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ABSTRACT

Heat and mass transport through evaporation or drying processes occur in many applications such as food
processing, pharmaceutical products, solar-driven vapor generation, textile design, and electronic cigarettes. In this
paper, the transport of water from a fresh potato considered as a wet porous media with laminar convective dry air
fluid flow governed by Darcy’s law in two-dimensional is highlighted. Governing equations of mass conservation,
momentum conservation, multiphase fluid flow in porous media, heat transfer, and transport of participating fluids
and gases through evaporation from liquid to gaseous phase are solved simultaneously. In this model, the variable
is block locations, the object function is changing water saturation inside the porous medium and the constraint
is the constant mass of porous material. It shows that there is an optimal configuration for the purpose of water
removal from the specimen. The results are compared with experimental and analytical methods Benchmark. Then
for the purpose of configuration optimization, multi-agent reinforcement learning (MARL) is used while multiple
porous blocks are considered as agents that transfer their moisture content with the environment in a real-world
scenario. MARL has been tested and validated with previous conventional effective optimization simulations and
its superiority proved. Our study examines and proposes an effective method for validating and testing multiagent
reinforcement learning models and methods using a multiagent simulation.
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Nomenclature

A Surface area of the sample, m2

Aspec Specific area, m2

aw Water activity, dimensionless

Bit Thermal Biot number,
htd
k

Bim Mass Biot number,
hmd
D

C Molar concentration, mol/m3

cp Heat capacity, J/(kg·K)
cw Specific heat of water, J/(kg·K)
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cpv Specific heat of water vapor, J/(kg·K)
cpa Specific heat of air, J/(kg·K)
c Mass concentration, kg/m3

ca Concentration of air, kg/m3

cv,sat Saturated vapor concentration, kg/m3

D Diffusion coefficient, Mass diffusivity, m2/s
Da Air diffusion coefficient, m2 s−1

Da,eff Effective heat transfer coefficient of air, m2/s
Dcap Capillary diffusion coefficient due to concentration gradient, m2/s
DT Capillary diffusivity due to temperature gradient, m2/s
Dva Vapor diffusion coefficient, m2/s
d Sample thickness, m
F Volume force, N/m3

Fo Dimensionless time, Fourier number,
αt
d2

hevap Latent heat of vaporization of pure water, J/kg
ht Convective heat transfer coefficient, W m−2 K−1

hm Surface mass transfer coefficient, m/s
H Height, m
J Mass flux, kg/(m2·s)
k Thermal conductivity, W/m K
K Permeability, m2

Kc Effective liquid permeability of the elemental slice, m2

Ksat Saturated liquid permeability (characteristic of the material structure), m2

Kevap Evaporation rate constant, 1/s
Kr Relative liquid permeability of the elemental slice
kar Air’s relative permeability
klr Water relative permeability

Ko Kossovitch number,
hevapX0

CpΔT
L Length, m
Lu Luikov number, Lewis number, D/α
M Molecular weight, kg/mol
Md Moisture content, dry basis, kg of water/kg of dry solids
Mv Molecular weight of water vapor, kg/mol
Ma Molecular weight of air, kg/mol
Mw Moisture content, wet basis, kg of water/kg of total
mv Surface evaporation rate, kg/(m3·s)
p Pressure, Pa
Pl Liquid pressure (related to gas phase pressure and capillary pressure), Pa
Pc Capillary pressure in the elemental slice (function of saturation), Pa
Pg Gas phase total pressure
Pv Partial pressure of vapor, Pa
Pa Partial pressure of air, Pa

Pn Posnov number,
δΔT
X0

Pv Vapor pressure, Pa
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q’ Heat source, W/m3

R Gas constant, J/(mol·K)
Revap Evaporation rate, kg/(m3·s)
RH Relative humidity at any time, t
S Degree of saturation of the elemental slice (related to moisture content)
Sw Water saturation = V w/φV , dimensionless
Sg Gas saturation = V g/φV , dimensionless
Sir Relative liquid saturation
t Time, s
T Temperature of the elemental slice at any time t, K
T 0 Initial temperature, K
T a Drying air temperature, K
Tin Inlet temperature, K
u Velocity, m/s
uin Inlet velocity, m/s
W Width, m
x Distance, m
X Location of interface, m
V Total volume, m3

X Dry basis moisture content, kg water/kg d.b
X0 Initial dry basis moisture content, 1

X ∗ Dimensionless water content,
X
X0

Z Dimensionless component of coordination through the thickness,
z
d

Greek Symbols

α Thermal diffusion coefficient, m2 s−1

δ Thermo-gradient coefficient, kg water/kg d.b/K
ε Phase change coefficient
ΔT Temperature difference, Ta,in − T0, K

θ Dimensionless Temperature,
T − T0

Ta,in − T0

λ Thermal conductivity, W m−1 K−1

φ Porosity, dimensionless
ρ Density, kg m−3

ρa Density of air, kg m−3

ρw Density of water, kg/m3

τ Dimensionless time, s
μa Dynamic viscosity of air, N s m−2

νa Kinematic viscosity of air, m2 s−1

I˙ Rate of evaporation, kg/m3 s

1 Introduction

In recent years, there have been many studies to use artificial intelligence for optimization in
engineering to address real-life problems, analyze existing diverse multiagent simulations and describe
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simulation optimization [1]. In an Automated guided vehicles warehouse, researchers automate the
path of numerous autonomous Automated guided vehicles using centralized training with decentral-
ized execution framework-based MARL [2]. The major benefit of MARL scheme is that it does not
need any model of the system. We present a new method based on deep independent Q-learning.
This modified model includes more than an observation function and a common scheme regarding its
policy. It also incorporates a direct sharing of information between neighboring agents as part of the
observation function [3].

To examine a cache-aided network using scalable caching under the MARL language, distributed
caching is modeled using a MARL framework as a fully cooperative repeated game [4]. As shown
by distributed caching, caching is more likely to occur. A supervisory network separates sub-goals for
each agent to achieve a global goal. Gradually gets more complex so we can learn policy in a large-scale
environment. As part of our method evaluation, Do et al. [5] do the treasure hunter experiment which
proves the capability of MARL over the usual genetic algorithm [6]. An extension of single agent
Actor-Critic methods is proposed in this paper for a multi-agent reinforcement learning algorithm.
In the algorithm, all agents have access to one another’s actions and rewards, as well as a set of Q
values and techniques. For the computation of Q values, we use linear programming. A mixed Nash
equilibrium is reached with a smaller value, and the algorithm has the same convergence properties as
Nash equilibrium [7].

