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ABSTRACT

The primary aim of this research endeavor is to examine the characteristics of magnetohydrodynamic Williamson
nanofluid flow past a nonlinear stretching surface that is immersed in a permeable medium. In the current analysis,
the impacts of Soret and Dufour (cross-diffusion effects) have been attentively taken into consideration. Using
appropriate similarity variable transformations, the governing nonlinear partial differential equations were altered
into nonlinear ordinary differential equations and then solved numerically using the Runge Kutta Fehlberg-45
method along with the shooting technique. Numerical simulations were then perceived to show the consequence of
various physical parameters on the plots of velocity, temperature, and concentration of the nanofluid flow. Boosting
the magnetic, Williamson, porosity, and stretching sheet index parameters, the velocity of the fluid flow decreases.
The temperature is enhanced as the Williamson and Brownian motion parameters upsurge, but it decreases as the
Prandtl, thermophoresis, stretching sheet index, and Dufour parameters escalate. The concentration distribution
decreases as the thermophoresis and magnetic parameters upsurge, but it escalates as the Soret, Schmidt, Brownian
motion, and stretching sheet index parameters increase. Skin friction coefficient boosted as the stretching sheet
index and magnetic parameters enhanced against the Williamson parameter. The findings from this study have
been contrasted with earlier findings on local Nusselt numbers, which show substantial support and endorse the
existing approach’s validity. The numerical values of the local Sherwood number gradually increase as the Schmidt,
Soret, stretching sheet index, and thermophoresis parameters are upsurged.
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Nomenclature

C Concentration of the nanoparticles (mol · L−1)

Cw Concentration of the wall (mol · L−1)

a Stretching velocity
(
s−1

)
T∞ Free stream temperature (K)
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T Temperature of the nanofluid (K)

Tw Wall temperature distribution (K)

C∞ Free nanoparticle concentration (mol · L−1)

B0 Strength of the uniform magnetic field (T)

g Acceleration due to gravity
(
ms−2

)
Dm Coefficient of mass diffusivity

(
m2s−1

)
DT Coefficient of Thermophoresis

(
m2s−1K−1

)
DB Brownian diffusion coefficient

(
m2s−1

)
f Dimensionless stream function
k Permeability of porous medium

(
m2

)
kT Ratio of thermal diffusion
cs Concentration susceptibility

(
m−2

)
cp Specific heat at constant pressure

(
JKg−1 K−1

)
We Williamson parameter

(
=

√
2Γ a

3
2√

ν

)

Pr Prandtl number
(
= ν

α

)
Du Dufour parameter

(
= DmkT

νcscp

(Cw − C∞)

(Tw − T∞)

)

Sc Schmidt number
(

= ν

DB

)

Sr Soret parameter
(

= DmkT (Tw − T∞)

DBTm (Cw − C∞)

)
K Porous parameter

(
= ν

ak

)
n Stretching sheet index

M Magnetic field parameter
(

= σB2
0

aρ

)
A, a Positive constants
B Intensity of the variable magnetic field

(
amp.m−1

)
Cf Local skin friction coefficient

Nb Brownian motion parameter
(

= τDB (Cw − C∞)

ν

)

Nt Thermophoresis parameter
(

= τDT (Tw − T∞)

T∞

)
Nux Local nusselt number
Shux Local Sherwood parameter
τw Wall shear stress

(
Nm−2

)
qw Heat flux

(
Jm−2s−1

)
qm Mass flux

(
Kgm−2s−1

)
x, y Cartesian coordinates along the plate and normal to it, respectively
u, v Velocity along x and y axes

(
ms−1

)
uw Reference velocity

(
ms−1

)
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Greek Symbols

θ Dimensionless temperature
ν Kinematic viscosity

(
m2s−1

)
Γ Positive time constant (s)
μ Coefficient of viscosity

(
Kgm−1s−1

)
ρ Density of the fluid

(
Kgm−3

)
σ Electrical conductivity

(
Sm−1

)
Re Reynolds number

(
= uwx

ν

)
κ Thermal conductivity

(
Wm−1K−1

)
φ Dimensionless concentration
τ Ratio of effective heat capacity
η Similarity variable
α Thermal diffusivity

(
m2s−1

)
Superscripts

w Wall condition
′ Differentiation with respect to η

∞ Free stream condition

1 Introduction

Newton’s law of viscosity, which asserts that shear stress and shear rate must be inversely propor-
tional, is infringed by non-Newtonian fluids. The viscosity of non-Newtonian fluids fluctuates with
the rate of shear or shear stress. This demonstrates that the fluid’s resistance to flow varies depending
on the conditions under which it flows. There are several types of non-Newtonian fluids, each with its
distinct flow characteristics such as pseudoplastic fluids-toothpaste, ketchup, paints, dilatant fluids-a
mixture of cornstarch and water, often called oobleck, Bingham plastic fluids-drilling muds, visco-
elastic fluids-slime, polymer solutions, and human mucus. Magnetohydrodynamics (MHD) is an
integrative discipline dedicated to investigating the properties of conducting fluids in the context of
magnetic fields by combining fluid dynamics with electromagnetic concepts. It has several applications
ranging from astronomy to engineering. Raju et al. [1] examined the flow of a chemically reacting fluid
via an inclined vertical permeable moving plate in an unsteady MHD fluid flow. Many more studies
have been drawn to this field of study [2,3].

