Nt factor with
a progressive parameter of the moving slot indicates that the thermal conductivity of the
nanofluid is affected by the flow over the moving plate.

➤ The Sherwood number, Nusselt number, and Skin friction coefficient are important dimen-
sionless parameters that characterize the mass transfer, heat transfer, and frictional forces in
the fluid, respectively. The increase in these parameters with growing values suggests that the
flow over the moving plate affects the nanofluid’s thermal and mass transfer properties. These
parameters are also known to influence the thermal conductivity of the nanoliquid, which can
have significant implications for industrial applications.
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