As illustrated by researchers, the suggestion of phase-based control structures for the operation of
multi-agents [8] (for the application of semi-batch reactors) and sustainability enhance HVAC optimal
control [9] (for the application of heating, ventilation, and air-conditioning), and optimal coordinated
method for large-scale multi-agent deep reinforcement learning [10] (for the application of proton
exchange membrane fuel cell heatmanagement) increased the performance of control procedures and
resource management. Some advantages exist in the use of a multi-agent deep reinforcement learning
algorithm for optimizing building cooling water systems including cooling towers, pumps, and chillers
[11]. Considering a multi-agent scenario where each agent controls a single sub-equipment defeats
that barrier. As opposed to traditional methods that rely on equipment model parameters, MARL
is model-independent. Furthermore, it is necessary to constantly update the model (model-based) to
maintain accuracy, which is costly. MARL has applications in grid systems optimization [12].

Proximal Policy Optimization for localizing targets [13] with various intensities is modeled in the
way that agents that can perform as humans do so by cooperating to find the target by expanding the
scalability and adaptability of the models. The superiority of MARL over Bayesian, uniform survey,
and single-agent, and Double Deep Q-Networks is proved [13]. MARL can generate optimal policies
that outperform conventional rule-based policies. Resource management for energy application of
behind-the-meter resources is optimized with MARL to provide essential community services [14].
Selimefendigil et al. [15] propose a machine-learning method for the optimal spacing between multiple
porous moist objects in a combined heat and mass transport environment. As the surfaces do not have
uniform heat and mass transfer coefficients, a neural network model was used.

Drying in a porous media has many applications in the food industry, pharmaceutical products
being dried before packaging, and in paper and board manufacturing [16]. Some papers collectively
address the research question of achieving environment coupling. Beyhaghi et al. [17,18] propose
a simulation approach that combines the invasion-percolation algorithm for water redistribution
inside the network with a finite-volume-based code for mass transfer outside the model. Dullien [19]
investigates the invasion front and evaporation front during drying, highlighting the effectiveness of
the disconnected cluster erosion mechanism.
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Huinink et al. [20] focus on multi-level modeling which is faster than through the solid matrix
in isothermal drying [21–25]. Metzger et al. [26] extend a network model for isothermal drying of
capillary porous media to account for viscosity in the liquid phase specially for mono-modal and
bimodal pore [26]. In porous capillary materials (for capillary pore diameter of less than 0.1 μm)
such as used in commercial gels and some ceramics [27–32] liquid water transport includes molecular
diffusion as the mean free path of molecule is higher than the pore size. Prat [33] has modeled drying
of porous media based on percolation theory (a network of pores connected by narrow throats) which
validated to experimental results. As well in porous with non-hygroscopic and non-shrinking materials,
water could be ignored [34–38] while equilibrium moisture isotherms are important in hygroscopic and
shrinking materials which bound water is significantly [39–44]. Yiotis et al. [45] study capillarity-driven
flow through macroscopic liquid films during the isothermal drying of porous materials. Their study
shows that film flow is a major transport mechanism in the drying of pores. The mixture multiphase
model solves for each phase [46,47]. The gas phase is modeled as a multi-component because typically
the gas phase includes air and the evaporated solvent (steam/water vapor in this case) [48]. Since the
gas phase is modeled as a multi-component [49], the liquid phase needs to be a multi-component phase
as well [50].

In some models [15,51], as a first step, the viscous resistance of liquid water and gas is assumed
to be constant throughout drying and porous inertial resistance as well [52]. In the porous media
region under multiphase interaction the Spalding Evaporation/Condensation model [53], wherein the
Nusselt number and Sherwood are given by the Armenante-Kirwan correlation [54] to capture the heat
[55] and mass transfer, respectively [56]. Although the vaporization latent heat at 100°C is a constant
(2257477 J/kg), as a trick to simulation stability in some papers the treatment of heat of formation
and to improve the stability of the simulation, we set the heat of formation of liquid water is another
value [57], and heat of formation of vapor is zero [58]. A stability trick is to assign the whole heat of
formation to one component that takes part in the evaporation [59]. By default, both gas and liquid
phases have heat of formation defined and the values can be high [60].

In order to classify drying in porous media problems [61], some papers consider four cases based
on pore size and capillary pressure. In samples with large pores, and driving force is applied pressure
which needs the solving of the governing equations [62]. In the case of small pores of rehydration with
only capillarity effects and no significant internal evaporation one should solve the Darcy equation
through porous media [63–65].

The main goal of the present work is the optimal design of porous block in the drying process and
the geometric location is the principal conclusion of a similar study [66]. This article describes how to
set up a multiphase model to simulate the drying of wet paper by convective heat transfer with previous
porous media techniques [67]. The purpose of the work presented here is to develop a new analysis of
drying and simulation of heat and mass transfer. This would have significant benefits in the design and
operation of large-scale industrial drying systems [68–70]. The purpose of this paper briefly includes a
build-up of a comprehensive simulation of potato drying in a variety of configurations, experimental
validation, and application of MARL optimization for industrial drying for the moist bluff body inside
channel flow configuration.

2 Materials and Methods

The purpose of the model is to analyze the details of the physics of transport mechanisms involved
inside and outside the material during drying. Fig. 1 shows the schematic of the problem. First, the hot
surface drying of a paper and board is considered. Paper and board are complex heterogeneous porous
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materials consisting of cellulose fiber, inorganic pigments water, and air. An average velocity and low
ambient humidity are imposed on the incoming airflow. The properties of the porous medium, as well
as the relative humidity, are configurable through parameters. To build up a mathematical model of
transport by the solid, liquid, and gas streams, evaporation of water from within and outside the porous
media, diffusion of water vapor driven by concentration difference, convection of water vapor and air
driven by gas phase pressure difference, condensation of evaporated vapor in cooler regions of the
porous media, diffusion-condensation cycles, diffusion of air, flow of liquid in the capillaries driven
by capillary pressure difference or total hydraulic pressure difference, and convective heat transfer
due to the movement of the liquid and gas, all occurring simultaneously. In addition to the above,
paper is also a hygroscopic material, i.e., it closely interacts with the surrounding environment. As a
result, the surrounding moist environment can influence the equilibrium moisture content as well as
the equilibrium vapor pressure in the vapor phase in the fiber mat at any temperature. The potential
driving forces that may contribute to the above physical mechanisms are schematically shown in the
following Fig. 1a. The schematic of the porous media with an elemental volume and possible transport
mechanisms (computational model with 3 porous moist objects) which will be used for optimization
purposes is shown in Fig. 1b.