In recognition of its many potential applications in industry, the boundary layer flow of such
fluids is gaining prominence. The Naiver-Stokes equations alone are insufficient for determining and
enhancing the rheological properties of materials. One of the most elegant non-Newtonian techniques
for circumventing this hindrance is the Williamson fluid flow model (WFFM). The WFFM is based on
a power-law relationship between the shear stress (τ ) and the shear rate (γ̇ ) as of the form τ = η0 (γ̇ )

n.
The power-law index (n) determines the degree of shear-thinning or shear-thickening behavior. For
n < 1, the fluid exhibits shear-thinning, while for n > 1, it exhibits shear-thinning. The consistency
index (η0) represents the fluid’s resistance to flow and is related to the viscosity of the fluid at low
shear rates. The viscosity of the Williamson fluid is not constant but depends on the shear rate.
As the shear rate increases, the viscosity decreases for shear-thinning behavior. The WFFM can
capture both shear-thinning and shear-thickening behavior by adjusting n, which finds applications in
various engineering processes, particularly those involving non-Newtonian fluids with shear-thinning
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behavior. This versatility makes it suitable for describing a wide range of non-Newtonian fluids
that exhibit different rheological behaviors under varying flow conditions. The WFFM is primarily
empirical and is based on fitting experimental data. It is not derived from fundamental principles but
rather formulated to provide a mathematical description of observed shear-rate-dependent viscosity.
The mathematical form of the WFFM is relatively simple, making it easy to use and interpret. This
simplicity facilitates analytical solutions and is advantageous for applications where computational
efficiency is essential. Examples include polymer processing, food manufacturing, and pharmaceutical
production. Nadeem et al. [4] investigated the Williamson fluid flow (WWF) over a stretching sheet.
Megahed [5] examined the effects of viscous dissipation and thermal radiation of the WFF due to
a nonlinear stretching sheet. Bibi et al. [6] analyzed numerically the heat transfer in the presence of
an MHD WFF through a permeable stretching sheet. Salahuddin et al. [7] explored the Cattaneo-
Christov heat and mass transfer analysis of dissipated Williamson fluid with double stratification.

Nanofluids possess several characteristics that make them suitable for various industrial appli-
cations which include enhanced thermal conductivity, increased heat transfer efficiency, improved
lubrication and wear resistance, stability and suspension of nanoparticles, tailored properties by
selecting different nanoparticles and base fluids, compatibility with existing systems and potential for
multi-functionality. The use of nanofluids in industrial applications offers several advantages due to
the unique properties of nanoparticles at the nanoscale. Some key industrial applications of nanofluids
are heat transfer and cooling systems, lubrication and wear resistance, oil and gas extraction, aerospace
and rocket propulsion, solar thermal energy, electronic cooling, and biomedical applications, etc.

When nanoparticles are incorporated into the Williamson base fluid, their properties change,
leading to improved heat transmission and other desired features. Williamson nanofluid flow (WNFF)
has an extensive scope of industrial applications, encompassing heat transfer improvement, electronics
cooling, solar thermal systems, lubrication and machining, biomedical applications, and so on.
Nadeem et al. [8] illustrated the heat transfer analysis of a WNFF. Bhatti et al. [9] investigated
the combined implications of thermo-diffusion and heat radiation on a porous stretched sheet
filled with WNFF. Reddy et al. [10] investigated the MHD WNFF over a stretched sheet with
variable thickness and diverse thermal conductivity to transfer mass and heat in the presence of
radiation. Mabood et al. [11] used a finite difference approach to explore the MHD WNFF on a
perpetually shifting heated surface to study the impacts of thermal radiation and heat source. Mebarek-
Oudina et al. [12] analyzed the hydromagnetic flow of magnetite-water nanofluid utilizing an adapted
Buongiorno model. Ramesh et al. [13] illustrated the computational analysis of the magnetic properties
of a radiative nano Carreau fluid flow in a microchannel. Abbas et al. [14] explored the effects of heat
generation and viscous dissipation of an MHD WNFF past a nonlinear stretching sheet immersed in
a porous medium. Plenty of scholars enlightened their study on this globally vital problem in such a
captivating manner [15–24].