Figure 1: Schematic of the problem (a) benchmark case compared with experimental data (b) current
optimization problem with geometrical parameters

2.1 Governing Equations
The development of the model equations involves deriving the equations representing each of

the transport mechanisms in an elemental volume. First, we consider only the heat and mass transfer
in one dimensional (thickness dimension). In the future, this can be expanded to 2 or 3 dimensions.
Considering an elemental volume at any position x (in the thickness direction) within the domain of the
porous media (Fig. 1), the general conservation equation can be given as (storage (or) accumulation
is equal to in – out + generation). In the following derivation, only the xy-plane is considered. The
governing equations of the transient process include continuity equations in the free stream are defined
by air density and the superficial velocity of the fluid as
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∂ρa
∂t

+ ∇ · (ρau) = 0 (1)

for air, and based on the liquid flux in and out of the elemental slice can be given as follows:

∂cv

∂t
+ ∇ · (ucv − Dva∇cv) = 0 (2)

for vapor where the velocity and vapor concentration are known at the inlet (uin = 1 m/s, cv(RH =
50%)) and other boundaries are Neuman zero flux condition. Based on Fick’s first law, water vapor
flow rate into the elemental volume due to diffusion (mol/s) at any point within the fiber matrix
based on the total volume. The porous media here is composed of three volumes of solid matrix (Vs),
internal liquid water (Vl), internal vapor water (Vv), and air (Va). The porosity is defined as all volume
component except the solid phase component (i.e., including the liquid phase component and the gas
phase component) ratio to all volume components [14].

φ = 1 − Vs

V
(3)

where the total volume is V = Vs + Vv + Vl + Va. Since the transient internal continuity equations of
porous media are

∂ (φρa)

∂t
+ ∇ · (ρau) = ṁevap (4)

based on the superficial velocity of gas for air,

∂cv

∂t
+ ∇ · (ucv − Dva∇cv) = ṁevap (5)

for vapor (negative water vapor mass flow rate),

∂cl

∂t
+ ∇ · (ucl − Dw∇cl) = −ṁevap (6)

for liquid water where the vapor diffusion coefficient (Dva = 2.6 × 10−5Sa
3−φ

φ2−φ) from the elemental
volume due to diffusion, air diffusivity (Da = Dva(Saφ)

4
3 ), and capillary diffusion coefficient (Dw =

1.0 × 10−8 exp(−2.8 + 2cw/(1 − φ)ρs)) are for porous region. In some references the solved for dry

basis moisture content
(

(cl + cv)Ml

(1 − φ) ρs

)
leads to the same results. The accumulation of water vapor

within the gas phase in the elemental slice is also neglected as vapor mass tends to be very low compared
to liquid mass at any time during drying. As well the evaporation source phase at the time t is defined
proportional to the vapor concentration at porous medium (cv = Svφρl/Ml) and saturated vapor
concentration (cv = 610.7 exp[7.5(Ta − 273.1)/(Ta − 35.8))/RTa]) as a ratio of volume fractions of

air in the pore volume (air saturation, i.e., Sa = Ma (1 − ∅) ρs

(1 − Ma)∅ρs

) as

Revap = Kevap

Ml

RTa

(cv,sat − cv)Saφ (7)

where the air temperature, the gas constant, and the density of the fluid, play a role in that definition
along with the evaporation rate constant (Kevap). The same definition is valid for porous regions. It is
good to notice that vapor pressure and saturated vapor pressure are different and their ratio known as

water activity (ln
pv

psat(T)
= −0.0267M−1.656

d +0.0107e−1.287MdM1.513
d ln psat(T)) is a function of temperature

and moisture content on dry basis (Md = cw/(1 − φ)ρs). Assuming the pressure-driven bulk flow of gas
can be given using the Darcy permeability relationship, the air flux in and out can be given as follows:
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The transient momentum equation in the free stream is found by applying differential equations
for the elemental slice, and considering the accumulation of water in the elemental volume, the
continuity equation or mass balance on total moisture (liquid water + water vapor) for the elemental
slice can be given as

ρa

∂u
∂t

+ ρa(u · ∇)u = −∇p + ∇ · [
μa

(∇u + (∇u)
T
) − 2μa

3
∇ · u] (8)

pressure-driven bulk flow is due to pressure difference in the gas phase between elemental volumes
and the air dynamic viscosity is included. The porous zone transient momentum is defined as

ρa

φSa

∂u
∂t

+ ρa

φSa

(u · ∇)u
1

φSa

= −∇p + ∇ ·
[

μa

φSa

(∇u + (∇u)
T
)

−2
3

μa

φSa

(∇ · u)

]
− CF

k1/2
ρ|u|u − (μa/kar + μw/kwr) u (9)

the pressure-driven bulk flow of gas inside porous can be given using the Darcy permeability
relationship. The pressure in the elemental volume is a moisture content or saturation dependent on the
elemental volume. Assuming the Darcy model with permeability correlation for each phase is defined

as a function of volume fractions of water in the pore volume (water saturation, i.e., Sw = Mw (1 − φ) ρs

(1 − Mw) φρs

and Sa + Sw = 1) as [49,50]

kar =
{

1 − 1.1Sw, Sw < 1/1.1
0, Sw > 1/1.1

}
(10)

which is for gas flow is related to the saturated permeability when the porous media is fully wet and a
relative permeability kar and was obtained from experiments.

kwr =
⎧⎨
⎩

(
Sw − 0.08

0.92

)3

, Sw > 0.08

0, Sw < 0.08
(11)

where the density of the solid matrix, water, and air molecular weight plays a role in that definition.

The energy balance in an elemental volume can be derived using Fourier’s law of heat conduction
and convective heat transfer due to the vapor and liquid movement into and out of the elemental
volume as follows. The heat transfer equation in the free stream is defined as

∂
(
ρacp,aTa

)
∂t

+ ∇ · (
ρacp,auTa

) = ∇ · (ka∇Ta) (12)

The energy for condensation in an elemental volume is given by the net accumulation of water
vapor in an elemental slice due to vapor diffusion and bulk flow. This assumes that there is no
accumulation of water vapor within the gas phase in an elemental volume and if there is any net
accumulation it is assumed to be condensed into liquid. The heat transfer equation in the porous zone
based on effective thermophysical parameters (calculated by weighting each component) and source
term with latent heat of evaporation is defined as

∂
(
(ρscp,s (1 − φ) + ρlcp,lφSl + ρacp,aφ(1 − Sl))Tm

)
∂t

+ ∇ · ((uρs(1 − φ))cp,sTm + (ucl − Dcap∇cl)cp,lTm

+ (uρa + uca)cp,aTm) = ∇ · (((1 − φ) ks + Slφkl + φka(1 − Sl))∇Tm) − Revaphevap (13)
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where the temperature is known at the inlet (Tin = 80°C) and other boundaries are Neuman zero flux
condition. In the above equation, the liquid and vapor phases are assumed to be in thermodynamic
equilibrium and hence the vapor pressure in the gas phase is given by the water-vapor saturation
pressure relationship. Table 1 shows some parameters used in the simulations while Table 2 shows
thermodynamically constants of the system.

Table 1: Coefficients used in governing equations

Parameter Value

cps (J/kg K) 1566
cpw (J/kg K) 4180
Dw (m2/s) 1.0 × 10−8 exp(−2.8 + 2.0 M)
Deff,g (m2/s) 2.6 × 10−5 ε4/3S10/3

g

h (W/m2 K) 20
hmv (m/s) 0.01
ks (W/m K) 0.21
kw (W/m K) 0.64
kg (W/m K) 0.026
Swi 0.5
Sir 0.09
T amb (°C) 20
T i (°C) 20
φ 0.75
λ (J/kg) 2.435 × 106

μg (Pa s) 1.8 × 10−5

μw (Pa s) 5.468 × 10−4

ρs (kg/m3) 1419
ρw (kg/m3) 1000

Table 2: Thermodynamic properties

Parameter Value Unit

Water

Conductivity of water 0.680168 W/m/K
Density of water 960 kg/m3

Heat of formation 1.5866E7 star J/kg
Molecular weight of water 18.0153 kg/kmol
Dynamic viscosity of water (temperature)–field function 8.89E−04 Pa s
Saturation pressure of water (25°C) Antoine equation Pa
Saturation temperature of water (real temperature) 373.12 K
Standard state temperature 298.15 K

(Continued)
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Table 2 (continued)

Parameter Value Unit

Critical temperature of the water 647.12 K
Ideal gas constant 8.314 J/mol/K
Air
Density of air Ideal gas kg/m3

Conductivity of air 0.031672 W/m/K
Specific heat capacities of air 991.608 J/kg/K
Molecular weight of air 0.0289664 kg/mol
Dynamic viscosity of air 1.86E−05 Pa s
Standard state temperature 298.15 K
Vapor
Vapor thermal conductivity 0.027518 W/m/K
Vapor specific heat capacities 1966.48 J/kg/K
Heat of formation 1.34234E7 J/kg
Molecular weight 0.0181053 Kg/mol
Standard state temperature 298.15 K
Dynamic viscosity of vapor (temperature) 1.27E−05 Pa s
Potato
Potato conductivity 0.138457 W/m/K
Potato specific heat capacities 1338.88 J/kg/K
Potato density 1200 kg/m3

Porosity of the potato 0.72 –

2.2 Analytical Solutions
Generally, in addition to the above heat and mass transfer equations, it is also important to

consider the momentum balance equations for liquid and gas to solve for the velocity of the two phases.
This can be considered using the Navier-Stokes equation including the viscous and inertial terms and
the pressure difference and gravity. In paper drying applications, in general, at low fluid velocities,
the inertial terms can be considered to be negligible. Hence, neglecting gravity, pressure terms, and
viscous terms in momentum cannot make a big difference. This essentially reduces to Darcy’s for flow
through porous media described earlier in equations. It should be noted again here that the liquid
and gas phase permeability and capillary pressure are functions of moisture content or saturation and
should be known from experimental results. The Darcy’s equation is

0 = −∇P − μ

k
u + μe

φ

∂2u
∂z2

(14)

Darcy’s law was chosen for implementation because it is a well-established and widely used
equation in fluid dynamics. It provides a simplified and practical approach to model the flow of
fluids through porous media, such as the subsurface of Venus. By using Darcy’s law, researchers
can simulate and analyze the movement of fluids, including the transport of heat and mass, within
Venus’ atmosphere. Its application allows for a better understanding of the dynamics and behavior
of the atmosphere, aiding in the study of various phenomena, such as the circulation patterns and
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the influence of solar radiation. In addition to the liquid and vapor phases of water, we also need
to consider the mass balance for air within and outside the material. The basic assumption here, as
stated earlier, is that there is counter diffusion of air and pressure-driven bulk flow of air (along with
water vapor in the gas phase). Likewise, we consider local thermal equilibrium and all the solid, liquid,
and gas phases are at the same temperature; the liquid water and water vapor are in thermodynamic
equilibrium. Based on these assumptions, we can write the following equations. The velocity continuity
at the porous interface implies that the analytical solution outside the porous media (z ∈ [d, d + H])
as

u = −
(

H2

4μ

)
∇P

[
−(z − d)

2

H2
+ (2 − U)

z − d
H

+ U

]
(15)

where

U = 1 − sechχδ + α tanh χd
βNχ 2

(16)

χ 2 = L2

MK
(17)

N = μe

μ
(18)

β =
(

1 + tanh χd
2Nχ

)
(19)