Because of their unusual mechanical properties, nonlinear stretching sheets, also known as
nonlinearly elastic membranes or nonlinearly deformable surfaces, offer a wide range of lucrative uses.
A nonlinear stretching sheet is a mathematical model that describes the behavior of a stretching sheet
or surface when the tension or stretching force is not exactly proportional to the displacement. This
simulation is frequently employed for researching fluid dynamics and heat transport in a range of
engineering processes. Das [25] addressed the partial slip of the boundary layer flow of a nanofluid
at an ordained surface temperature across a nonlinear stretching sheet (NLSS). Bilal et al. [26]
collaborated to detect the MHD 3D boundary layer flow of a Williamson fluid confined by a
bidirectional nonlinear stretched membrane (NLSS). Abo-Dahab et al. [27] investigated the effect
of suction/injection on an MHD Casson nanofluid flow over NLSS in a heated porous medium.
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The study carried out by Hayat et al. [28] explored the magnetohydrodynamic (MHD) boundary
layer flow of Powell-Eyring nanofluid across a nonlinear stretching sheet with varying thickness.
Qayyam et al. [29] sought an MHD third-grade nanofluid across a nonlinear stretching material that
differed by thickness with effects of the heat radiation and chemical reaction. It has a broad spectrum
of usages in industry, including stretching electronics, packing and wrapping, energy harvesting,
robotics, and soft robotics. In recent decades, many more investigations have explored fascinatingly
on this research area [30–36].

The implications of Soret and Dufour are two important transfers of mass and heat mechanisms in
hydraulic systems. The Soret effect, popularly referred to as thermal diffusion, lays out how a species’
concentration in a mixture affects temperature dispersion. The Dufour effect, formerly referred to
as thermal diffusion of momentum, is an aberration that stresses mass flow in the direction of a
temperature gradient when there is a disparity in temperature in a fluid system. Hayat et al. [37]
apparent the heat and mass transfer through natural convection to detect the impacts of the chemical
reaction, Soret and dufour effects from vertical surfaces in a permeable medium. In the inclusion of
magnetic nanoparticles, Postelnicu et al. [38] inquired about the effects of Soret and Dufour over fluid
flow on a vertically stretched sheet due to multiple slips. Seid et al. [39] focused on the oscillatory flow
of an elevated stress fluid due to a stretchy curved surface along the cross-diffusion impacts. Chemical
engineering, combustion, isotope separation, biological sciences, geophysics, and energy conversion
benefit substantially from the cross-diffusion effects. Understanding and accounting for these effects
in relevant systems allow for improved process design, optimization, and performance research works
[40–46].

The motivation for this study was gathered by studying the literature work existing in the references
[4–6,14,27] to do the research on the WNFF. The novelty of this research work is to investigate the
impacts of the cross-diffusions (Soret and Dufour effects) of an MHD Williamson nanofluid flow
past a nonlinearly stretched sheet immersed in a permeable medium. A comprehensive examination
of prior research that was published recognizes that no such attempt has ever been made, even though
the current study’s range of views and phenomena may be anticipated to result in unusually dynamic
interactions across disciplines. The subsequent section goes over the fluid flow model, flow regime,
solution strategy, and results display.

2 Fundamental Formulation of the Williamson Fluid Flow

The corresponding equations of continuity and momentum associated with an incompressible
Williamson fluid flow are provided using the references [4,6,8] as follows:

div V = 0 (1)

ρ
dV
dt

= div S + ρb (2)

where b is the specific body force vector, V is the velocity, S is the Cauchy stress tensor, ρ is the density

and
d
dt

denotes the material time derivative. The Williamson fluid flow model’s structural equations

have been established as

S = −pI + τ , (3)
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where

τ =
[
μ∞ + μ0 − μ∞

1 − Γγ̇

]
A1 (4)

Here S is the Cauchy stress tensor, p is the pressure, I is the identity vector, τ is an extra tensor,
μ∞ is the high shear rate, μ0 is the low-rate shear, Γ is a positive time constant, γ̇ is a shear rate and A1

is the first Rivlin-Ericksen tensor. The shear rate γ̇ is formally defined as

γ̇ =
√∑

i

∑
j

γ̇ijγ̇ji =
√



2
(5)

where

 = tr (A1)
2 , (6)

called the strain tensor of the second invariant and the case μ∞ = 0 is taken into account only and
Γγ̇ < 1. Then the extra tensor evolves into

τ =
[

μ0

1 − Γγ̇

]
A1 (7)

Using binomial series expansion:

τ = μ0 (1 + Γγ̇ ) A1 (8)

Also, γ̇ =
[(

∂u
∂x

)2

+ 1
2

(
∂u
∂y

+ ∂v
∂x

)2

+
(

∂v
∂y

)2
] 1

2

and the elements of the extra tensor are

represented as

τxx = 2μ0 (1 + �γ̇ )

(
∂u
∂x

)
; τxy = τyx = μ0 (1 + �γ̇ )

(
∂u
∂y

+ ∂v
∂x

)

τyy = 2μ0 (1 + �γ̇ )

(
∂v
∂y

)
and τxz = τyz = τzx = τzz = τzy = 0

The component form of the equations of continuity and momentum is represented as

ux + vy = 0 (9)

ρ
(
uux + vuy

) = −px + ∂

∂x
(τxx) + ∂

∂y

(
τxy

)
(10)

ρ
(
uvx + vvy

) = −py + ∂

∂x

(
τyx

) + ∂

∂y

(
τyy

)
, (11)