Drying can be defined as removing a solvent through evaporative mass transfer. Evaporation
involves a liquid and a gas phase, so it is essentially a multiphase problem. Since evaporation can
occur inside the solid (treated as porous media), the easiest approach to model this problem is using
the mixture multiphase model. In order to conduct a thorough numerical simulation, first a set
of simplified governing equations describing the mass conservation, momentum conservation, and
energy conservation for the liquid and gas (comprising water and air). This solution later will be used
to extract the Nusselt number at the boundary of the porous medium. Similar to the liquid continuity
equation where we considered the water vapor flux due to diffusion (JX = −Dm∇X − δDm∇T), here
we will consider the flow due to diffusion and convection in an elemental volume. The mass transfer
balance
∂X
∂t

= D
∂2X
∂z2

+ Dδ
∂2T
∂z2

(20)

The thermal balance (with a heat source of a mass transfer)

∂T
∂t

= α
∂2T
∂z2

+ εhevap

Cp
∂X
∂t

(21)

with symmetry boundary condition at z = 0

∂T
∂z

= ∂X
∂z

= 0 (22)

and flux boundary condition at z = d

− λ
∂T
∂z

= h(T − Ta) (23)
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It can also be assumed there is no liquid accumulation at the open surface boundary and whatever
liquid is able to move towards the open surface at the surface layer is being pushed out of the sheet.

− D
∂X
∂z

= hm(X − Xa) + Dδ
∂T
∂z

(24)

which is non-dimensionalized to the
∂X ∗

∂Fo
= Lu

∂2X ∗

∂Z2
+ LuPn

∂2θ

∂Z2
(25)

∂θ

∂Fo
= ∂2θ

∂Z2
+ εKo

∂X ∗

∂Fo
(26)

with a non-dimensionalized symmetry boundary condition at Z = 0

∂θ

∂Z
= ∂X ∗

∂Z
= 0 (27)

RH in the equation is the relative humidity at a given moisture content of the sheet. This gives
the percent relative humidity of the surrounding atmosphere at which paper at a certain moisture
content will be in equilibrium. The vapor pressure reduction is also related to the capillary pressure in
unsaturated porous media and for a porous media with wettable liquid (concave meniscus). For specific
types of porous media, the vapor pressure reduction relationships are also obtained from adsorption
isotherms of water vapor in cellulosic paper and board materials. Then the boundary condition non-
dimensionalized flux boundary condition at Z = 1.

∂X ∗

∂Z
= Bim(X ∗

a,in − X) − Pn
∂θ

∂Z
(28)

∂θ

∂Z
= Bit(θa,in − θ) (29)

By use of the spatial average and zero-order Hermite’s approximation analytical solution is
obtained as follows:

X = eλ1Foγ1 + eλ2Foγ 2 + γ3 (30)

θ = λ1κ1(1 + β1)eλ1Fo + λ2κ2(1 + β1)eλ2Fo + κ3 (31)

where

λ1 = α1 + β2 + √
Δ

2
(32)

λ2 = α1 + β2 − √
Δ

2
(33)

γ1 =
−1

4
(−α1

√
Δ − β2

√
Δ + Δ)(−α1β2 − α1β3 + β2

2 + β2β3 + β2

√
Δ + √

Δβ3 + 2α3β1 + 2α2β1)

((−β1α2 + α1β2)Δ)
(34)

γ2 =
−1

4
(α1

√
Δ + β2

√
Δ + Δ)(−α1β2 − α1β3 + β2

2 − β2

√
Δ + β2β3 − √

Δβ3 + 2β1α2 + 2β1α3)

((−β1α2 + α1β2)Δ)
(35)
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γ3 = β1α3 − α1β3

−β1α3 + α1β2

(36)

κ1 =
−1

4

(
1
2
β2 + 1

2
α1 + 1

2

√
Δ

)
(−α1

√
Δ − β2

√
Δ + Δ)(−α1β2 − α1β3 + β2

2 + β2β3 + β2
√

Δ + √
Δβ3 + 2α3β1 + 2α2β1)

β1((−β1α2 + α1β2)Δ)

(37)

κ2 =
−1

4

(
1
2
β2 + 1

2
α1 + 1

2

√
Δ

)
(α1

√
Δ + β2

√
Δ + Δ)(−α1β2 − α1β3 + β2

2 + β2β3 − β2
√

Δ − √
Δβ3 + 2α3β1 + 2α2β1)

β1((−β1α2 + α1β2)Δ)

(38)

κ3 = β2

(−β3α1 + α3β1

−α2β1 + α1β2

)
+ β3 (39)

Δ = (α1 − β2)
2 + 4α2β1 (40)

α1 = −(1 + 2εKoLuPn)
4

Bit + 4
− 4BimLuPnBit

(Bim + 4)(Bit + 4)
(41)

α2 = −4εKoLuBim

Bim + 4
(42)

α3 = −α1θa − α2X ∗
a (43)

β1 = −4PnBitLuBim

(Bim + 4)(Bit + 4)
(44)

β2 = −4LuBim

Bim + 4
(45)

β3 = −β1θ0 − β2X ∗
0 (46)

2.3 Multi-Agent Simulation
In this part, multi-agent reinforcement learning is introduced and the other methods used (genetic

algorithms, pattern search, and particle swarm optimization) are briefly explained. Genetic algorithms
(GA) are a type of optimization algorithm inspired by the process of natural selection. They use a
population of potential solutions and apply selection, crossover, and mutation operations to evolve and
improve the solutions over generations. GAs are often used to solve complex optimization problems
where traditional methods may struggle. On the other hand, multiagent reinforcement learning is a
field of machine learning that focuses on training multiple agents to interact and learn from their
environment. Each agent learns through trial and error, using reinforcement learning techniques
such as rewards and punishments. MARL is used to study how multiple agents can collaborate or
compete to achieve specific goals. Both genetic algorithms and multiagent reinforcement learning have
their strengths and applications. GAs are great for optimization problems, while MARL is useful for
studying complex interactions and coordination among multiple agents.

Pattern search (PS) is a local optimization method that explores the search space by iteratively
moving from one point to another, searching for the best solution. It can be efficient when the search
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space is small or when the objective function is relatively simple. However, it may struggle with complex
or high-dimensional problems, as it can get stuck in local optima. On the other hand, MARL involves
multiple agents learning and interacting with their environment simultaneously. The speed of finding
a solution in MARL depends on various factors, such as the complexity of the environment, the
number of agents, and the learning algorithms used. In some cases, MARL can lead to faster solutions
compared to pattern search, especially when dealing with complex problems that require coordination
and collaboration among agents. In summary, pattern search can be faster for simple optimization
problems with small search spaces, while MARL has the potential to find faster solutions for complex
problems that involve multiple agents and interactions.

Particle swarm optimization (PSO) is a population-based optimization algorithm inspired by the
behavior of bird flocking or fish schooling. It uses a group of particles that move through the search
space, adjusting their positions based on their own best-known position and the global best-known
position. PSO can be efficient in finding solutions for optimization problems, especially when the
search space is large or complex. On the other hand, MARL involves multiple agents learning and
interacting with their environment simultaneously. The speed of finding a solution in MARL depends
on various factors, such as the complexity of the environment, the number of agents, and the learning
algorithms used. In some cases, MARL can lead to faster solutions compared to PSO, especially
when dealing with complex problems that require coordination and collaboration among agents. In
summary, particle swarm optimization can be fast in finding solutions for optimization problems,
while MARL has the potential to find faster solutions for complex problems that involve multiple
agents and interactions.

As noticed in the introduction section, MARL is not trendy in the field. Therefore, a straightfor-
ward model environment (e.g., grid environment with 0.01 for the first examination is considered) is
used for the study to conduct comparative experiments. In the introduction, section, a literature search
of various MARL methods of the real-world situation was introduced. On the other hand, there are
necessities for an intuitive interface and low computational cost optimization for communicating the
environment-model and which are significant to attain the efficient method (see Fig. 2). In general, the
flowchart of a MARL (Multi-Agent Reinforcement Learning) algorithm typically consists of several
steps. These steps may include:

Figure 2: Flowchart of MARL used here

1. Initialization: Initializing the environment, agents, and any necessary parameters.

2. Observation: Agents observe the current state of the environment and gather relevant
information.

3. Action Selection: Agents select actions based on their observations and a policy, which could
be a learned policy or a predefined one.

4. Interaction: Agents interact with the environment by executing their selected actions.
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5. Reward Calculation: Agents receive feedback in the form of rewards or penalties based on their
actions and the state of the environment.

6. Learning: Agents update their policies based on the observed rewards and the chosen learning
algorithm, such as Q-learning or Deep Q-Networks (DQN).

7. Iteration: The process of observation, action selection, interaction, reward calculation, and
learning continues for multiple iterations or episodes.

The flowchart of MARL may vary depending on the specific algorithm or approach being used.
It is important to refer to the specific details mentioned in the manuscript to get a more accurate
understanding of the flowchart and the function of each step.

3 Results

The manuscript does not explicitly mention the methodology used for computational modeling.
It would be helpful to have more information or clarification from the authors regarding the specific
technique employed, such as whether it utilizes the Finite Element Method or another computational
approach. Understanding the methodology used is crucial for evaluating the accuracy and reliability
of the computational modeling results. In this section the finite element computational tool established
in a homemade code is used to solve laminar flow with mass transfer was used. Table 2 presents the
geometric parameters of the problem. A convergence criterion of 10−6 is selected.

3.1 Analytical Simulation
In this section, the results of the previous section are discussed and explained. For simplicity, a 2D

approximation of a sheet of paper inside a tunnel is chosen as a solution domain. Dry air enters the
inlet, evaporates the water present in the porous solid region, and exits through the outlet. The porous
solid region is specified at 1 − φ volume fraction of water as an initial condition. The geometry of the
problem is plotted in Fig. 1 with the parameters of Table 1. Table 2 presents the properties of water, air,
and vapor respectively which are used in the current study. The preliminary data shown here indicate
that the drying of porous media involves a complex balance between local heat transfer, vaporization
and condensation, and liquid and vapor fluxes. This is also very much a function of the boundary
conditions and the dried porous material properties.

Fig. 3 presents velocity profiles for various porous thicknesses in the tunnel. As shown thicker
porous media inside the channel can change the velocity profile inside it. It can be noticed that the
porous layer compresses the maximum velocity location towards the free part of the channel from
the centerline. In addition, the values of velocity at the interface (relative to the maximum velocity).
Besides, Fig. 3 shows the critical role of the height of the non-porous medium in the velocity profile.
The above figure can be used for the calculation of boundary conditions for heat and mass transfer of
any analytical solution inside the porous medium.

An input relative humidity of 0% might not accurately reflect real-world conditions. Adjusting the
assumed relative humidity could potentially bring the simulation results closer to the actual results. It is
always important to consider environmental factors when interpreting simulation data. The convective
drying of porous media modeled by the current study provides reasonable results. As revealed in
Fig. 4 The number of the system increased as the velocity ratio over the porous layer increased. The
velocity ratio is the velocity at the interface relative to the maximum velocity in the channel. Given
the initial higher temperature of the sheet (373 K), there is no warm-up period observed. Based on
those properties Schmidt Number (Molecular diffusivity) is 0.6, and Turbulent Prandtl is neglected.
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Given the hot surface boundary on one side there is greater conductive heat flux closer to the hot
surface and then decreases along the porous layer thickness. This essentially contributes to the overall
drying rate kinetics observed. The Reynolds analogy is the common model to estimate the Prandtl
number when performing CFD simulations. It expresses a similarity between momentum exchange
and heat transfer in a fluid. The Nusselt number, as a dimensionless word of the warmth transfer
coefficient (Nu = ∂(T/ΔT)w∂(n/C)w,) and the Sherwood number, for the mass transfer coefficient
(Sh = ∂(c/Δc)w∂(n/C)w), are then functioning of those limits. They are the dimensionless heat or
mass concentration gradients at the porous surface.

Figure 3: Velocity profiles for various porous thicknesses in the tunnel

Figure 4: Nusselt number of the system as a function of velocity ratio over porous layer

It is good to mention that Fig. 1a has the same labeling of the length and height of the porous
media as it is used for a benchmark of experimental setup where a slice of sample with known weight
and height is used. The initial condition of the dry air in the system is RH = 0.5. Table 3 presents the
geometrical parameters of the benchmark problem.