3 Mathematical Formulation

The current study examines the characteristics of a two-dimensional, viscous, and incompressible
Williamson nanofluid flow past a nonlinear stretching sheet in the region (y > 0) with a varying
velocity distribution uw (x) = axn. The wall temperature distribution is defined as Tw = T∞ + Axn

where A > 0, T∞ denotes ambient fluid temperature and C∞ is the ambient nanoparticle concentration.
Variable magnetic field of intensity B (x) = B0x

n−1
2 is applied in the transverse direction to the fluid
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flow. The electrical field is omitted whereas the induced magnetic field is disregarded by assuming a
low magnetic Reynolds number. The flow direction is along x-axis and the y-axis is normal to the
flow. The external magnetic field and the impacts of Soret and Dufour are taken into account. Fig. 1
depicts the physical interpretation of Williamson nanofluid flow.

The governing nonlinear partial differential equations of the considered fluid flow phenomena
using the references [14,27] are given as

∂u
∂x

+ ∂v
∂y

= 0 (12)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2

+ √
2νΓ

∂u
∂y

∂2u
∂y2

− σB2 (x)

ρ
u − ν

(u
k

)
(13)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2

+ τ

[
DB

∂T
∂y

∂C
∂y

+ DT

T∞

(
∂T
∂y

)2
]

+ DmkT

cscp

∂2C
∂y2

(14)

u
∂C
∂x

+ v
∂C
∂y

= DB

∂2C
∂y2

+ DT

T∞

∂2T
∂y2

+ DmkT

Tm

∂2T
∂y2

(15)

Figure 1: Physical interpretation of the fluid flow

The pertinent boundary conditions for the defined fluid flow are given as

At y = 0: u = uw (x) = axn, v = 0, T = Tw (x) = T∞ + Axn,

DB

∂C
∂y

+ DT

T∞

∂T
∂y

= 0

As y −→ ∞ : u −→ 0, T −→ T∞, C −→ C∞

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(16)

where u and v are the velocities along x and y directions, B (x) = B0x
n−1

2 is the intensity of the variable

magnetic field, τ = (ρC)P

(ρC)f

is the ratio of effective heat capacity, ν is the kinematic viscosity, α is

the thermal diffusivity, k is the porous medium permeability, DT is the thermophoresis coefficient, ρ

is the fluid’s density, and DB is the Brownian diffusion coefficient, σ is the electrical conductivity, n is
the nonlinear stretching sheet index, Tw is the wall temperature, T∞ is the free stream temperature, Cw

is the wall concentration, and C∞ is the free stream concentration.
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The following similarity variable transformations [27] are executed to switch the nonlinear PDEs
(12) to (15) along their boundary conditions (16) to nonlinear ODEs:

η =
√

a
ν

x
n−1

2 y; u = axnf ′ (η) ; v = −ax
n−1

2

√
ν

a

(
n + 1

2
f (η) + n − 1

2
ηf ′ (η)

)

θ (η) = T − T∞
Tw − T∞

; φ (η) = C − C∞
Cw − C∞

(17)

where θ (η) is the temperature and φ (η) is the concentration functions of η, respectively.

After applying the above similarity transformations for the Eqs. (12) to (15), Eq. (12) satisfied
identically; the transformed ODEs are provided below in the Eqs. (18) to (20):

f ′′′ +
(

n + 1
2

)
ff ′′ − nf ′2 + Wef ′′f ′′′ − (M + K) f ′ = 0 (18)

1
Pr

θ ′′ +
(

n + 1
2

)
f θ ′ − nf ′θ + Nbθ ′φ ′ + Ntθ ′2 + Duφ ′′ = 0 (19)

φ ′′ +
(

n + 1
2

)
Scf φ ′ +

(
Nt
Nb

)
θ ′′ + Srθ ′′ = 0 (20)

The corresponding boundary conditions (16) for the proposed fluid flow becomes

At η = 0: f = 0, f ′ = 1, θ = 1, Nbφ ′ + Ntθ ′ = 0
As η −→ ∞ : f ′ −→ 0, φ −→ 0, θ −→ 0

}
(21)

In the Eqs. (18) to (21), the parameters are defined as Williamson nanofluid parameter We =√
2Γa

3
2 x

3n−1
2√

ν
, magnetic parameter M = σB2

0

aρ
, porous parameter K = ν

akxn−1
, Prandtl number Pr =

ν

α
, Schmidt number Sc = ν

DB

, Brownian motion parameter Nb = τDB (Cw − C∞)

ν
, thermophoresis

parameter Nt = τDT (Tw − T∞)

T∞
, Dufour parameter Du = DmkT

νcscp

(Cw − C∞)

(Tw − T∞)
, Soret number Sr =

DmkT (Tw − T∞)

DBTm (Cw − C∞)
. We encountered after assessing that the parameters We and K are functions of x.

To solve such a circumstance, which yields a non-similar solution to our current problem, we need to

non-dimensionalize We with n = 1
3

and K with n = 1. As a result, the relevant parameters will become

We =
√

2Γa
3
2√

ν
and K = ν

ak
.

For the practical study, introducing the new quantities called the skin friction coefficient Cf , the
Nusselt number Nux and the Sherwood number Shx, which are interpreted as [14,27]

Cf = τw

ρu2
w

, Nux = xqw

k (Tw − T∞)
, Shx = xqm

DB (Cw − C∞)
,
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where the wall shear stress τw = μ

[(
1 + Γ√

2

∂u
∂y

)
∂u
∂y

]
y=0

, the heat flux qw = −k
[
∂T
∂y

]
y=0

and the mass

flux qm = −DB

[
∂C
∂y

]
y=0

. Using the similarity variable transformation in (17), the above Cf , Nux and

Shx are transformed as follows:√
ReCf = f ′′ (0) [1 + Wef ′′ (0)] , Nux = −√

Reθ ′ (0), Shx = −√
Reφ ′ (0) (22)

where Re = uwx
ν

is the Reynolds number.

4 Solution Methodology

The system of interconnected differential Eqs. (18)–(20) presents a significant analytical obstacle,
necessitating the utilization of a numerical approach for resolution. Although numerous numerical
methods are available, the Runge Kutta Fehlberg-45 method proves to be particularly efficient when
dealing with first-order first-value problems. Therefore, we have chosen to tackle Eqs. (18)–(20) and the
corresponding boundary conditions (21) using the shooting technique in conjunction with the RKF-
45 scheme. The Newton-Raphson method has been used for initial guesses. The resulting outcomes
are subsequently verified by employing the MATHEMATICA-12.0. The procedure for implementing
the RKF-45 method and the shooting strategy is outlined in Fig. 2. The fundamental procedures
implicated in the conversion of the specified predicament into an initial value problem (IVP) of the
first-order can be delineated as follows:

Figure 2: The flow chart for the shooting method

Eqs. (18)–(20) are converted into a system of ODEs by taking the following substitutions:

y1 = f , y2 = f ′, y3 = f ′′ and y4 = θ , y5 = θ ′, y6 = φ, y7 = φ ′

The formulated initial value problem is given by

y
′
1 = f ′ = y2 (23)

y
′
2 = f ′′ = y3 (24)
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y
′
3 = −

(
n + 1

2

)
y1y3 + ny2

2 − Wey3y
′
3 + (M + K) y2 (25)

y
′
4 = θ ′ = y5 (26)

y
′
6 = φ ′ = y7 (27)

y
′
5 = −Pr

(
n + 1

2

)
y1y5 + nPry2y4 − PrNby5y7 − PrNty2

5 − PrDuy
′
7 (28)

y
′
7 = −

(
n + 1

2

)
Scy1y7 −

(
Nt
Nb

)
y

′
5 − Sry

′
5 (29)

The initial conditions are given as

y1 (0) = 0, y2 (0) = 1, y3 (0) = f ′′ (0) = ε1, y4 (0) = 1,

y5 (0) = θ ′ (0) = ε2, y6 (0) = φ (0) = ε3, y7 (0) = −
(

Nt
Nb

)
y5 (0)

⎫⎪⎬
⎪⎭ (30)

The intricate and non-linear differential Eqs. (23)–(29) are efficiently addressed through the robust
method of fourth-fifth order RKF. By attaining remarkable convergence, the numerical outcomes
exhibit boundary residuals falling below the error threshold of 10−6, facilitated by a step size of
Δη = 0.001. Commencing with initial approximations (30) along with the unknown values ε1, ε2, ε3

(initial guesses), the Newton method enhances the calculations, persistently iterating with unwavering
determination until the desired level of convergence is achieved.

5 Results and Discussion

This section portrays the flow characteristics encountered throughout the flow regime for the
computations of the velocity profiles f ′ (η), temperature profiles θ (η), and mass concentration profiles
φ (η), for various flow parameters namely Williamson nanofluid parameter We, magnetic parameter
M, porous parameter K, Schmidt number Sc, Brownian motion parameter Nb, Prandtl number Pr,
Dufour parameter Du, thermophoresis parameter Nt, and Soret number Sr that influence the flow
characteristics. Using the strategy of the Runge-Kutta 4th order approach along with the shooting
technique, the solution set for the pertinent flow model is accomplished. Asymptotically, the estimated
outcomes fulfill the stated boundary conditions, emphasizing the exactitude of the achieved solutions.
The limitations of the defined fluid flow problem for the convergence region are 0 ≤ M, K ≤ 0.5, 0 ≤
n ≤ 2.5, 0 ≤ We ≤ 4.5, 0 ≤ Pr ≤ 1.45, 0 ≤ Nt ≤ 3.0, 0 ≤ Sr ≤ 0.7, 0 ≤ Nt, Sc, Du ≤ 0.4. For each of
the physical factors stated above, all of the research results are deployed as follows.