Fig. 5 provides a comparison of analytical, CFD, and experimental results. The thin layer of potato
is also can be used for de-icing and defogging simulations using fluid film thin film best practices
case. Results of the transient problem converged at a time fraction of 0.8 s are plotted in Fig. 5. The
moisture is approximated using a forward difference technique. This shows a more gradual warming
up of the porous media with the resultant constant drying rate period and a falling drying rate period.
As moisture based on the solid mass is the mass of liquid water per mass of solid and the mass of liquid
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water equals the density of liquid water times volume of drying region times porosity times volume
faction of liquid water (for the solid 1-porosity should be used) since the initial value of the moisture
based on the solid mass could be higher than 1. The drying rate is also can be derived from the Fig. 5.
It equals the mass loss of liquid water per drying time times surface area or moisture gradient times
the mass of solid divided by surface area. The comparison shows that the current study predicts higher
values of drying rate than the experimental. The plots confirm the presence of liquid flux from the hot
surface side to the open surface side and the magnitude of the flux decreases as drying proceeds. After
the constant rate period, the internal temperature porous medium begins to increase indicating that
some of the energy transferred is being used for sensible heating. This continues until the drying rate
falls to almost zero and the porous medium temperature reaches close to the air temperature.

Table 3: Geometrical parameters of the benchmark problem

Symbol Description Value Unit

Wp Potato thickness 0.01 m
Lp Potato length 0.1 m
W Tunnel height 0.15 m
L Tunnel length 0.5 m

Figure 5: Comparison of analytical, CFD, and experimental results

3.2 Multi-Agent Simulation
It would be helpful to have a comparison of the calculation accuracy of various algorithms

in addition to the calculation speed. It would provide a more comprehensive understanding of the
advantages of the MARL algorithm in a large space. Including accuracy in the comparison would
give a clearer picture of how well the MARL algorithm performs compared to other algorithms.
Comparing the simulation results of MARL with other algorithms for the optimal position would
indeed highlight the advantages of MARL. It would provide a direct comparison to showcase how well
MARL performs in finding the best position compared to other algorithms. Including this comparison
would strengthen the argument for the effectiveness of MARL in optimizing positions. In Fig. 1b
where different values are depicted. By considering that, we can see if it has any significant impact on
the results. It is important to have accurate and consistent labeling to ensure clarity in the figures. The
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initial condition of the dry air in the system is RH = 0.5 and all properties same as the inlet condition
while the time step is automatically controlled by software. As well the porous viscous resistance of
water and gas is considered as 109. Usually, the wall treatment models (blended wall function) are
used to set near-wall modeling assumptions for turbulence models but here neglected. The static
temperature considered here condition (see Table 1) is the temperature of the gas if it had no ordered
motion and was not flowing. The geometric parameters of the optimization problem are mentioned
in Table 4. Usually, a simple grid division with 0.01 for the first examination is considered to conduct
comparative experiments. Table 5 shows the grid independence test used in current computational
fluid dynamics analyses to ensure that the results obtained are not dependent on the grid used for
the simulation. Grid dependent solutions shown here lead to a potentially costly engineering design
decisions.

Table 4: Geometrical parameters of the optimization problem

Symbol Description Value Unit

a Potato thickness 0.02 m
a Potato length 0.02 m
W Tunnel height 0.05 m
L Tunnel length 0.7 m

Table 5: Grid study check

Grid Average relative error

Δx = Δy = 0.1 3.46 × 10−3

Δx = Δy = 0.1 3.46 × 10−3

Δx = Δy = 0.1 3.46 × 10−3

Δx = Δy = 0.1 3.46 × 10−3

PSO and GA are population-based methods that explore the search space efficiently, making
them suitable for large-scale optimization problems. Pattern search, although a local optimization
method, can also be effective for large problems if the search space is well-defined. MARL, on the
other hand, involves multiple agents learning and interacting with their environment. The complexity
of coordinating multiple agents and the increased computational requirements can make it slower
compared to PSO, pattern search, and GA for large-scale problems. In summary, for large-scale
problems, PSO, pattern search, and GA are generally faster than MARL due to their specific
optimization approaches and computational requirements.

In terms of memory, PSO and pattern search typically require less memory compared to GA
and MARL. PSO and pattern search methods usually store the positions and velocities of particles
or search patterns, respectively. These methods do not require extensive memory for storing large
populations or complex agent interactions. On the other hand, GA and MARL may require more
memory due to their population-based or multi-agent nature. GA involves maintaining a population
of individuals, which can consume more memory as the population size increases. MARL requires
memory to store the state and policies of multiple agents, as well as their interactions and observations.
In summary, PSO and pattern search methods generally require less memory compared to GA and
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MARL, which may require more memory due to their population-based or multi-agent approaches.
When it comes to accuracy, let us compare the methods of particle swarm optimization (PSO), pattern
search, genetic algorithms (GA), and multi-agent reinforcement learning (MARL).

In terms of accuracy, it is important to note that the performance and accuracy of these methods
can vary depending on the specific problem and implementation. However, in general:

- PSO and pattern search methods are deterministic and can provide accurate results if the search
space is well-defined and the objective function is smooth and continuous.

- GA is a probabilistic method that uses evolutionary principles and can provide reasonably
accurate solutions, especially for optimization problems with a large search space and multiple global
optima.

- MARL, being a learning-based approach, can achieve high accuracy over time as agents interact
with the environment and learn optimal policies. However, achieving high accuracy in MARL can be
challenging and may require a longer learning process.

In summary, PSO and pattern search methods can provide accurate results for well-defined
problems, GA can achieve reasonably accurate solutions for large search spaces, and MARL can
achieve high accuracy over time through learning and interaction with the environment.

The warmth and mass transfer equations for the porous moist objects are coupled with the
channel movement equations by utilizing the favorable spacing to accomplish the best convective
drying efficiency. The moisture reduction of the objects is higher at the optimum spacing in comparison
with unsteady replication outcomes acquired from resolving the parametric variation of the unsteady
coupled discipline equations. Fig. 6 presents the essays on each method used to reach the optimal point
of the system. As shown in Fig. 6, the comparison of the results of various algorithms for optimizing
the convective drying proves that MARL is the fastest method.