Fig. 3a depicts the effects of the Williamson parameter We on the velocity field f ′ (η), where it
proves that f ′ (η) upsurges as We drops. It is worth noting that the Williamson parameter is the ratio
of relaxation time to the retardation time. By dropping the values of We, the retardation time rises,
causing fluid particles to take less time to return to their original position, causing viscosity to get
lower and hence, the velocity of the fluid escalates.

The detrimental impact of the magnetic parameter M on the velocity profiles f ′ (η) of the
nanofluid flow is seen in Fig. 3b. It illustrates that f ′ (η) gradually shrinks as M value elevates.
The timing coincidence was driven about by the relativistic force (Lorentz force), which originates
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from the induced magnetic field in the nanofluid flow. As a result, both the fluid’s velocity and the
thickness of the boundary layer will monotonically diminish.

Fig. 3c illustrates the ramifications of the porosity parameter K on the velocity profiles f ′ (η).
The velocity field decelerates as the values of K rise. When K escalates, it indicates an increase in
the resistance offered by the porous medium to the flow of the nanofluid. Higher porosity or lower
permeability leads to more obstacles and hindrances for the fluid to navigate through the porous
structure. The increased resistance implies that it requires more force to push the fluid through the
porous medium. The fluid velocity decreases as a consequence because the applied force or pressure
gradient is not as effective in overcoming the enhanced resistance. Fig. 3d depicts the effect of the
nonlinear stretching sheet index n on f ′ (η). The graphic approach elaborates that a boost in n triggers
a fall in f ′ (η). Enhanced values of n indicate an increased rate of stretching of the sheet. The sheet
imparts more motion to the fluid, creating a stronger driving force for the flow. The escalated
stretching of the sheet creates a stronger adverse pressure gradient along the surface, which leads to
slowing down the fluid flow near the surface. The boundary layer, which is the region of the flow near
the surface where viscous effects dominate, becomes thinner as n elevates. The reduced thickness of
the boundary layer contributes to lower fluid velocities within that layer. The stretching sheet induces
shear stress at the fluid-solid interface. As the stretching effect intensifies, the shear stress increases,
leading to a more significant slowing down of the fluid.

Figure 3: (a) Velocity profiles w.r.t We. (b) Velocity profiles w.r.t M. (c) Velocity profiles w.r.t K.
(d) Velocity profiles w.r.t n

In addition, we can see in Fig. 4a that when the Williamson parameter We evolves, the fluid’s
temperature profiles θ (η) gradually flourish, causing a diminution in relaxation time, and allowing
the fluid to drift more elastically. Moreover, the viscosity of the fluid increases as the Williamson
parameter increases, affecting the temperature profile of the fluid. The temperature profile of the fluid
rises as the viscosity of the fluid rises. This is because fluid viscosity is directly related to the rate of
heat transmission in the fluid. As a result, elevating the Williamson parameter induces a boost in the
fluid’s viscosity, which leads to an enhancement in the fluid’s temperature profile.
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In Fig. 4b, the temperature profiles θ (η) fall as the Prandtl number Pr broadens. The Prandtl
number is defined as the ratio of momentum diffusivity (kinematic viscosity) to thermal diffusivity.
Boosting of Pr values means that thermal diffusivity becomes relatively more significant compared
to momentum diffusivity. In such a scenario, temperature gradients within the fluid tend to reduce
because heat is conducted more efficiently than momentum is diffused. It also leads to thinner thermal
boundary layers, which results in temperature variation within the boundary layer being reduced.

Figure 4: (a) Temperature profiles w.r.t We. (b) Temperature profiles w.r.t Pr. (c) Temperature profiles
w.r.t Nt. (d) Temperature profiles w.r.t Nb. (e) Temperature profiles w.r.t n. (f) Temperature profiles
w.r.t Du

Fig. 4c illuminates that the thermophoresis parameter Nt increases gradually, and the nanofluid
particles have a monotonic decrease in temperature profiles θ (η). This scenario happens as the
particles move towards colder regions, they experience enhanced heat transfer with the surrounding
fluid. The colder fluid extracts heat from the particles more efficiently, resulting in a decrease in the
particle’s temperature. Essentially, the stronger thermophoretic force pulls the particles towards the
colder regions, where they lose thermal energy to the fluid, leading to their temperature decrease.

Fig. 4d deploys that the effect of the temperature profiles θ (η) vs. Brownian motion parameter
Nb. It is worth noting that there is a gradual enhancement in the temperature profiles of the nanofluid
particles as the values of Nb increase, which results in increased thermal energy to both the fluid
molecules and the suspended nanoparticles. This increased thermal energy translates into greater
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kinetic energy, leading to more frequent and energetic collisions between the nanoparticles and the
fluid molecules.

Fig. 4e portrays the temperature profiles θ (η) for various values of the nonlinear stretching sheet
index n. As n escalates the stretching effect intensifies, which leads to an enhanced flow velocity near
the surface. Such a scenario boosts the heat transfer away from the surface and hence, there is a drop
in temperature profiles of the nanofluid flow. As the stretching of the surface increases, the fluid
particles are subjected to higher shear stresses, resulting in improved mixing and better dispersion of
nanoparticles throughout the fluid. This wider distribution optimizes the thermal conductivity and
hence, the heat transfer capabilities of the nanofluid. As a result, the waning temperature profiles
θ (η) illustrate that the nanofluid successfully transfers heat away from the surface and re-distributes
it throughout the fluid.

Fig. 4f describes the temperature profiles concerning the Dufour parameter Du. Notice that as
the values of Du upsurge, the temperature profiles decrease. This effect is due to the enhanced thermal
diffusion which causes more heat to be transferred away from the surface through diffusion. Such
diffusion of heat reduces the temperature gradient near the surface which results in a gradual decline
in temperature profiles θ (η).

Fig. 5a illustrates the scenario of the concentration profiles φ (η) vs. the Soret parameter Sr. For
monotonical elevation of the Sr values, the concentration profiles φ (η) also enhances. Due to this
impact, the nanofluid particles are migrated from higher to lower temperature regions. The presence
of nanoparticles in a nanofluid enhances the Soret effect due to their influence on thermal conductivity
and diffusivity. The nanoparticles can affect both the thermal properties and the mass diffusion
properties of the fluid. The enhanced mass concentration profiles φ (η) indicates that the nanofluid
exhibits intensified transfer characteristics of mass due to the Soret effect, the combined effects of
diffusion and convection.

Fig. 5b depicts that as the Schmidt number Sc intensifies, the concentration profiles φ (η) are
gradually rising. The physical significance of the parameter Sc represents to characterize the relative
importance of momentum diffusion (viscous forces) to mass diffusion (diffusion of a solute) in a fluid.
When the values of Sc escalate, that is, diffusivity dominates viscosity, the concentration profiles φ (η)

become sharper such that the nanoparticles tend to concentrate in the concentration boundary layer
region (as shown in Fig. 1) of the fluid. The concentration gradient becomes steeper, indicating that
concentration intensifies more along the flow direction because the diffusivity of the nanoparticles is
relatively higher when compared to the diffusivity of the momentum, allowing the nanoparticles to
diffuse less and retain a more concentrated form.

Fig. 5c exhibits the nonlinear behavior of the concentration profiles φ (η) for a gradual rise in the
Thermophoresis parameter Nt because the thermophoretic force does not increase linearly withNt.
Enhancing the values of Nt, leads to stronger thermophoretic forces acting on the nanoparticles,
resulting in enhanced particle accumulation in hotter regions, reduced dispersion in colder regions,
possible nonlinear concentration gradients, and more pronounced boundary layer effects.

Fig. 5d explores the behavior of concentration profiles φ (η) concerning Brownian motion param-
eter Nb. Brownian motion is a stochastic process resulting from the continuous bombardment of
nanoparticles by fluid molecules. It leads to the random dispersion of nanoparticles throughout the
fluid. Escalating the values of Nb indicates an enhancement in the intensity of Brownian motion within
the nanofluid. Brownian motion influences the effective properties of nanofluids, such as thermal
conductivity and viscosity. The increased Brownian motion promotes the dispersion of nanoparticles
over a larger volume, contributing to higher concentrations across the flow field.
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Figure 5: (a) Concentration profiles w.r.t Sr. (b) Concentration profiles w.r.t Sc. (c) Effect of φ(η) vs. Nt.
(d) Effect of φ(η) vs. Nb. (e) Effect of φ(η) vs. n. (f) Effect of φ(η) vs. M

Fig. 5e deploys that the concentration profiles φ (η) are increasing as the stretching sheet index
rises. Boosting the values of n leads to more rapid stretching of the sheet. This results in an increase in
the fluid flow velocity near the surface. With higher flow velocities, there will be enhanced fluid mixing
and convective transport of the nanoparticles. Due to the convective transport, the nanoparticles near
the stretching sheet will experience higher rates of diffusion and dispersion, which can lead to up
surged penetration of nanoparticles into the fluid. Consequently, the concentration of nanoparticles
near the stretching sheet will rise as n elevates. Fig. 5f explores that as the Magnetic parameter M
rises, the concentration profiles φ (η) are declines. That is, when M is increased, the intensity of the
applied magnetic field upsurges, which exerts a stronger force on the nanoparticles in the nanofluid.
The nanoparticles move towards areas with stronger magnetic fields due to the driving impact of
this magnetic force. The concentration of the nanoparticles in other areas of the nanofluid will drop
as they travel towards areas with stronger magnetic fields because they tend to congregate there.
This phenomenon can be utilized in various applications such as magnetic separation, drug delivery
systems, and targeted therapy, where controlling the concentration and distribution of nanoparticles
within a fluid is essential.

The local skin coefficient values prominence when the graph is displayed over the Williamson
parameter We vs. the magnetic parameter M, as seen in Fig. 6a. This evidence shows that the magnetic
field, not viscous forces, is the most significant feature controlling the friction coefficient. This might
happen because the flow dynamics are being more strongly impacted by the magnetic field, boosting
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the drag or resistance between the fluid and the surface. This behavior might be seen in real-world
settings when a strong magnetic field is given to a fluid flow, potentially increasing friction and
drag by making the fluid interact more strongly with the surface. This may have repercussions for a
variety of technological applications, including flow control devices or magnetohydrodynamic (MHD)
propulsion systems.