Figure 6: Comparison of the results of various algorithms on optimizing the convective drying

Even though, initially, the blocks have a uniform liquid saturation, as drying proceeds a non-
uniform saturation profile develops within the blocks. This is owing to the temperature and pressure
profiles within the sheet and the corresponding vaporization/condensation and liquid and vapor fluxes
within the blocks. There is pressure developed within the blocks greater than the atmospheric pressure



530 FHMT, 2024, vol.22, no.2

and the pressure is higher closer to the hot surface boundary and decreases towards the open surface
(Fig. 6a). The temperature profile within the blocks follows a similar profile from the hot surface side
to the open surface side (Fig. 7b). Fig. 7a shows the pressure contours inside the fluid and porous
system. The existence of the porous domain causes the highest pressure to change in the domain.
Fig. 7b shows the velocity contours in the system as a laminar confined flow. Inside the porous
domain, the velocity is close to the wall (see Fig. 1b). Fig. 7c shows the temperature change in the
system as a significant cooling in the whole domain. Fig. 7d illustrates the concentration (a measure of
relative humidity) after 10000 s. As evaporation takes place internal to the porous media it experiences
lower temperatures. The relative humidity in the porous medium goes from almost 100% at the
beginning of the simulation to ambient humidity by the end. As revealed the dry air pushes the moist air
out of the potato. Since moisture in the porous medium is a mix of liquid and vapor water, a measure
of the drying progression is liquid saturation. As the water evaporates, it lowers the temperature of
the porous medium. As shown taller porous blocks expand the moisture through the domain and
have enhanced dealings with surroundings. As exposed by the augment of the distance less moisture
is received at the preceding block. Additionally, the smaller distances assist the potatoes to maintain
their wet content which is not most wanted in this purpose. As well the first block is affected too much
by the environmental condition. Similarly, because of the moisture gradient along the horizontal (x-
axis) and thickness direction (y-axis), there is also liquid and gas flow along the horizontal or x-axis,
although the magnitude of these fluxes is comparatively lower.

Figure 7: (a) Pressure, (b) velocity magnitude, (c) temperature, (d) vapor concentration after 10000 s
for uniform arrangement

Fig. 8a shows the logarithm pressure contours inside the fluid and porous system. The existence
of the porous domain at the inlet causes the highest pressure to change in the domain for optimal
arrangement. Fig. 8b shows the Velocity contours in the system as a laminar confined flow. Inside the
porous domain, the velocity is close to the wall (see Fig. 1b). Fig. 8c shows the temperature change
in the system as a significant cooling in the whole domain after 10000 s for optimal arrangement. In
comparison with Fig. 7c, the effect of arrangement can affect inlet heat to the utmost temperature
variation in the system. As publicized, less inlet temperature is caused by optimal arrangement. Such
dependence shows dependence on thermal balance. The internal block temperature also remains
constant during the constant drying rate period indicating that all the energy transferred from the
flowing air is used for evaporation of the moisture and not for sensible heating of the block. Fig. 8d
illustrates the concentration (a measure of relative humidity) after 10000 s. The relative humidity in
the porous medium goes from almost 100% at the beginning of the simulation to ambient humidity
by the end. As shown the dry air pushes the wet air out of the potato. It is also faster near the
surfaces exposed to the ambient air than inside the medium. As given away vapor concentration on
the surface is decreased by increasing height. As made known, it maintains at a steady level, and
following some elevation it decreases suddenly. Corresponding to the vapor saturation profile, there is
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also a non-uniform gas saturation profile through thickness and the horizontal axis. Corresponding
to the liquid saturation profile, the next plot can show this effect (see Fig. 9).

Figure 8: (a) Pressure, (b) velocity magnitude, (c) temperature, (d) vapor concentration after 10000 s
for optimal arrangement

Figure 9: Liquid concentration in the first block after 10000 s for (a) uniform arrangement and (b)
optimal arrangement
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Velocity, volume fraction of water, evaporation rate, and mass fraction of steam are affected by
each other simultaneously. Fig. 9 presents liquid concentration in the first block after 10000 s for
uniform and optimal arrangement. The saturation (volume fraction of liquid water) and moisture
based on the solid mass can be described as a measure of drying in the system. As shown by the
increase in height from the bottom less humidity remained at the block. Liquid water and water vapor
evaporated inside the porous media can be transported to the surface/outside of the porous solid region
and then convected by the external air stream. Additionally, the left of the first block sooner emptied
from the water while uniform arrangement helps the potato to maintain its moist.

4 Conclusions

In this study, a comprehensive model was developed for drying potatoes with the implementation
of MARL to optimize slice locations. As well this research focus was on drying problems in a porous
media. A multiphase model is designed to simulate the drying of potatoes by convective heat transfer
with porous media techniques. To do that a set of governing equations including mass conservation,
momentum conservation, and energy conservation for liquid and vapor phase in thermal equilibrium
with solid matrix are solved by homemade software. The results are compared by experimental and
analytical methods of drying Flow Benchmark. As demonstrated MARL has a better efficiency
regarding iteration needed rather than previous methods. As well porous media increase the convective
mass and heat transfer through the domain. It is renowned that this mathematical study investigated
the viability, as well as the predictable shape of porous blocks, porous distribution inside the system,
shrinkage, and variable diffusivity that can affect the results which are recommended for further
studies. The main outcome of this research can be summarized as:

• PSO and PS methods (local and deterministic) generally require less memory compared to
GA (probabilistic and population-based which uses evolutionary principles) and MARL (agent
interactions).

• PSO and PS methods provide accurate results but here the objective function is not smooth even
is continuous. Since GA and MARL provide reasonably accurate solutions, as current problem
has a large search space and requires learning and interaction with the environment.

• PSO and PS could be faster than GA and MARL based on the initial position near the optimal
solution while MARL shows its capability to understand the different flow regimes by the
interaction of various agents with the environment.

To do more research here adding the slope of potatoes is recommended. If the porous medium is
situated on a surface with a slight slope, it could have an impact on the calculations and modeling. The
slope introduces an additional factor that needs to be considered, as it affects the flow dynamics and
the distribution of fluids within the porous medium. The presence of the slope can alter the pressure
gradients and flow velocities, potentially leading to variations in the transport of heat and mass. To
accurately model and calculate the behavior of fluids in such a scenario, the slope of the surface would
need to be incorporated into the mathematical equations and simulations. This would allow for a more
precise representation of real-world conditions and improve the accuracy of the results obtained from
the calculations.
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