Prioritizing the local skin coefficient values over the Williamson parameter when the graph is
shown as shown in Fig. 6b, We contrasted with the nonlinear stretching sheet index n. The stretching
effect caused by a greater value of n might thin the boundary layer close to the surface, corresponding
to this influence. Higher local skin friction coefficient values might be the result of stronger velocity
gradients and shear stresses that are brought on by a thinner boundary layer. Practically, this behavior
may be seen in situations where a stretched surface interferes with the fluid flow across it (such
as during manufacturing operations, heat transfer applications, or boundary layer control). More
noticeable stretching effects and, as a result, a greater collision between the fluid and the surface,
which would increase friction and drag, might arise from an increase in the stretching sheet index n.

Figure 6: (a) Effect of M on Cfx

√
Re against We. (b) Effect of n on Cfx

√
Re against We

In Table 1, the current investigation is compared to previous research that was published to
validate the existing numerical solution. It draws attention to that current and past findings are in
good harmony. The present findings are validated due to the top-notch agreement between the results
and their interpretation. Tables 2a–2d provide the computational values of the mass transfer rate (local
Sherwood number) for the Schmidt parameter Sc, Soret number Sr, nonlinear stretching sheet index
n, and Thermophoresis parameter Nt. The tabular values show that for increasing values of Sc, Sr, n,
and Nt, the local Sherwood number fluctuates from lower to higher values gradually.

Table 1: The values local Nusselt number
(

− Nu√
Re

)
for different Pr values are compared when We =

M = Nt = Sc = Sr = Du = 0 and n = 1

Pr Gorla et al. [47] Abbas [14] Present

0.07 0.06562 0.065542 0.065992353
2.0 0.91142 0.911368 0.911367898
7.0 1.89546 1.895462 1.895459932

The values of local Sherwood number
(

− Shx√
Re

)
for parameters Sc, Sr, n and Nt are tabulated in

the following Tables 2a–2d with initial values We = 0.01, M = 0.1, K = 0.1, n = 0.3, Pr = 0.71, Nb =
0.1, Nt = 0.1, Du = 0.2, Sc = 0.1, Sr = 0.5.
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Table 2a: φ ′ (0) vs. Sc

Sc Sr n Nt φ ′ (0)

0.2 0.5 0.3 0.1 0.607298
0.3 0.5 0.3 0.1 0.607557
0.4 0.5 0.3 0.1 0.607679

Table 2b: φ ′ (0) vs. Sr

Sc Sr n Nt φ ′ (0)

0.1 1.0 0.3 0.1 0.629193
0.1 1.5 0.3 0.1 0.682411
0.1 2.0 0.3 0.1 0.714314

Table 2c: φ ′ (0) vs. n

Sc Sr n Nt φ ′ (0)

0.1 0.5 1.0 0.1 0.910295
0.1 0.5 2.0 0.1 1.227450
0.1 0.5 2.5 0.1 1.359420

Table 2d: φ ′ (0) vs. Nt

Sc Sr n Nt φ ′ (0)

0.1 0.5 0.3 0.2 1.359080
0.1 0.5 0.3 0.3 2.356710
0.1 0.5 0.3 0.4 3.815770

6 Conclusion

The problem of the 2D-steady, viscous, and incompressible MHD heat and mass transfer of a
Williamson nanofluid flow past a nonlinear stretching sheet immersed in a porous medium with the
Soret and Dufour effects was investigated. Using appropriate similarity variable transformations, the
nonlinear PDEs were altered into nonlinear ODEs and then solved numerically using the RKF-45
method along with the shooting technique. The impact of various physical parameters on concentra-
tion, velocity, and temperature profiles is deployed through graphs. From the present investigation,
the following conclusions could be drawn:

• Boosting the magnetic, Williamson, porosity, and stretching sheet index parameters, the velocity
of the fluid flow decreases.
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• The temperature is enhanced as the Williamson and Brownian motion parameters upsurge,
but it decreases as the Prandtl, thermophoresis, stretching sheet index, and Dufour parameters
escalate.

• The concentration distribution decreases as the thermophoresis and magnetic parameters
upsurge but it escalates as the Soret, Schmidt, Brownian motion, and stretching sheet index
parameters increase.

• Skin friction coefficient boosted as the stretching sheet index and magnetic parameters
enhanced against the Williamson parameter.

• The findings from this study have been contrasted with earlier findings on local Nusselt
numbers, which show substantial support and endorse the existing approach’s validity.

• The numerical values of the local Sherwood number gradually increase as the Schmidt, Soret,
stretching sheet index, and thermophoresis parameters are upsurged.

Future Research Study: In the future, we will study different non-Newtonian nanofluids for this study
along with different physical effects.
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